

HIGH PERFORMANCE COMPUTING

PRODUCTIVITY STUDY

EVALUATION OF PARALLEL TOOLS

PLATFORM (PTP) ECLIPSE PLUG-IN

Lawrence E. Banks, Eveline I. Dube

June 29, 2012

LLNL-TR-562876

PTP v5.0.3 Evaluation

2

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor Lawrence Livermore National
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States government or
Lawrence Livermore National Security, LLC. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

PTP v5.0.3 Evaluation

2

Contents
1 Introduction .. 3

2 Evaluation Hardware Platform ... 3

3 PTP Installation ... 4

3.1 Description .. 4

3.2 User Experience .. 4

3.2.1 Installation .. 5

3.3 Evaluation ... 6

4 Developing MPI Projects ... 6

4.1 Description .. 6

4.2 User Experience .. 7

4.2.1 ToolChain configuration .. 7

4.2.2 Out of the box MPI Example ... 7

4.2.3 Editing / Building ... 11

4.2.4 Resource Manager Configuration ... 14

4.2.5 Launching .. 17

4.3 Evaluation ... 19

5 Monitoring .. 20

5.1 Description .. 20

5.2 User Experience .. 20

5.3 Evaluation ... 20

6 Debugging ... 21

6.1 Description .. 21

6.2 User Experience .. 22

6.3 Evaluation ... 24

7 Evaluation Summary ... 26

8 References .. 28

PTP v5.0.3 Evaluation

3

1 Introduction
This report is a DARPA funded Work For Others (WFO) evaluation of the Parallel Tools Platform (PTP)
version 5.0.3 (Released October 18, 2011). PTP is currently being developed and supported as an open
source product managed by Project Lead Greg Watson and team at IBM plus several other contributors.
The tool has been in development since 2005 with a goal of providing an infrastructure for the
integration of high performance computing tools [1]. Basic functionality such as source code editing,
compiling, launching, and debugging, plus more advanced features including performance monitoring
and deployment have been bundled into an Eclipse Integrated Development Environment (IDE) plug-in
to give parallel application programmers the features and improved productivity gained from using a
common, well established development platform [2].

The evaluation encompasses the basic aspects of using PTP, beginning with the installation and
configuration of the plug-in, followed by code development and debugging. Each aspect is evaluated
based on the expectations of my experience as an Eclipse user and is presented in the following format:

• Feature description
• User Experience
• Evaluation

The feature description is based on the provided documentation for PTP and the ‘generic’ expectations
of what the feature should provide. The user experience reveals the actual use and exercise of the
feature – specifically in the context and perspective of the evaluation platform provided by Lawrence
Livermore National Laboratory. The evaluation of each feature includes the overall outcome of the user
experience, along with the expectations that were not met, met, or exceeded along with any issues that
were encountered.

2 Evaluation Hardware Platform
The high performance computational infrastructure at Lawrence Livermore National Laboratory was
utilized for this evaluation. At the time of this study, the specific hardware cluster used, named Sierra,
consisted of the following architecture:

Sierra

Nodes
 Login nodes: sierra[0,6,324,330,648,654,972,978,1296,1302,1620,1626]
 Batch nodes
 Debug nodes: sierra[12-27]
 Total nodes

12
1,849
16
1,944

CPUs (Intel Xeon 5660)
 CPUs per node
 Total CPUs

12
23,328

CPU speed (GHz) 2.8

Theoretical system peak performance (TFLOP/s) 261.3

Memory

PTP v5.0.3 Evaluation

4

 Memory per node (GB)
 Total memory (GB)
 Memory addressing

24
46,656
64-bit

Operating system CHAOS 4.4

High-speed interconnect InfiniBand QDR (QLogic)

Resource Manager SLURM

Table 1: Sierra cluster architecture specifics [3].

PTP allows three basic configurations for the development environment. A local environment is where
Eclipse and source code development resides on the target machine. A remote environment allows the
developer to use Eclipse on a local machine while maintaining code development on a remote target
machine. A third configuration is termed a synchronized environment which is a hybrid of the first two;
Eclipse runs on a local machine with source code that resides, and is kept in sync, on both the local and
remote target machines. This evaluation has been conducted exclusively with the local environment
configuration – Eclipse with PTP and source code resides in a user environment on the Sierra cluster.

Several compilers are available on the Sierra cluster. This evaluation focused on parallel coding using
the Message Passion Interface (MPI) libraries with an Intel compiler for the native chipset of the Sierra
architecture.

3 PTP Installation

3.1 Description
Typically, an Eclipse plug-in will have an update site, i.e. url, that can be added within Eclipse via a
software update configuration. Once Eclipse knows about an update site it can automate the download
and install and updates of the plug-in. This process will identify any dependencies the plug-in may have
and prompt the user to allow installation of these needed dependencies as well.

PTP employs the concept of a resource manager proxy to bridge communicating between the Eclipse
environment and the resource manager of the target parallel environment. PTP supports several
resource managers and requires the desired proxy be built from source on the target machine to ensure
proper configuration.

PTP comes bundled with a parallel debugger with basic debugging capabilities of setting break points
and stepping through program execution. As with the resource manager proxy, the debugger must be
configured and built from source on the target machine.

3.2 User Experience
The Eclipse IDE is primarily written in java, thus a java virtual machine, or jvm, is required. The latest
versions of PTP (and Eclipse) require java 1.5 or greater. Since PTP appears to be regularly updated with
bug-fixes and additional features, it was decided to ensure a newer java 1.6.x version was available.
Checking the java version for the Sierra environment:

PTP v5.0.3 Evaluation

5

 java –version
java version "1.6.0"
Java(TM) SE Runtime Environment (build 1.6.0-b105)
Java HotSpot(TM) 64-Bit Server VM (build 1.6.0-b105, mixed mode)

This was not the newest version of Java, but was more than sufficient for the duration of this evaluation.

3.2.1 Installation
The PTP plug-in has matured to the point where it is included with a full Eclipse download, thus there
are two ways to install the PTP plug-in: install a new full Eclipse bundle containing PTP, or install the PTP
plug-in into an existing Eclipse environment. The method used in this evaluation was to simply install
the full Eclipse bundle for parallel application development containing the PTP plug-in. This download
was obtained from the Eclipse download site: http://www.eclipse.org/downloads by selecting the
“Eclipse IDE for Parallel Application Developers” bundle. Version 5.0.1 of PTP was originally installed
with this bundle. The update mechanism in Eclipse was used to update the PTP version to 5.0.3. For ease
of use, and to allow for an independent Eclipse process, an alias was created for the initiation of Eclipse
sessions:

 alias eclipse=’nohup ~pathToEclipse/eclipse –showlocation &’

The configuration of the PTP plug-in was necessarily more involved than a basic Eclipse plug-in. This was
mainly due to the need of ensuring the resource manager and parallel debugger were configured and
built for the specific target parallel environment.

3.2.1.1 Resource Manager Proxy
To communicate with the SLURM (Simple Linux Utility for Resource Management) resource manager, a
resource manager proxy must be configured and built from source. The source code for the proxy is
included in the download of the initial install, and any further update of PTP. The following steps were
specific to the evaluation environment on the LLNL Sierra cluster and are based on the PTP installation
documentation bundled with the plug-in and accessible via the standard Eclipse Help facility [4].

1) Ensure slurm.h and slurm_errno.h include files exist on the target system.
• These files are located in /usr/include/slurm

2) Build PTP proxy and utils libraries which are included with the plug-in and are found relative to
the plugins directory of the Eclipse install. Note: the subdirectories correspond to the current
version of the plug-in installed. Therefore, this will need to be redone each time the plug-in is
updated (i.e. new version installed).

a. cd to org.eclipse.ptp.proxy_5.0.3.201110141146/
b. NOTE: these directories were found to contain README and INSTALL files. Considering

these are bundled with the code it was assumed that they would contain more current
information and thus would override any conflicting documentation in the install guide.

c. Run autoreconf
d. Run configure
e. Run make

3) Build the PTP SLURM proxy.

http://www.eclipse.org/downloads

PTP v5.0.3 Evaluation

6

a. cd to org.eclipse.ptp.rm.slurm.proxy_5.0.3.201110141146
b. Run autoreconf
c. Configure the makefiles corresponding to the SLURM on the system.

Run configure --with-slurm=/usr/include/slurm
d. Run make

NOTE: Instructions in INSTALL file say to run ‘make install’. However, this attempts to
place the ptp_slurm_proxy into the /usr/local/bin directory – which, of course, is a read-
only directory for typical users. Later documentation indicates the ptp_slurm_proxy is
to be found in this org.eclipse.ptp.rm.slurm.proxy.xxx directory, which is what make
does by default, so it was assumed that ‘make install’ was not needed.

3.2.1.2 Parallel Debugger
This PTP release bundle contains the initial release of the PTP Scalable Debug Manager (SDM). The SDM
consists of an MPI-based client/server framework that can attach to backend debuggers, a proxy library
that allows control from a remote driver, and a Java JNI library to allow communication with the Eclipse
interface.

1) Relative to the Eclipse/plugins install directory:
2) cd to org.eclipse.ptp.debug.sdm_5.0.3.201110141146
3) Build the SDM debugger

• Run configure
• Run make

3.3 Evaluation
Documentation was quite good. PTP is unusable without proper setup for the specific target machine
and knowing what pieces to build would be impossible without basic documentation. However, some
documentation was inconsistent with the bundled README and INSTALL instructions. A higher-level
install script that would configure and build all the necessary pieces on the target machine would be
useful.

4 Developing MPI Projects

4.1 Description
A clean integration with Eclipse will successfully inherit a set of common development features including
a managed build system, syntax-aware editing for supported languages, integration with external tools –
specifically compiler and library configuration.

PTP v5.0.3 Evaluation

7

4.2 User Experience

4.2.1 ToolChain configuration
For each project created, a toolchain must be defined specifying the desired compiler, linker and
associated libraries required for building the executable. PTP allows defaults to be defined in the
Parallel Tools general settings (see Figure 1).

Figure 1: General settings for MPI.

Here the library path for MPI include files is defined, as well as the compiler command for the Intel C
and C++ MPI compilers. These defaults can be used or overridden when a specific toolchain is defined
for a project.

4.2.2 Out of the box MPI Example
Following the online help documentation the example MPI project was created (see Figure 2). Since this
project is created from scratch it will be a managed build project – meaning that Eclipse manages the
build using the compiler, linker, and libraries as configured by the user.

PTP v5.0.3 Evaluation

8

Figure 2: Example MPI Project via PTP online help.

The Eclipse new project wizard was used to name the project and select the toolchain (see Figure 3).

Figure 3: Eclipse New Project wizard.

PTP v5.0.3 Evaluation

9

Note how the Linux GCC toolchain was chosen. This was due to the fact that there was no appropriate
toolchain available for selection for the Intel MPI compilers to be used. However, as will be shown later,
it was possible to modify the Linux GCC toolchain to contain the libraries needed for the desired
compilers.

The next wizard screen (Figure 4) contained the expected default settings as previously defined in the
general settings for PTP – namely the include path and the compiler command. At this point, the
toolchain could be tailored for specific projects.

Figure 4: MPI default project settings.

PTP v5.0.3 Evaluation

10

The next screen shows configurations that can be selected for the project. Options include a debug
configuration enabling a build to maintain source and variable references, and a release configuration
which allows the compiling/linking phases to be optimized. There must be at least one valid
configuration present. This is one reason the Linux GCC Toolchain was selected to be modified – it
appeared to be the only C/C++ toolchain with valid configurations (see this section’s Evaluation).

Figure 5: Toolchain configurations.

PTP v5.0.3 Evaluation

11

Finishing the wizard resulted in the creation of the example ‘Hello World’ program (Figure 6).

Figure 6: Out of the box example MPI C 'Hello World'.

4.2.3 Editing / Building
The PTP Toolkit is built upon Eclipse CDT (C/C++ Development Tooling) plugin module [5]. Thus the
expected bells and whistles of integrated source code editing are present. This includes color coded
syntax, global searches, hot links to function declarations and references, code completion and context
sensitive help. The plugin also includes automatic building, incorporating compiler errors and warnings
output to the user.

After creation of the example project, the next step is to attempt to compile and link the code to create
an executable. The output of this effort is shown in console window (see Figure 7).

PTP v5.0.3 Evaluation

12

Figure 7: Output of build shown in Console view.

There are two items to note in the console window. One, although the output states that it is invoking
the GCC compiler and linker – likely due to the fact the Linux GCC Toolchain was chosen as the one to be
modified – it can be seen that it did correctly invoke the desired Intel compiler and linker as previously
configured in the general setup. And two, the build failed due to the linker not being able to find the
‘mpi’ library. The build error was fixed by going into the project’s properties: C/C+ Build|Settings and
removing the library search path ‘/usr/local/tools/vmapich-intel/lib’ from the linker search path, and
‘mpi’ from the linker libraries (see Figure 8).

PTP v5.0.3 Evaluation

13

Figure 8: MyMPIProject Settings for C/C++ Build.

Now, reattempting the build results in success (see Figure 9), and an executable is created in the
Binaries and Debug folder.

PTP v5.0.3 Evaluation

14

Figure 9: Clean build of MyMPIProject example.

4.2.4 Resource Manager Configuration
Running an executable on a parallel system requires configuring and submitting a job to the system’s
resource manager. Recall earlier that a proxy to the resource manager was built from source as part of
the installation of PTP. This proxy must be configured within Eclipse and must be available to coordinate
the launch of an executable.

To configure the resource manager, PTP provides a Parallel Runtime perspective. A perspective in
Eclipse is a top-level window that contains related views for a particular application. As such, the
Parallel Runtime view contains views for the resource manager(s), managed jobs, hardware cluster
information, and output console (see Figure 10).

PTP v5.0.3 Evaluation

15

Figure 10: PTP Parallel Runtime perspective views.

From within the ‘Resource Manager’ view, right-click the mouse to see a dialog allowing to ‘Add
Resource Manager…’. This brings up a wizard to add and configure a resource manager (Figure 11).

PTP v5.0.3 Evaluation

16

Figure 11: Add Resource Manager wizard.

Since SLURM is the resource manager on the Sierra system, SLURM is the chosen type. The wizard
simply prompts for the location of the proxy for the resource manager which was built during
installation, specifically: ‘org.eclipse.ptp.rm.slurm.proxy_5.0.3.201110141146/ptp_slurm_proxy’

The proxy is started from the ‘Resource Managers’ view. Right-click on the resource manager and
choose ‘Start Resource Manager’. With a running resource manager (see Figure 12) the views in the
Parallel Runtime perspective show a color-coded status of the machine nodes: green for available,
yellow for busy. Clicking on a node displays basic information about that node in the properties view.

PTP v5.0.3 Evaluation

17

Figure 12: Parallel Runtime perspective showing machine and node information.

4.2.5 Launching
With a cleanly built executable and an available proxy to the SLURM resource manager, a run
configuration can be created. From the main bar choose Run|Run Configurations… (see Figure 13) .

PTP v5.0.3 Evaluation

18

Figure 13: Run Configuration panel

For a configuration, the desired resource manager is assigned along with the number of tasks, nodes,
time limit, and partition for job submission. If desired, one can request specific nodes as well as exclude
specific nodes. The application to run is specified from the Application tab, and any arguments to be
passed to the application may be specified via the Arguments tab. It is trivial to create several different
run configurations for the same application.

To submit a run configuration, right-click on the pull-down arrow to the right of the Run icon (see Figure
14). The act of running a configuration will run make on the application to ensure the binary is current
with respect to any source code modifications. Then the job is submitted to the SLURM manager for
execution on the cluster. Any output generated from the running processes is reflected in the console
view.

PTP v5.0.3 Evaluation

19

Figure 14: Running a job.

4.3 Evaluation
The PTP plugin adheres to the basic functionality of the Eclipse IDE in that it provides the framework for
automatic building of a source code project. Wizards are provided to aid in the initial configuration of
the compiler and linker. This type of configuration is typically called a toolchain. PTP includes a few
predefined configurations for some common development environments including a basic Linux GCC
toolchain. However, if the desired toolchain is not in the set of predefined configurations then one of
the exiting configurations must be modified to point to the desired compiler, linker, and libraries. Being
forced to use an existing configuration to build the needed configuration can appear confusing. As was
experienced previously, it was necessary to modify the ‘Linux GCC’ toolchain to create an ‘Intel C++’
compiler/linker setup. There should be an option to create and configure a user-defined toolchain from
scratch. Additionally, it would be helpful to have the ability to copy a predefined configuration that
could be renamed and then modified. However, even with this small issue, the configuration of a
toolchain is a tremendous aid in that once configured it can be reused for multiple projects alleviating
the need to build a new configuration each time.

The PTP has been integrated nicely with the CDT plugin which is designed for developing C/C++ projects.
As such, all the expected features found in a code development Eclipse plugin are available. These

PTP v5.0.3 Evaluation

20

features include mechanisms for automated building, code editor with syntax highlighting and source
completion, button-click navigation to function definitions and references, and source code refactoring
in the context of the entire project. The integrated capabilities provided by this set of features have the
greatest positive impact on a software developer’s productivity.

Since the purpose of PTP is to aid in the development of parallel processes, it must address the added
complexity of submitting the compiled code to the job management system of a target node cluster.
PTP includes the concept of a resource manager proxy which acts as a go-between for the Eclipse
development environment and a cluster’s job management system. PTP allows the creation of run
configurations that refer to a particular resource manager proxy to enable the execution and monitoring
of the job from within the IDE. The resource manager proxy used in this evaluation was configured for a
SLURM management system. For each run configuration, PTP exposes a subset of the more common
parameters used by the SLURM system.

5 Monitoring

5.1 Description
Once a job is submitted to the resource manager of a cluster it’s vital to be able to monitor its status.
Jobs are placed in a queue and will compete with other jobs for node resources. A user will need to
know what state a job is in (e.g. pending, running, completed), and have the capability to remove a job
from the queue or cancel a running job.

5.2 User Experience
There are several capabilities available on the Parallel Run perspective for monitoring submitted
applications. Referring back to Figure 14, a visual view of the nodes in the cluster is provided with icon
status showing the state of each node as being idle, allocated or down.

The Jobs List view shows a table of information of the submitted jobs owned by the user consisting of
the parameters provided in the run configuration along with the assigned job number and the current
status of the job. By clicking on a job in this table the details are shown in the Properties view. Output
generated from each job is displayed in a Console view. Each job’s output is captured by a new console
instance and can be specifically selected to view, or re-view, the output for that job. A pending or
running job can be easily cancelled in the Jobs List view by clicking on the job and then clicking on the
red square icon at the top of the view.

5.3 Evaluation
The Machine view is quite nice in that properties of any node can be explored and the load of the cluster
as a whole can be observed. This view proved to be quite responsive as a specific node can be seen to
change from available to allocated and back to available as an application configured for this node is
executed.

The table view of submitted jobs easily aids in productivity in three ways. One, by simply keeping a list
of the submitted jobs a user need not manually query the system for jobs in the queue. Two, by a simple

PTP v5.0.3 Evaluation

21

click on a job displays the submitted job’s status and allows cancelling of the job if desired – again,
saving manual queries and commands to the queue. And three, keeping track of the output of each
completed job avoids in programmatically routing output to specific output files and provides quick
review of the output of any completed or running job.

As a user establishes an iterative development procedure for editing/running/testing/debugging code,
views can be added or removed from any perspective to aid productivity by keeping the most commonly
used views in one perspective. For instance, as most development takes place in the C/C++ perspective
the common views needed for running the application (e.g. resource manager and output console) can
be added to this development perspective to avoid continually switching perspectives (see Figure 15).

Figure 15: Tailored perspective with additional views.

6 Debugging

6.1 Description
Debugging is a key phase of the development process. Methods of debugging have evolved from
inserting print statements at key locations in code to examining the contents of variables at given points

PTP v5.0.3 Evaluation

22

in the execution to using a full blown debugger that allows interactive examination of all variables at
each execution step. Typically a debugger is applied to a single process, but on a parallel cluster the
debugger must be able to monitor and control the processes and threads for each node on which the
parallel job is running. The PTP bundle includes the Scalable Debug Manager (SDM) which consists of a
front-end client plugin to Eclipse, the GNU gdb backend debug engine, and a communication manager
which marshals debug messages within a tree-based network connecting each running process.

6.2 User Experience
To start a debug session for a project, a debug launch configuration must be created. From the main
menu bar, select Run|Debug Configurations. This action brings up a window nearly identical to the Run
Configuration with the inclusion of a Debugger tab (see Figure 16). The current Run Configurations are
under Parallel Applications. Simply create a copy of a run configuration, give this configuration a new
name; a good convention is to simply append ‘-debug’ to the run name, and modify this configuration to
invoke a debug session.

Figure 16: Debug Configuration

It is common for a cluster to have a set of nodes dedicated for debugging use. This debug partition
should be specified as the partition to use in this configuration. Note that the icon on the Debugger tab
indicates an error in the configuration and the message at the top of the panel states that the path to
the debug executable must be specified. Clicking on the Debugger tab allows adding the path to the

PTP v5.0.3 Evaluation

23

SDM executable which can be found in the Eclipse installation plugin directory:
plugins/org.eclipse.ptp.debug.sdm_5.0.3.201110141146/sdm.

Clicking the Debug button will launch the project and bring up the Parallel Debug perspective (see Figure
17).

Figure 17: Parallel Debug Perspective.

As is typical with a debug interface, this perspective is highly interactive and packed with information
concerning the running processes. The Parallel Debug view shows the job and the associated processes
(small diamonds icons). In this view, processes can be grouped into arbitrary sets allowing logical
process groupings to be examined independently. When initiated, all processes are contained in a root
set. The creation of sets is accomplished by mouse-dragging a rectangle over the processes (see red
rectangle in Parallel Debug view in Figure 17), and/or conventional ctrl-clicking to select individual
processes. Any number of sets can be created and uniquely named. Processes can be added or removed
from a set during the debug session. Only one set at a time will be displayed and operated on by the
debugger.

PTP v5.0.3 Evaluation

24

Individual processes, whether in a set or not, can be registered with the debugger to enable the
examination of its stack frames and threads. A registered process is indicated by a square around the
individual process diamond. The Debug view shows the registered processes and their associated
threads. Clicking on a process will change the context of the other views to that process. For instance,
the code view is associated with the selected process as well as the Breakpoints, Expressions, Signals,
Arrays, and Variables.

In the source code view, two types of breakpoints can be created at specific points in the code. A global
breakpoint will apply to all processes in the job. With no other breaks specified, each process will
continue execution to this type of break point. A global breakpoint is typically used to bring all processes
to a common break at which point the developer can begin to drill down into specific logic in specific
processes. This drill-down debugging is done by setting a set breakpoint which will only be applied to an
individual process set.

6.3 Evaluation
Stepping through parallel processes in a SDM debug session takes a bit of getting used to, but once
familiar, the tool is quite powerful in showing the individual process flow as well as process interaction.
Using global breakpoints is straightforward in that all processes will execute until the breakpoint is
reached. Sets and set breakpoints may be created only after the job is submitted and are not retained
from one run to the next. For this reason the ‘stop in main’ option should always be selected in the
debug configuration to ensure the suspension of execution after processes have been initialized.

Setting and keeping track of breakpoints for individual sets and processes rely heavily on the visual
information provided in each of the views (refer to Figure 18). First it’s important to ensure that each
process to be examined is registered – as indicated by the selected process diamonds in the Parallel
Debug view. The Debug view shows the current stack trace of each thread in each registered process.
The state each thread is in is shown (e.g. suspended, running, etc.) and if suspended, the source code
line number is given. Selecting a specific process thread in this view allows stepping through the
execution of the selected thread while all other processes remain suspended. If the thread reaches a
‘running’ state and trace step icons become disabled (i.e. greyed-out), then it’s likely that the process
has reached a dependency point with another suspended process.

PTP v5.0.3 Evaluation

25

Figure 18: Debug session in progress.

The source code view highlights the source statements for the execution trace of all registered
processes in the selected set. Hovering over the break marker, to left of the line number, shows which
processes are currently suspended at that statement.

Adding other views to this perspective can be quite beneficial. For instance, bringing in the Machine
view allows drill down on the job execution nodes (see Figure 19). This view in turn shows the jobs and
processes running on that node. Drilling into the properties of a specific process shows the process
details and output generated by just that process.

PTP v5.0.3 Evaluation

26

Figure 19: Individual process views for debugging.

An alternative debugger available here at LLNL is the TotalView debugger available from Rogue Wave
Software [6]. Like the SDM client, the TotalView interface consists of multiple windows, or views, each
focused on specific functionality for a debug session. Besides the basic functionality found in PTP’s SDM,
TotalView provides several advanced features including memory tracking, and support of C++ template
libraries.

As the SDM debugger continues to mature it may begin to include some of these more advanced
features. However, the basic functionality currently integrated into the PTP plugin is well presented in
the interface and provides a quick and easy means for an iterative code/debug cycle.

7 Evaluation Summary
The key advantage of any IDE is the Integration. The editing of source code is integrated with the
compiler allowing real-time feedback on code syntax. Integration with the linker ensures adherence to
the protocol of included or created library functions. Developing source code for a project is, and should
be, a very iterative process. All software developers will create a subset of desired basic functionality,
execute the code to test/debug, add more functionality – test/debug, etc. This cycle is repeated multiple

PTP v5.0.3 Evaluation

27

times until all functional requirements are met, and the code executes flawlessly. This cyclic process is
where the Eclipse IDE shines in increasing the productivity of the developer.

The Parallel Tools Platform (PTP) is a plug-in module for Eclipse that aids in the development of parallel
applications. PTP incorporates the popular CDT (C/C++ Development Tooling) module to provide a
source code editor with color-coded syntax highlighting, context sensitive code completion, and
compile-time error checking. PTP includes the SDM debugging tool for parallel applications, and utility
tools to submit and monitor jobs on a parallel system.

Installation
By necessity the installation is more involved than simply pointing Eclipse to an update site and
downloading a plugin. Several utilities must be built from source on the parallel host system in order to
ensure proper executing on each specific cluster. The included documentation was well done,
presenting step-by-step instructions for installing each utility. As a side note, at the beginning of this
evaluation an earlier version of PTP was installed and subsequently upgraded to v5.0.3. The upgrade
documentation did an excellent job of walking through the steps necessary to rebuild these utilities and
re-pointing the IDE preferences to use the newly built version.

Environment Configuration
Configuring the ToolChain for the desired compiler, linker, and libraries is a bit frustrating. More
standard configurations could be provided in the default set. More importantly the ability to add a new
configuration as opposed to overriding an existing default should be available.

Code Development
The process of creating projects, editing/importing code and running an executable exceeded
expectations. The use of a proxy to communicate with the actual resource manager proved to make
running on a parallel cluster nearly seamless as compared to running on a standalone node. While there
was the extra complexity of having to build, configure, and start the proxy, the benefit was well worth
the effort. The proxy allows the integration of the machine configuration, parallel node status and
monitoring of each running process to simply be included in another view of the IDE.

Debugging
The SDM debugging tool has a learning curve to understand how to step through specific processes,
with basic debugging functionality present. The ability to drill into a process starting at the node view is
a nice feature. While more complicated issues with highly parallel code may be better debugged with
the additional features provided in a debugger such as TotalView, the SDM debugger has the necessary
capabilities to step through individual threads examining the variables and behavior along the way. For
this integrated functionality, it’s hard to beat the free price.

PTP v5.0.3 Evaluation

28

8 References
1. Gregory R. Watson, Craig E. Rasmussen. A Strategy for Addressing the Needs of Advanced Scientific
Computing Using Eclipse as a Parallel Tools Platform. Los Alamos : Los Alamos National Laboratory,
2005. LA-UR-05-9114.

2. anonymous. PTP - Parallel Tools Platform. Eclipse.org. [Online] Eclipse Foundation. [Cited: November
7, 2011.] http://eclipse.org/ptp/.

3. Livermore Computing Services. Open Computing Facility - OCF. High Performance Computing @
Lawrence Livermore National Laboratory. [Online] Livermore Computing Services, 12 07, 2011. [Cited: 12
10, 2011.] https://computing.llnl.gov/?set=resources&page=OCF_resources#sierra.

4. Parallel Tools Platform (PTP) User Guide. Eclipse Online Help. Ottawa : Eclipse Foundation, Inc., 2011.

5. CDT Project. Eclipse.org. [Online] Eclipse Foundation. [Cited: January 3, 2012.]
http://www.eclipse.org/cdt/.

6. Parallel Tools Platform (PTP) Wiki page. PTP - Eclipsepedia. [Online] Eclipse Foundation. [Cited: 11 7,
2011.] http://wiki.eclipse.org/PTP.

7. Rogue Wave Software. TotalView. roguewave.com. [Online] Rogue Wave Software. [Cited: December
10, 2011.] http://www.roguewave.com/products/totalview.aspx.

	3.2.1 Installation 5
	4.2.1 ToolChain configuration 7
	4.2.2 Out of the box MPI Example 7
	4.2.3 Editing / Building 11
	4.2.4 Resource Manager Configuration 14
	4.2.5 Launching 17
	1 Introduction
	2 Evaluation Hardware Platform
	3 PTP Installation
	3.1 Description
	3.2 User Experience
	3.2.1 Installation
	3.2.1.1 Resource Manager Proxy
	3.2.1.2 Parallel Debugger

	3.3 Evaluation

	4 Developing MPI Projects
	4.1 Description
	4.2 User Experience
	4.2.1 ToolChain configuration
	4.2.2 Out of the box MPI Example
	4.2.3 Editing / Building
	4.2.4 Resource Manager Configuration
	4.2.5 Launching

	4.3 Evaluation

	5 Monitoring
	5.1 Description
	5.2 User Experience
	5.3 Evaluation

	6 Debugging
	6.1 Description
	6.2 User Experience
	6.3 Evaluation

	7 Evaluation Summary
	8 References

