I ! ! . LLNL-TR-558859

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

Adding a MOAB Geometry
Interface to SHARP
Structural Mechanics

R.M. Ferencz and N.E. Hodge
Methods Development Group

May 29, 2012

Memo of Completion
DOE-NE NEAMS Milestone M3MS-12LL0603031




Auspices

Lawrence Livermore National Laboratory is operated by Lawrence Livermore National
Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration
under Contract DE-AC52-07NA27344.

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor Lawrence Livermore National
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.



Adding a MOAB Geometry Interface to SHARP Structural Mechanics
A Memo of Completion for NEAMS FY12 Milestone M3MS-12LL0603031

R.M. Ferencz and N.E. Hodge
Methods Development Group

Abstract

We briefly summarize the development of, and test experience with, an initial data
interface between the structural mechanics code Diablo and the SHARP reactor
simulation system data hub MOAB. That interface has been exercised both to write
MOAB databases from Diablo, and then also to use such a database to read in part of
a simulation definition for a subsequent Diablo execution. All enhancements are
integrated into the central Diablo source repository.

Introduction

The SHARP software system for advanced simulation of nuclear reactors and power
plant systems is sponsored by DOE’s Nuclear Energy Advanced Modeling &
Simulation (NEAMS) program. Led by Argonne National Laboratory (ANL), SHARP
has been architected as a federation of single-physics simulation tools to permit
flexibility in programming languages and leveraging of past and on-going
investments. Solution of multi-physics problems will be coordinated by, and data
passed through, a central ‘hub’. SHARP’s hub implementation is utilizing MOAB: a
Mesh-Oriented datABase [1]. This same data hub approach is also intended to
enable multi-resolution simulations, e.g., lower-dimension plant-scale simulations
can be informed by high-fidelity 3D models of particular critical components.

The structural mechanics module of SHARP will leverage the Diablo code from
LLNL. The code has coupled thermo-mechanical capabilities for nonlinear solid and
structural mechanics, making it a good complement with SHARP’s thermal-
hydraulic (e.g., Nek5000) and reactor transport (e.g., Proteus) modules. As a first
step in the re-engagement of the LLNL team with the SHARP project, we have an
initial deliverable to establish a data interface between Diablo and MOAB. In the
PICS:NE project management system, this deliverable is designated M3MS-
12LL0603031. This brief report serves as a record of completion of that Level 3
milestone.

Approach
We decided it was best to first become familiar with MOAB outside the context of

interfacing with Diablo. While MOAB has its own C++ interface protocol, it also
provides an ITAPS-compliant C interface that is the recommended pathway for

1 LLNL-TR-558859



Fortran codes. ITAPS [2], or Interoperable Technologies for Advanced Petascale
Simulations, was a multi-year effort sponsored by the DOE’s Scientific Discovery
through Advanced Computing (SciDAC) program. The ITAPS project defined an
Application Programming Interface (API) called iMesh for libraries to store and
retrieve unstructured mesh representations of computational domains. It also
considered APIs for classes of supporting numerical operations such as mesh
partitioning and mesh quality improvement. Reference implementations, or
adaptation of existing libraries to the associated ITAPS interfaces, were also
produced.

We began with MOAB version 4.1, originally released in August 2011. We found it
straightforward to work through a progression of builds, first with the default GNU
compilers, then the Intel and PathScale compilers typically used for Diablo. The
simple demo codes provided with the MOAB distribution, and from the ITAPS
website, were the basis for experimentation. In particular the FindConnect.F90
program was extended to add extra nodes (“vertices”), then 1D, 2D and 3D example
element connectivities to the exterior of the existing mesh in the file 125hex.vtk.
The results of these operations could be verified by writing out the revised mesh to
another database and viewing it with the Visit [3] visualization tool. Both the
example’s source “VTK” format and MOAB’s native “h5m” database were exercised
in this manner. (The MOAB native database was read into Visit using the latter’s
ITAPS MOAB reader option.) The progression just described was later repeated
when MOAB version 4.5.0 was released in March 2012.

With some confidence in our understanding of the iMesh interface and the basics of
MOAB, we proceeded to interface Diablo. Our strategy was to first enable Diablo to
write its mesh definition, read from its standard text input files, to a native MOAB
database. Visualization of the resulting mesh database in Visit permitted rapid
debugging of the interface calls. With that stage complete, we could then begin to
selective add read functionality so that for some of its inputs, Diablo would read
mesh definition data from an existing MOAB database. To ensure this was indeed
the mode of operation, a revised Diablo input would be created for test problems
wherein most of the nodal coordinate information would be deleted. Thus the
simulation could only proceed correctly if indeed the proper mesh definition was
being read from the MOAB database.

Example Result

Multiple tests cases were run to confirm the initial interface was operating correctly.
The largest test case exercised was the ABTR core model created for an FY08
demonstration of fast reactor duct assembly bowing due to thermal distortions.
Figure 1 shows the all-hexahedral mesh as rendered by Visit after reading it from a
MOAB database produced by Diablo. Due to the binary data format of the MOAB
database, the mesh file in that format required only about half the disk storage of
the standard text input. Note that in order for Visit to read all our MOAB databases,

2 LLNL-TR-558859



it was necessary to invoke the HDF5 option HDF5_ DISABLE VERSION_ CHECK to
avoid complaints that Visit was performing HDF5 reading using a slightly different
version of the library than what was linked with Diablo and MOAB for writing.

DB: ob’rr_i'rq

Mesh |
Var: mesh 7

Ps.hdm

[l
it

i i
(A e S \
A \k ‘M Tl
R TR S
i ! 1

user; ferencz
Sat May 26 17:55:36 2012

Figure 1. A structural finite element mesh for one-third of the ABTR
conceptual design core geometry as rendered in Visit after
reading a MOAB database written by the Diablo code.

Having created the MOAB mesh database for the ABTR core bowing model, we then
ran the thermal part of the analysis using that database to supply mesh information.
The thermal boundary conditions, still defined in the original input, were those
provided by ANL [4] as part of the original demonstration. We chose to run thermal-
only because it is such a quick computation, and it already provides the needed
check that the geometry has been correctly imported through the MOAB interface.

3 LLNL-TR-558859



Figure 2 illustrates a typical result, with the highest temperatures in the central fuel
assemblies and the inner surface of the shield ring. These Diablo simulations were
verified up to 512-way parallel executions.

/eis /tmp2 flaranaz /Moob_Ned /ABTR be2XCTE
Globol Moximum: 8.09e+02. Nodol 705521 Temperature
Global Minimum: 2.93e+02. Nodal 2 809402+
Displacement Scole: 1.0/1.0/1.0

7.00e+02*
6.00e+02~
500e+02+
4.00e+02*

293402~

ABTR ossembly. coorse 2/3¢d symm. 410 CTE
t = 1.50000¢+01 [Stote = 16/16]

Sot Moy 26 183924 2012

Figure 2. Temperature distribution (K) in the ABTR conceptual
design core geometry, at power-to-flow ratio 1.0. Thermal-
only response computed with Diablo using duct face
tempera-ture boundary condition data provided by Dr.
Won-Sik Yang, then of Argonne National Laboratory.

Lessons Learned

An interesting fault condition was noted from one Diablo test problem. That simple
testuses a 16 X 16 X 16 uniform hex grid for the so-call Boussinesq problem of a
concentrated load on an elastic half-space. Diablo is intended to permit arbitrary
node numberings to permit analysts flexibility in making simple alterations or
perhaps merging two meshes together. Thus this test problem had been

4 LLNL-TR-558859



purposefully altered to not have the nodes defined in 1-N order, although in their
totality the nodes did represent a complete set {1,2,...,N}. The resulting MOAB
database written by Diablo was readily viewed in Visit. However, upon launching a
simulation using that geometry, the analysis immediately terminated, complaining
of non-positive element volumes. This experience led to the realization of implicit 1-
N ordering. To test that hypothesis, a revised Diablo input was created where the
nodes had been sorted to a monotonic 1,2,..., N order. Generating a Moab database
from that input then supported the successful simulation execution of Diablo. In the
future, we will consider extending the Diablo write function for MOAB vertices to
output a sorted, monotonic order, regardless of the user’s input. Where ‘gaps’ in the
order exist, and full generality is desired, we may need to simply define the missing
nodes with an arbitrary coordinate location even if no element connectivities
reference those nodes.

Conclusions and Future Efforts

An initial data interface between the Diablo structural mechanics code and the
MOAB database library has been established in fulfillment of the L3 milestone. We
cannot claim expertise with MOAB yet, but we are confident that we have a strong
basis for technical discussions with our SHARP colleagues and further development.
Our work to date has included some initial efforts at using ‘tags’ to designate subsets
of data. We need to acquire an understanding of the usage of tags being developed
within the SHARP team to coordinate the interchange of data between physics
modules. This process will begin to unfold as we work on our next deliverable: a bi-
physics demonstration for the thermal-structural response of a pipe to a thermal
mixing flow downstream of a Tee junction. We envision using tags to identify the
thermal boundary conditions (locations and values) needed from the CFD module.
Our understanding is that SHARP will eventually explore the use of the iFields
capability under development in MOAB to streamline the designation and proper
identification of such exchange quantities.

References
[1] T. Tautges et al., “MOAB: A Mesh-Oriented datABase”, Argonne National

Laboratory, no date. Web 28 May 2012
http://trac.mcs.anl.gov/projects/ITAPS /wiki/MOAB.

[2] L. Diachin et al., “ITAPS: Interoperable Technologies for Advanced Petascale
Simulations “, Rensselaer Polytechnic Institute, 13 Dec 2010. Web 28 May
2012 http://www.itaps.org/.

[3] Visit, Lawrence Livermore National Laboratory, UCRL-WEB-229972, 14 May
2012. Web 28 May 2012 https://wci.llnl.gov/codes/visit/.

[4] W-S. Yang, Private Communication “Temperature fields for structural
analysis”, June 2007.

5 LLNL-TR-558859





