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All other variables 
are readily obtained 
after solving this 
equation.
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 What are the 
dimensions of c?

 How is this growth 
rate derived?

 Is it a good idea to 
raise dimensional 
variables to fractional 
powers?

 What’s missing?
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 We can eliminate the virtual origin by modeling   , 
rather than   .

 Normalizing    by its initial value,    , ensures that 
all growth curves start at unity. 

 Linear stability theory and experimental evidence 
indicate that the growth rate depends on the 
dominant perturbation wavelength    .

 A relevant timescale thus appears to be            . 
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oh
 Assume interfacial perturbations are known.

 Define                                   , where  is “product”.

 h(t) is the thickness of mixed fluid that would result 
if the entrained gases were homogenized in the 
transverse plane.

 From continuity, growth rate = mass flux through 
equimolar plane: 
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 No issues of asymmetry between bubbles and 
spikes.

 Not sensitive to outliers (like threshold definitions).

 Valid for shocks in either direction.

 Data need only be gathered on a single plane 
(PLIF friendly).
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How good is the impulsive-planar-shock approximation? 
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Simulation                               Model

A  0.53
M i 1.1
rms / o  0.1

  0.5
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t
ho
o

 0 1 2 5 30

A  0.53
M i 1.1
rms / o  0.1

A  0.35
M i 1.5
rms / o  0.1

0.05   0.95
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M i 1.5
rms / o  0.1h (cm/s)

t (s) t
ho
o

h / ho
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A  0.53
rms / o  0.1h (cm/s)

t (s) t
ho
o

h / ho
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A  0.53
M i 1.5h (cm/s)

t (s) t
ho
o

h / ho
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h  hot ho

t  ho
ho

h  0

Interface thickness:
(note that            for A < 0)ho  0

Thickness is minimum at:

Shift time axis by this amount
(phase inversion time)

t  ho
ho

t
ho
o

 ho
o

nondimensional
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M i 1.5
rms / o  0.1h (cm/s)

t (s)
t
ho
o

 ho
o

h / ho
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A  0.53
rms / o  0.1h (cm/s)

t (s)
t
ho
o

 ho
o

h / ho
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A  0.53
M i 1.5h (cm/s)

t (s)
t
ho
o

 ho
o

h / ho
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Gaussian

Power Law

Bimodal

kpeak / kmin  32

kpeak / kmin  24 & 48

E  k
2
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A  0.53
M i 1.5
rms / o  0.1

 Possible different behavior at late times

 Initial perturbation spectra widths are all 
rather narrow (less than a decade)

h (cm/s)

t (s) t
ho
o

h / ho
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 Growth rate curves at later times fit the form

 Solve for the unknowns

h
ho
 c 1 hho
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t
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for A  0

t
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 ho
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for A  0
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Gaussian

Power Law

Bimodal

c 

  20Average beyond c  0.813   0.233

 
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h ho  / o h / ho

 

hho 
o

 0.812  0.236
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 The growth rate of the mixing region is determined solely by the net 
mass flux through the equimolar plane.

 The post-shock density and velocity fields (and hence the initial mass 
flux) can be accurately modeled if the interfacial perturbations are 
known.

 The initial growth rate (computed a priori) can be used to collapse the 
mixing curves for various Atwood numbers, Mach numbers etc.

 The collapse of the growth curves (and hence the universality of the 
scaling) may depend on whether the initial spectrum is narrow or 
broadband.

 A universal value of θ may only exist for perturbation spectra of the 
same form.
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Gaussian Perturbation Spectrum

Interface profile

Distance function

Perturbation energy

Dominant wavelength
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 By 2562 x 512, the peak growth rate is within 2% of 
the modeled 

 A k-5/3 inertial range develops at the two highest 
resolutions 

ho

  30

A  0.53
M i 1.5
rms / o  0.1


