LLNL-TR-562876

¢

LAWRENGE
LINERM{OEE
MAT FR AL

soww | HIGH PERFORMANCE COMPUTING
PRODUCTIVITY STUDY

EVALUATION OF PARALLEL TOOLS
PLATFORM (PTP) ECLIPSE PLUG-IN

Lawrence E. Banks, Eveline |l. Dube

June 29, 2012

PTP v5.0.3 Evaluation

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor Lawrence Livermore National
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States government or
Lawrence Livermore National Security, LLC. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

PTP v5.0.3 Evaluation

Contents
S [014 e Yo 0ot { [o Yo WP PP RPN 3
2 Evaluation Hardware PIatformcooiiiiiiiceee ettt 3
3 PTPINSTAIATION ettt sttt s h e s st b e e b b e e naees 4
3.1 DT a1 o] d 0] R OR TR TSP P TP PO PPTP PP 4
3.2 USEI EXPEIIBNCE «.eeeeeiieeeee ettt ettt e e e ettt e e e e s ettt e e e e e s e abnbe et eeeeesannraaaeeeeesesaannreaaaeeens 4
3.2.1 INSTAIATION <.ttt st e e sttt e s b e e e e e sare e e eneeesareeeas 5
33 EVAIUTION .ttt ettt et sbe e st st e bt bt e s bt e eae e st e e reenree s 6
N B 1YY (oY oY [Tl (Y o B o oY [Tt £ PSPPI 6
4.1 (D=1 of g1 1 4 o] o [OOSR PP PRPRPPURPRRPPPRE 6
4.2 USEE EXPEIIENCE «.eeeeeiieeei ettt ettt e ettt e e e e s ettt e e e e e e s e ababe et e e e e e s s narbbaeeeeesessannraaaaeeeens 7
421 e Te) (@ a1 oI ol o T =W = o o PP 7
4.2.2 Out of the BOX IMPIEXaMPIE c....eeeeiiiiiee ettt e e e e e e e e e 7
4.2.3 EItiNG / BUIING ..c.eveieeteeeeeeeee ettt ettt ettt e et e tae e e be e eeaaeeeabeeeaeeeeareean 11
4.2.4 Resource Manager CoNfigurationccueieieciiei it e e et 14
4.2.5 121U ol oY o= 5 SRR 17
4.3 EVAIUGTION 1.ttt ettt e st e e ab e e st e e s be e e sab e e sbteeeneeesnaeenanes 19
I ¥/ o To 1 (o T [oY - SO PP PP P UUPRPTPPPPPOPPN 20
51 DT ol f o A [0 o [Pt 20
5.2 8T b o =T =Y o (ol IRt 20
5.3 EVAIUGLION <.ttt ettt b e s bt st sttt e b e e b e s be e sae e eaeeearean 20
TN 1= o 10T -4~ o - PP 21
6.1 D I=Tol g1) 410 o HUUT O PP UPPTR PP 21
6.2 USEI EXPEIIENCE ..evtiiiiiiieiiitttee ettt ettt e e e s s st ee e e e e s s s satbtaaeeeesesassssbeeaaeeesssnnssreaaeenas 22
6.3 EVAIUGLION <.ttt ettt e sb e she e st st e b e b e e bt e sheesae e et e earean 24
A A7 1 [V E Y a To T a T VT 1'0] ' F= Y VSR 26
8 REFEIENCES ...ttt sttt ettt ettt nhe e sanesanesare e 28

PTP v5.0.3 Evaluation

1 Introduction

This report is a DARPA funded Work For Others (WFQO) evaluation of the Parallel Tools Platform (PTP)
version 5.0.3 (Released October 18, 2011). PTP is currently being developed and supported as an open
source product managed by Project Lead Greg Watson and team at IBM plus several other contributors.
The tool has been in development since 2005 with a goal of providing an infrastructure for the
integration of high performance computing tools [1]. Basic functionality such as source code editing,
compiling, launching, and debugging, plus more advanced features including performance monitoring
and deployment have been bundled into an Eclipse Integrated Development Environment (IDE) plug-in
to give parallel application programmers the features and improved productivity gained from using a
common, well established development platform [2].

The evaluation encompasses the basic aspects of using PTP, beginning with the installation and
configuration of the plug-in, followed by code development and debugging. Each aspect is evaluated
based on the expectations of my experience as an Eclipse user and is presented in the following format:

e Feature description
e User Experience
e Evaluation

The feature description is based on the provided documentation for PTP and the ‘generic’ expectations
of what the feature should provide. The user experience reveals the actual use and exercise of the
feature — specifically in the context and perspective of the evaluation platform provided by Lawrence
Livermore National Laboratory. The evaluation of each feature includes the overall outcome of the user
experience, along with the expectations that were not met, met, or exceeded along with any issues that
were encountered.

2 Evaluation Hardware Platform

The high performance computational infrastructure at Lawrence Livermore National Laboratory was
utilized for this evaluation. At the time of this study, the specific hardware cluster used, named Sierra,
consisted of the following architecture:

Sierra

Nodes
Login nodes: sierra[0,6,324,330,648,654,972,978,1296,1302,1620,1626] 12
Batch nodes 1,849
Debug nodes: sierra[12-27] 16
Total nodes 1,944
CPUs (Intel Xeon 5660)
CPUs per node 12
Total CPUs 23,328
CPU speed (GHz) 2.8
Theoretical system peak performance (TFLOP/s) 261.3
Memory

PTP v5.0.3 Evaluation

Memory per node (GB) 24

Total memory (GB) 46,656

Memory addressing 64-bit
Operating system CHAOS 4.4
High-speed interconnect InfiniBand QDR (QLogic)
Resource Manager SLURM

Table 1: Sierra cluster architecture specifics [3].

PTP allows three basic configurations for the development environment. A local environment is where
Eclipse and source code development resides on the target machine. A remote environment allows the
developer to use Eclipse on a local machine while maintaining code development on a remote target
machine. A third configuration is termed a synchronized environment which is a hybrid of the first two;
Eclipse runs on a local machine with source code that resides, and is kept in sync, on both the local and
remote target machines. This evaluation has been conducted exclusively with the local environment
configuration — Eclipse with PTP and source code resides in a user environment on the Sierra cluster.

Several compilers are available on the Sierra cluster. This evaluation focused on parallel coding using
the Message Passion Interface (MPI) libraries with an Intel compiler for the native chipset of the Sierra
architecture.

3 PTP Installation

3.1 Description

Typically, an Eclipse plug-in will have an update site, i.e. url, that can be added within Eclipse via a
software update configuration. Once Eclipse knows about an update site it can automate the download
and install and updates of the plug-in. This process will identify any dependencies the plug-in may have
and prompt the user to allow installation of these needed dependencies as well.

PTP employs the concept of a resource manager proxy to bridge communicating between the Eclipse
environment and the resource manager of the target parallel environment. PTP supports several
resource managers and requires the desired proxy be built from source on the target machine to ensure
proper configuration.

PTP comes bundled with a parallel debugger with basic debugging capabilities of setting break points
and stepping through program execution. As with the resource manager proxy, the debugger must be
configured and built from source on the target machine.

3.2 User Experience

The Eclipse IDE is primarily written in java, thus a java virtual machine, or jvm, is required. The latest
versions of PTP (and Eclipse) require java 1.5 or greater. Since PTP appears to be regularly updated with
bug-fixes and additional features, it was decided to ensure a newer java 1.6.x version was available.
Checking the java version for the Sierra environment:

PTP v5.0.3 Evaluation

» java —version

jJava version "1.6.0"

Java(TM) SE Runtime Environment (build 1.6.0-b105)

Java HotSpot(TM) 64-Bit Server VM (build 1.6.0-b105, mixed mode)

This was not the newest version of Java, but was more than sufficient for the duration of this evaluation.

3.2.1 Installation

The PTP plug-in has matured to the point where it is included with a full Eclipse download, thus there
are two ways to install the PTP plug-in: install a new full Eclipse bundle containing PTP, or install the PTP
plug-in into an existing Eclipse environment. The method used in this evaluation was to simply install
the full Eclipse bundle for parallel application development containing the PTP plug-in. This download
was obtained from the Eclipse download site: http://www.eclipse.org/downloads by selecting the

“Eclipse IDE for Parallel Application Developers” bundle. Version 5.0.1 of PTP was originally installed
with this bundle. The update mechanism in Eclipse was used to update the PTP version to 5.0.3. For ease
of use, and to allow for an independent Eclipse process, an alias was created for the initiation of Eclipse

sessions:
» alias eclipse="nohup ~pathToEclipse/eclipse —showlocation &~

The configuration of the PTP plug-in was necessarily more involved than a basic Eclipse plug-in. This was
mainly due to the need of ensuring the resource manager and parallel debugger were configured and
built for the specific target parallel environment.

3.2.1.1 Resource Manager Proxy

To communicate with the SLURM (Simple Linux Utility for Resource Management) resource manager, a
resource manager proxy must be configured and built from source. The source code for the proxy is
included in the download of the initial install, and any further update of PTP. The following steps were
specific to the evaluation environment on the LLNL Sierra cluster and are based on the PTP installation
documentation bundled with the plug-in and accessible via the standard Eclipse Help facility [4].

1) Ensure slurm.h and slurm_errno.h include files exist on the target system.
e These files are located in /usr/include/slurm
2) Build PTP proxy and utils libraries which are included with the plug-in and are found relative to
the plugins directory of the Eclipse install. Note: the subdirectories correspond to the current
version of the plug-in installed. Therefore, this will need to be redone each time the plug-in is
updated (i.e. new version installed).

a. cdtoorg.eclipse.ptp.proxy_5.0.3.201110141146/

b. NOTE: these directories were found to contain README and INSTALL files. Considering
these are bundled with the code it was assumed that they would contain more current
information and thus would override any conflicting documentation in the install guide.

c. Run autoreconf

d. Run configure

e. Run make

3) Build the PTP SLURM proxy.

http://www.eclipse.org/downloads

PTP v5.0.3 Evaluation

a. cdto org.eclipse.ptp.rm.slurm.proxy 5.0.3.201110141146

b. Run autoreconf

c. Configure the makefiles corresponding to the SLURM on the system.

Run configure --with-slurm=/usr/include/slurm

d. Run make
NOTE: Instructions in INSTALL file say to run ‘make install’. However, this attempts to
place the ptp_slurm_proxy into the /usr/local/bin directory — which, of course, is a read-
only directory for typical users. Later documentation indicates the ptp_slurm_proxy is
to be found in this org.eclipse.ptp.rm.slurm.proxy.xxx directory, which is what make
does by default, so it was assumed that ‘make install’ was not needed.

3.2.1.2 Parallel Debugger

This PTP release bundle contains the initial release of the PTP Scalable Debug Manager (SDM). The SDM
consists of an MPI-based client/server framework that can attach to backend debuggers, a proxy library
that allows control from a remote driver, and a Java JNI library to allow communication with the Eclipse
interface.

1) Relative to the Eclipse/plugins install directory:
2) cdto org.eclipse.ptp.debug.sdm_5.0.3.201110141146
3) Build the SDM debugger

e Run configure

e Run make

3.3 Evaluation

Documentation was quite good. PTP is unusable without proper setup for the specific target machine
and knowing what pieces to build would be impossible without basic documentation. However, some
documentation was inconsistent with the bundled README and INSTALL instructions. A higher-level
install script that would configure and build all the necessary pieces on the target machine would be
useful.

4 Developing MPI Projects

4.1 Description

A clean integration with Eclipse will successfully inherit a set of common development features including
a managed build system, syntax-aware editing for supported languages, integration with external tools —
specifically compiler and library configuration.

PTP v5.0.3 Evaluation

4.2 User Experience

4.2.1 ToolChain configuration

For each project created, a toolchain must be defined specifying the desired compiler, linker and
associated libraries required for building the executable. PTP allows defaults to be defined in the
Parallel Tools general settings (see Figure 1).

& Preferences @
MPI Gv D -

Recognize MPI Artifacts by prefix (MPI_) alone? 1

I General =
I ClC++

ChangeLog MPI include paths:

Fortran jusrflocalftools/mvapich-intelfinclude

Help
Install/lUpdate

v v vV

Java

Library Hover

=~

Mylyn
= Parallel Tools

MPI build cemmand (C): [mpiicc

I Debug MPI build command (C++): [mpiicpc

P External Tools Prompt to include MPI APIs found in other locations (C only)?
= Parallel Language
LAPI
I
OpenMP
UPC
P Resource Manag

Viewer

oy -

I Remote Svstems |7 I)

@) Cancel] [oK

Figure 1: General settings for MPI.

Here the library path for MPl include files is defined, as well as the compiler command for the Intel C
and C++ MPI compilers. These defaults can be used or overridden when a specific toolchain is defined
for a project.

4.2.2 Out of the box MPI Example

Following the online help documentation the example MPI project was created (see Figure 2). Since this
project is created from scratch it will be a managed build project — meaning that Eclipse manages the
build using the compiler, linker, and libraries as configured by the user.

PTP v5.0.3 Evaluation

se
Search: m Scope: All topics
Contents (e u}

Comwedl&an

@ Workbench User Guide
@ Autotools Plug-in User Guide
@ C/C++ Development User Guide
@ C/C++ Library Documentation
© ChangelLog Editor User Guide
@ Eclipse Marketplace User Guide
@ GCov User Guide
@ GNU Tools
@ GProf User Guide
@ Libhover Developer's Guide
@ Mylyn Documentation
=] Parallel Tools Platform (PTP) User Guide
B contents
B overview
B PTP Prerequisites
B Local vs. Remote Projects
B synchronized Projects
[Resource Managers

[Running Parallel Programs

[Monitering Jobs and Systems

[Parallel Debugging

[PTP Preferences

[Parallel Language Development Tools (PLDT)
[A External Tools Framework (ETFw)

B New and Noteworthy

@ Photran User's Guide

@ Remote Development Tools User Guide
@ RSE User Guide

@ Usage Data Collector

Parallel Tools Platform (PTP) User Guide >

Creating MPI Projects

® Create the project
® Configure to use MPI
® Build the executable

® Launch the program

Step 1: Create the project

before continuing

3. Enter a name for the project e.g. MyMPIProject

C Project

Create C project of selected type

This section provides a brief introduction to creating, building and launching an MPI program. It will cover the following steps.

Note: this tutorial uses the Parallel Language Development Tools (PLDT) wizards for creating MPI projects. Please make sure this feature is installed

1. Switch to the C/C++ Perspective using Window > Open Perspective > Other... and then choose CIC++

2. Create a new MPI project using the managed build facility. Select File > New > C Project ... and the New Project dialog should open.

4. From the Project types list, expand Executable and select MPI Hello World C Project

Make sure the toolchain selected is valid for imur machine.

Project name: [MyMP\Pchect

Use default location

Location |:I'u3|wwe:\:-et\ue‘.';s-rlmtimeq:

yMPIProject

|| Bro

Project types:

(4]

Figure 2: Example MPI Project via

PTP online help.

The Eclipse new project wizard was used to name the project and select the toolchain (see Figure 3).

Create C project of selected type

i C Project E
C Project =

Project name [MyMF\FmJe[t

Use default location

Project type:

Toolchains

< [Executable H
® Empty Project
® Hello World UPC Project
® Hello world ANSI C Project 1
@ MPI Pi C Project
® MPI Pi C++ Project
® MPI Empty C Project
® OpenMP Hello World C Project
® OpenMP Empty C Project

P = Executable (XL UPC)

b - ERE =l

Intel(R) Fortran Toolchain on Intel(R) 64
Linux Berkeley UPC

Remote Linux GCC Tool Chain
XL C/C++ Tool Chain

Show project types and toolchains only if they are supported on the platform

@

” Next = H Cancel l" Finish I

Figure 3: Eclipse New Project wizard.

PTP v5.0.3 Evaluation

Note how the Linux GCC toolchain was chosen. This was due to the fact that there was no appropriate
toolchain available for selection for the Intel MPI compilers to be used. However, as will be shown later,
it was possible to modify the Linux GCC toolchain to contain the libraries needed for the desired
compilers.

The next wizard screen (Figure 4) contained the expected default settings as previously defined in the
general settings for PTP — namely the include path and the compiler command. At this point, the
toolchain could be tailored for specific projects.

& C Project @
MPI Project Settings —>

Select the MPI include path, lib name, library search path, and build command information to be
automatically be added to the new project.

[] Add MPI project settings to this project

[7] Use default information:

If your project shows errors and can't recognize MP| symbols, make sure your
MPI header file is in the include path for the project. Since mpicc may do that for you
for the build, Eclipse may not know about it. You may want to add it to
Project Properties = C/C++4 General > Paths and Symbols
so that the editor and indexer can find MPl symbols. On the next page,
you can access Project Properties directly with the 'Advanced settings...' button.

'@,‘ | < Back ” Next = || Cancel |[Finish

Figure 4: MPI default project settings.

PTP v5.0.3 Evaluation

The next screen shows configurations that can be selected for the project. Options include a debug

configuration enabling a build to maintain source and variable references, and a release configuration
which allows the compiling/linking phases to be optimized. There must be at least one valid
configuration present. This is one reason the Linux GCC Toolchain was selected to be modified — it
appeared to be the only C/C++ toolchain with valid configurations (see this section’s Evaluation).

a C Project
Select Configurations —
Select platforms and configurations you wish to deploy on
Project type Executable
Toolchains Linux GCC
Configurations:
[£] & Release
Deselect all
Use "Advanced settings” button to edit project's properties
Additional configurations can be added after project creation.
Use "Manage configurations” buttons either en toolbar or on property pages.
@:‘ Cancel l l Finish

Figure 5: Toolchain configurations.

10

PTP v5.0.3 Evaluation

Finishing the wizard resulted in the creation of the example ‘Hello World’ program (Figure 6).

& C/Cevr- MyMPIProject/sre/MyMPIProject.c - Eclipse - /gfg2libanks1ifeDev/hpcsSierra E@
File Edit Source Refactor Navigate Search Project Run Window Help
9w = - - (g G - Wiw - v G~ - - P 88
i @ | & &8~ €~ @& Ky~ ® Fr O G~ Q i = T |[@c/c++| B Parallel Ru... EEParallel De
O- v
[Project Explorer 2 . &5 Navigator = O | [g MyMPIProject ¢ 33 =08
12 #include "mp1.h" [«]
2% N n

P = mpi_array 14int main{int arge, char* argv[]){

. int my_rank; /* rank of process */
P 18 mpi_mm int p; * number of processes */
P 125 mpi_pi_send int source; /* rank of sender */
c X int dest; * rank of receiver */ —
¥ = MyMPIProject int tag=0; /* tag for messages */
= @il Includes char message[100]; /* storage for message */
MPI_Status status ; /* return status for receive */

b (& jusrfinclude

B (= jusr/lib/gcc/x86_64-redhat-linux/4.1.2/include /% start up MPI */

b (= jusrflocalinclude WPI_Init(sarge, Sargy);
b ([jusrilocalitools/mvapich-intel/include

- [Esrc

~ B MyMPIProject.c

@ main(int, char*{1) : int

/% find out process rank */
MPI_Comm_rank(MPI_COMM_WORLD, &my rank);

/* find out number of processes */
MPI_Comm_size(MPI_COMM_WORLD, &p);

ul mpih
ul stdio h) =
if (my_rank !=0){
& string h /* create message */
sprintfi(message, "Hello MPI World from process %d!", my_rank);
dest = 0;
/¥ use strlen+l so that '\D' get transmitted */
MPI_Send(message, strlen(message)+l, MPI_CHAR,
dest, tag, MPI_COMM WORLD);
o =]
il D)
(3) Resour | 5% Outline & @ Make Ta | [f] TaskLis, = O [£! Problems | &) Tasks | = Properties [Remote Environme | 47 Search | = Progress | E Console 33 =0
W e % T CDT Build Console [MyMPIProject] o4 GE GE B o Bv rie
ul stdioh
ul string.h
U mpih

@ main(int, char¥]) . int

o* €] MyMPIProject/src/MyMPIProject.c

Figure 6: Out of the box example MPI C 'Hello World'.

4.2.3 Editing / Building

The PTP Toolkit is built upon Eclipse CDT (C/C++ Development Tooling) plugin module [5]. Thus the
expected bells and whistles of integrated source code editing are present. This includes color coded
syntax, global searches, hot links to function declarations and references, code completion and context
sensitive help. The plugin also includes automatic building, incorporating compiler errors and warnings
output to the user.

After creation of the example project, the next step is to attempt to compile and link the code to create
an executable. The output of this effort is shown in console window (see Figure 7).

11

PTP v5.0.3 Evaluation

& C/Cevr- MyMPIProject/sre/MyMPIProject.c - Eclipse - /gfg2libanks1ifeDev/hpcsSierra

File Edit Source Refactor Navigate Search Project Run Window Help

888 Parallel Ru

(=B =

B parallel De

! MyMPIProject.c
: Eddy Banks

: Your copyright notice

Hello MPI World in C

Fiv B | @ e @ G - 0~ @~ Q-
O- v
[f Project Explorer 32 . %5 Navigator = 8 [¢g MyMPIProject.c i3
-3 Il
2
P = mpi_array 3 Name
4 Author
[) L
1= mpL_mm 5 Version
P =5 mpi_pi_send 6 Copyright
= B MyMPIProject E* Description :
P (= Debug e

< @l Includes 10 #:!.nclude <std]_.o
11#include <strin
P (= jusrfinclude 12#include "mpi.h

b (= jusrilibjgcc/x86_64-redhat-linux/4.1.2/include 13
b (= jusrilocalfinclude

15 int my_ran
b (= jusr/localftools/mvapich-intel/include 16 int p;

17 int source;

- [Esrc

.h=
g.h=

14int main(int argc, char* argv(]){

k; /* rank of process #*/
/* number of processes */

/* rank of sender */

el

[+]

~ B MyMPIProject.c

@ main(int, char*[]) : int
ul mpih

 stdio.h

ol string h

make all
Building file:

src/MyMPIProject.c”

(3) Resour | 5% Outline £ @ Make Ta| [E] TaskLis| = O Finished building:

B R o %Y

@ main(int, char*{1) . int

e

.. /src/MyMPIProject.
Invoking: GCC C Compiler

mpiicc -I/fusr/local/tools/mvapich-intel/include -00 -g3 -wall
MMD -MP -MF"src/MyMPIProject.d" -MT"src/MyMPIProject.d"

.. /sre/MyMPIProject. c

Building target: MyMPIProject
Invoking: GCC C Linker
mpiicc -L/usr/local/tools/mvapich-intel/lib

-0 "MyMPIProject”

ul stdioh
. lmpi
o st h
= string /usr/bin/ld: cannot find -lmpi
= mpih

make: *** [MyMPIProject] Error 1

#*4% Build Finished ###*

5l Problems | & Tasks | =1 Properties [Remote Environme | 47 Search | & Progress | El Console &2
CDT Build Console [MyMPIProject]

.Ssrc/MyMPIProject.o

=0

S G (&) & o B B

##+x Build of configuration Debug for project MyMPIProject *#++

-c -fmessage-length=0 -

-0 "src/MyMPIProject.o” "../

%
Lix

Figure 7: Output of build shown in Console view.

There are two items to note in the console window. One, although the output states that it is invoking
the GCC compiler and linker — likely due to the fact the Linux GCC Toolchain was chosen as the one to be
modified — it can be seen that it did correctly invoke the desired Intel compiler and linker as previously
configured in the general setup. And two, the build failed due to the linker not being able to find the
‘mpi’ library. The build error was fixed by going into the project’s properties: C/C+ Build|Settings and
removing the library search path ‘/usr/local/tools/vmapich-intel/lib’ from the linker search path, and

‘mpi’ from the linker libraries (see Figure 8).

12

PTP v5.0.3 Evaluation

W
|[;.,-|-.; filter text | Settings N -

P Resource

Builders

Configuration: |[All configurations] ¢| [Manage Configuraticns...]
= C/C++ Build
Build Variables
Discovery Options ¥ Tool Settings |ﬁ‘EuiId Steps l@ﬂuild Artifactl [ahBinary Parsers | @ Error Parsers
Environment . . .
= B GCC C Compiler Libraries (-1}]

Logai
°ggng # Preprocessor

Sefttings
5 symbols

Tool Chain Editor
Includes

Optimization
Debugging
Wamnings

XL C/C++ Compiler
I C/C++ General
Discovery Options

Environment -
(& Miscellaneous

= B GCC C Linker
2 General

Run/Debug Settings .
oo et

Service Configurations e~
Miscellaneous

(# Shared Library Settings

Paths and Symbols

Project References

Settings

P Task Repository < ® GCC Assembler

Task Tags

General
Tool Chain Editor
P validation
Variables
WikiText
Library search path (-L) 4
fusrilocalftools/mvapich-intel/lib
=] 11| [Tr) Z

® ” oK I [Cancel

Figure 8: MyMPIProject Settings for C/C++ Build.

Now, reattempting the build results in success (see Figure 9), and an executable is created in the
Binaries and Debug folder.

13

PTP v5.0.3 Evaluation

|| Ele Edit Source Refactor Nawigate Search Project Run Window Help
i | G & €Y G K- B (B 0 - @~ | & © F~ T |EEcic++| BB Parallel Ru... FEParallel De..
ov
o
[Project Explorer 2 & Navigator = 0 [g MmyMPIProject.c 2 =0
) p g y |
e < | 1s 5]
2
P =% mpi_array 3 Name ¢ MyMPIProject.c
4 Author : Eddy Banks
D <
i = mpLmm 5 Version ||
P =% mpi_pi_send 6 Copyright : Your copyright notice
- & MyMPIProject 7 Description : Hello MPI World in C
=
8
< P Binaries g

10 #include <stdio.h=>
11#include <string.h>
¥ [Debug 12 #include "mpi.h"

P %5 MyMPIProject - [x86_64/le]

b % MyMPIProject - [x86_64/le] 13 o
14int main(int argc, char* argvi]l){
b g src 15 int my_rank; /* rank of process #/
[makefile 16 int p; /* number of processes */ [=]
| objects. mk Ll L]
[sources.mk [Problems | ¥ Tasks | = Properties & Remote Environment | 4 Search & Progress &l Console 32 =0
b il includes COT Build Console [MyMPIProject] oG B OBE Bk = B- e
- [Esrc =]
b [g MyMPIProject.c *++x Build of configuration Debug for project MyMPIProject *#+*
make all
Building file: ../src/MyMPIProject.c
Invoking: GCC C Compiler I

mpiicc -I/usr/local/tools/mvapich-intel/sinclude -00 -g3 -Wall -c -fmessage-length=0 -
MMD -MP -MF"src/MyMPIProject.d” -MT"src/MyMPIProject.d” -o "src/MyMPIProject.o" "../src/
MyMPIProject.c"
— Finished building: ../src/MyMPIProject.c
(D Resour | o= Outline 33 . @ Make Ta | [E] Tasklis| = O

Building target: MyMPIProject

a g 5 -
e RN e W Inwoking: GCC C Linker
= stdio.h mpiicc -o "MyMPIProject" ./src/MyMPIProject.o
. Finished building target: MyMPIProject
ul string.h
o mpih

#*++ Build Finished #++#
@ mainfint, char*1) : int

168 =5 MyMPIProject

Figure 9: Clean build of MyMPIProject example.

4.2.4 Resource Manager Configuration

Running an executable on a parallel system requires configuring and submitting a job to the system’s
resource manager. Recall earlier that a proxy to the resource manager was built from source as part of
the installation of PTP. This proxy must be configured within Eclipse and must be available to coordinate
the launch of an executable.

To configure the resource manager, PTP provides a Parallel Runtime perspective. A perspective in
Eclipse is a top-level window that contains related views for a particular application. As such, the
Parallel Runtime view contains views for the resource manager(s), managed jobs, hardware cluster
information, and output console (see Figure 10).

14

PTP v5.0.3 Evaluation

& Parallel Runtime - MyMPIProject/sre/MyMPIProject.c - Eclipse - fg/g2libankslifeDev/hpcsSierra
File Edit Navigate Search Project Run Window Help

| 3~ B % 0 @Az B

(=B =

T Eic/C++ |88 Parallel Ru...| i Parallel De

SLURM@Local (SLURM)

& console 3

o v[5) (B G o Brer =0

CDT Build Console [MyMPIProject]

##*4% Build of configuration Debug for project MyMPIProject #*###

make all
- . =g Building target: MyMPIProject
&2 Machines & Invoking: GCC C Linker
Please select a machine mpiice -o "MyMPIProject" ./src/MyMPIProject.o
Finished building target: MyMPIProject
##%% Build Finished ##%#%
Node Attributes Process Info
Attribute Value
1 I [Tv]
888 Jobs List 52 =g |
Sta Name . " =
=l Properties 22 [%i Problems | ¢ Tasks| (& Remote Environments B
Property Value
description SLURM Resource Manager
Name SLURM@Local
num machines 0
num gqueues 0
state STOPPED
¢

Figure 10: PTP Parallel Runtime perspective views.

From within the ‘Resource Manager’ view, right-click the mouse to see a dialog allowing to ‘Add
Resource Manager...". This brings up a wizard to add and configure a resource manager (Figure 11).

15

PTP v5.0.3 Evaluation

N =
Choose Resource Manager Type

Select the type of resource manager to use

Resource Manager Types:
IBM LoadLewveler

IBM Parallel Environment
MPICHZ2

Open MPI
PBS-Generic-Batch
PBS-Generic-Interactive

Remote Launch

SLURM

@j MNext = H Cancel

Figure 11: Add Resource Manager wizard.

Since SLURM is the resource manager on the Sierra system, SLURM is the chosen type. The wizard
simply prompts for the location of the proxy for the resource manager which was built during
installation, specifically: ‘org.eclipse.ptp.rm.slurm.proxy_5.0.3.201110141146/ptp_slurm_proxy’

The proxy is started from the ‘Resource Managers’ view. Right-click on the resource manager and
choose ‘Start Resource Manager’. With a running resource manager (see Figure 12) the views in the
Parallel Runtime perspective show a color-coded status of the machine nodes: green for available,

yellow for busy. Clicking on a node displays basic information about that node in the properties view.

16

PTP v5.0.3 Evaluation

File Edit Nawvigate Search Project Run Window Help

Il | o~ |~ O~ @~ @~ |2 |2 - i Eicice |Ehrarallel Ru. .| Zparallel De..
| |
i - - <‘,3v -

(3) Resource Managers &% = B| & console 2 =0
N ! SLURM@Local (SLURM) CDT Build Consocle [MyMPIProject]

| o ¢ (B @ M G| B
+1+x Build of configuration Debug for
project MyMPIProject #¥**
make all
258 Machines 2 Q L (f' {5} = 0| Building file: ../src/MyMPIProject.c
Invoking: GCC C Compiler
SLURM@Local: sierral620 - Root [1872] mpiicc -I/usr/local/tools/mvapich-intel/
ol N e e e e NN @@ include -00 -g3 -Wall -c -fmessage-length=0 - |_
20 (¢ HH 2 (#2222 122 (22 &2« M e =/ MMD -MP —.MF"SFEI:,’MyMl‘:I’IPm]ect.d” —MT"sr(":/"
40 (91919119 919 212 2 91 (91 9191 9191 (919181 (@18 [T WIFIRRISCHST -0 Tere/mIPLProject. o ./
60 9] (9] (9] [9] (%] (9| [] (¢ (] M [*| M (9] (%1 9] [#] (9]][9] [$] Finished buildint:;: .. /src/MyMPIProject.c
80 (&) (8] &[0 (@1 6] 9] (@) (1 (9] 9] (][9] &1 (9] (¢ 9] 8] &[]
100 (@@ (& (@ (& [d5iermad7 | (&) 4] @) [#) 1 [#]|#1(9]|#/ /(@] | | Building target: MyMPIProject
120 9] (o] (@) (o) M (] &[0 (@] (9| (0] (9] 9] 9] (&) (¢l || ¢/ M ¢ Invoking: GCC C Linker
140 (&) [(21 9] (@1 @] (@] 8] [&] (] &) 9] %] [&]] &) [#] @) @/ [#] | ["0i1CC -0 “MYMPIProject® ./src/ -
160 |9 (9] 2] (9]][9] (9] 2]] (9]] (9] [S] [9] 9] |21 2] [9] |2 [g::i:ggjgﬁi:ing target: MyMPIProject
180 & &) (< [I [0 [0 [[(| || [[} [[@ @) @] @ & | =

Node Attributes Process Info ﬁiﬂii ﬁ; =l Proble 1@1-35'(5] By Remote} =5

Aftribute Value

ks e S
Property Value
coreNumbe
cpuArch x86_64
Name sierrad7

Node Number 85

Node Status ALLOCATED

E28 Jobs List 32 - 25 LLLE
Sta Name sockNumber 2
threadNumber 1
ks coreNumber

Figure 12: Parallel Runtime perspective showing machine and node information.

4.2.5 Launching
With a cleanly built executable and an available proxy to the SLURM resource manager, a run
configuration can be created. From the main bar choose Run|Run Configurations... (see Figure 13) .

17

PTP v5.0.3 Evaluation

a Run Configurations

. -+
YRR O v

C/C++ Application

[£] Fortran Local Application
Java Applet
Java Application

= Launch Group

+ &3 Parallel Application

&2 mpi_mm
&3 mpi_pi_send
&= MyMPIproject

Filter matched 10 of 10 items

@

gy

Create, manage, and run configurations

Create a configuration to launch a parallel application

Name: [mpi_array

&} Resources - [] Application| 9= Arguments | B§ Environment | Synchronize | = Common

Resource Manager: |SLURM@L0caI

Number of Tasks(-n):
Number of Nodes(-N):
TimeLimit(-t):
Partition(-p):

Requested NodeList(-w):
Excluded NodeList(-x):

pdebug

| Close || Run

Figure 13: Run Configuration panel

For a configuration, the desired resource manager is assigned along with the number of tasks, nodes,
time limit, and partition for job submission. If desired, one can request specific nodes as well as exclude
specific nodes. The application to run is specified from the Application tab, and any arguments to be
passed to the application may be specified via the Arguments tab. It is trivial to create several different
run configurations for the same application.

To submit a run configuration, right-click on the pull-down arrow to the right of the Run icon (see Figure
14). The act of running a configuration will run make on the application to ensure the binary is current
with respect to any source code modifications. Then the job is submitted to the SLURM manager for
execution on the cluster. Any output generated from the running processes is reflected in the console

view.

18

PTP v5.0.3 Evaluation

r
& Parallel Runtime - MyMPIProject/src/MyMPIProject.c - Eclipse - /g/g21/banks12/eDev/hpesSierra F=E

File Edit Navigate Search Project Run Window Help

| o3 @ % Ov @ Qv | E | D v 5 [Ec/c++ | g Parallel R...| EfParallel D...
v 8+ 1 mpi_array
&% 2 mpi_pi_send —
(3 Resource Managers 2 5 3 mpi_mm = B| B console 2 % % G ei|lE®m = By 9B
W -} 4 MyMPlproject _ <terminated> mpi_array [Parallel Application] SLURM@Local: job_33556337
Task 0 mysum = 1.200000e+01
Run As >
Run Configurations Sample results:
QOrganize Fayorites... B 2. 4 5
||| Machines & (1 @~ 708
l & - 8. 1. 1L 114 1
SLURM@Local: sierra972 - Root [1872] L I
Zsierag72] AT TTITTTTTITTTITrT 1.600000e+01 1.800000e+01l 2.000000e+0l 2.200000e+01
LBHEEEE R
s e e e s B e b B 2.4 1 2.6 L2 13 1
26 9| (9] |9 (9] @) (9] @) @ & | B
Bl [T] ++ Final sum= 2.400000e+02 *++
52 (o [9] (9] (9] (¢ (o] (¢ M 21 (2] [] (9] [#
65 (9| @@ & [@ ¢ [¢ (¢ ¢ |& ¢ & & MPI task L has started...

91 9] (&)@ [0 @] [0 (@] 0[] [[[#] @] Task 1 mysum = 4.400000e+01

MPI task 2 has started...

I Node Attributes Process Info
[Alkrbubegibeiug Task 2 mysum = 7.600000e+01
| MPI task 3 has started...
| Task 3 mysum = 1.080000e+02
| &
& " B
|| 2 Jobs List 53 =g u —
= Properties % . %l Problems |+ Tasks & Remote Environments s » = ¥ =0

Sta’ Name Node Executable Path Arguments Limit Executable Name = Nun —

|
T ¥ ¥ ¥ Property Value

O :job1119095 i 1 /g/g21/hanks12/eDe: [1 15 £ mpi_array P4
o 1job1119157 |1 | jg/g21/banks12/eDe! [] i5 | mpi_array 4 quu"‘f”bt‘s . t
|l© |jobi119158 1 Jgig21/banks12/eDe: [] is | mpi_array ia xecutable Na mpl_array
| o ;jnb1119159 1 Ja/g21/banks12/eDe [] 5 ;mpwiarray ;4 E.xe.(utab\e Pat /g/g21/banks12/eDev/hpcsSierra/mpi_array/Debug
|||@ ijob1120360 1 jgig2uanksizieDe 1] is mpi_array ‘4 Lmic 2

O ijob1119161 |1 | jg/g2l/banks1z/eDe [] i5 | mpi_array ja Name Job1119162
L= :. - : : P Nodes 1
| Number of Nod. 4
| Partition pdebug
[Status COMPLETED

a m B
[o
L =

Figure 14: Running a job.

4.3 Evaluation

The PTP plugin adheres to the basic functionality of the Eclipse IDE in that it provides the framework for
automatic building of a source code project. Wizards are provided to aid in the initial configuration of
the compiler and linker. This type of configuration is typically called a toolchain. PTP includes a few
predefined configurations for some common development environments including a basic Linux GCC
toolchain. However, if the desired toolchain is not in the set of predefined configurations then one of
the exiting configurations must be modified to point to the desired compiler, linker, and libraries. Being
forced to use an existing configuration to build the needed configuration can appear confusing. As was
experienced previously, it was necessary to modify the ‘Linux GCC’ toolchain to create an ‘Intel C++'
compiler/linker setup. There should be an option to create and configure a user-defined toolchain from
scratch. Additionally, it would be helpful to have the ability to copy a predefined configuration that
could be renamed and then modified. However, even with this small issue, the configuration of a
toolchain is a tremendous aid in that once configured it can be reused for multiple projects alleviating
the need to build a new configuration each time.

The PTP has been integrated nicely with the CDT plugin which is designed for developing C/C++ projects.
As such, all the expected features found in a code development Eclipse plugin are available. These

19

PTP v5.0.3 Evaluation

features include mechanisms for automated building, code editor with syntax highlighting and source
completion, button-click navigation to function definitions and references, and source code refactoring
in the context of the entire project. The integrated capabilities provided by this set of features have the
greatest positive impact on a software developer’s productivity.

Since the purpose of PTP is to aid in the development of parallel processes, it must address the added
complexity of submitting the compiled code to the job management system of a target node cluster.
PTP includes the concept of a resource manager proxy which acts as a go-between for the Eclipse
development environment and a cluster’s job management system. PTP allows the creation of run
configurations that refer to a particular resource manager proxy to enable the execution and monitoring
of the job from within the IDE. The resource manager proxy used in this evaluation was configured for a
SLURM management system. For each run configuration, PTP exposes a subset of the more common
parameters used by the SLURM system.

5 Monitoring

5.1 Description

Once a job is submitted to the resource manager of a cluster it’s vital to be able to monitor its status.
Jobs are placed in a queue and will compete with other jobs for node resources. A user will need to
know what state a job is in (e.g. pending, running, completed), and have the capability to remove a job
from the queue or cancel a running job.

5.2 User Experience

There are several capabilities available on the Parallel Run perspective for monitoring submitted
applications. Referring back to Figure 14, a visual view of the nodes in the cluster is provided with icon
status showing the state of each node as being idle, allocated or down.

The Jobs List view shows a table of information of the submitted jobs owned by the user consisting of
the parameters provided in the run configuration along with the assigned job number and the current
status of the job. By clicking on a job in this table the details are shown in the Properties view. Output
generated from each job is displayed in a Console view. Each job’s output is captured by a new console
instance and can be specifically selected to view, or re-view, the output for that job. A pending or
running job can be easily cancelled in the Jobs List view by clicking on the job and then clicking on the
red square icon at the top of the view.

5.3 Evaluation

The Machine view is quite nice in that properties of any node can be explored and the load of the cluster
as a whole can be observed. This view proved to be quite responsive as a specific node can be seen to
change from available to allocated and back to available as an application configured for this node is
executed.

The table view of submitted jobs easily aids in productivity in three ways. One, by simply keeping a list
of the submitted jobs a user need not manually query the system for jobs in the queue. Two, by a simple

20

PTP v5.0.3 Evaluation

click on a job displays the submitted job’s status and allows cancelling of the job if desired — again,
saving manual queries and commands to the queue. And three, keeping track of the output of each
completed job avoids in programmatically routing output to specific output files and provides quick
review of the output of any completed or running job.

As a user establishes an iterative development procedure for editing/running/testing/debugging code,
views can be added or removed from any perspective to aid productivity by keeping the most commonly
used views in one perspective. For instance, as most development takes place in the C/C++ perspective
the common views needed for running the application (e.g. resource manager and output console) can
be added to this development perspective to avoid continually switching perspectives (see Figure 15).

File Edit Source Refactor Navigate Search Project Run Window Help
i S| o e & e (R B B0 Qr O | E DO i |EUC/C++| B Parallel R... EParallel D..
#lv Hlv o e
[Project Ex | % Navigator 52 = 0O [c mpi_pi_send.c & =0
&= - 29 p1, /#* average of p1 after "darts" 1s thrown */ [A]
2% 30 avepi, /#* average pi value for all iterations */
P 15 mpi_array 31 pirecv, /* pi received from worker */
b EEm _mm 32 pisum; J#* sum of workers pi values */
pL! X 33 int taskid, /* task ID - also used as seed number */
~ [mpi_pi_send 34 numtasks, /#* number of tasks */
b = Debug 35 source, /* source of incoming message */
36 mtype, /* message type */
| v src 37 rc, /* return code */
I8, dboard.c 38 i, n;
| B, mpi_pi_send.c ig MPI_Status status;
x| .cproject 41/% Obtain number of tasks and task ID */|
[¥] .project 42 MPI_Init(&argc, &argy);
b &S MyMPIProject 43 MPI_Comm_size(MPI_COMM _WORLD, &numtasks);

44 MPI_Comm_rank (MPI_COMM_WORLD, &taskid);

45 printf ("MPI task % has started...\n", taskid);

46 if (taskid == MASTER)

47 printf ("Using %d tasks to compute pi (3.1415926535)\n",numtasks);
48

49 /* Set seed for random number generator equal to task ID */

50 srandom (taskid);

| 51
52 avepl = 0;
[s3for (i = 0; i < ROUNDS; i++) {
54 /% ALL tasks calculate pi using dartboard algorithm #/
I 55 homepi = dboard(DARTS);
56
[57 /* Workers send homepi to master */
58 /* - Message type will be set to the iteration count */
59 if (taskid != MASTER) {
60 mtype = 1;
61 rc = MPI_Send(&homepi, 1, MPI_DOUBLE, =
e MACTCR | mttina WnT_crams wnniny >
(] " B
@DRe = f=0u|@Mal|ETa = B % Problems] Tasks | = Properties % Remote Environments 4" Search =3 Progress El Console 2 K % & EE = By gy =0

[#5SLURM@Local (SLURM) <terminated> mpi_pi_send [Parallel Application] SLURM@Local: job_33556336

MPI task 0 has started
Using 8 tasks to compute pi (3.1415926535)
MPI task 1 has started...

MPI task 2 has started

(] L [>]
e Writable Smart Insert | 41:41

Figure 15: Tailored perspective with additional views.

6 Debugging

6.1 Description
Debugging is a key phase of the development process. Methods of debugging have evolved from
inserting print statements at key locations in code to examining the contents of variables at given points

21

PTP v5.0.3 Evaluation

in the execution to using a full blown debugger that allows interactive examination of all variables at
each execution step. Typically a debugger is applied to a single process, but on a parallel cluster the
debugger must be able to monitor and control the processes and threads for each node on which the
parallel job is running. The PTP bundle includes the Scalable Debug Manager (SDM) which consists of a
front-end client plugin to Eclipse, the GNU gdb backend debug engine, and a communication manager
which marshals debug messages within a tree-based network connecting each running process.

6.2 User Experience

To start a debug session for a project, a debug launch configuration must be created. From the main
menu bar, select Run|Debug Configurations. This action brings up a window nearly identical to the Run
Configuration with the inclusion of a Debugger tab (see Figure 16). The current Run Configurations are
under Parallel Applications. Simply create a copy of a run configuration, give this configuration a new
name; a good convention is to simply append ‘-debug’ to the run name, and modify this configuration to
invoke a debug session.

(@ otz S TEE—— =
Create, manage, and run configurations JAS
S
@ [Debugger]: Executable path must be specified
AEE I - - Name: [mp\iarray—debug l
I f] & Resources Application t4= Arguments| B§ Environment Synchronize | % Debugger| k- Source| =1 Common
[c] C/C++ Application Resource Manager: | SLURM@Local & ‘
[€] C/C++ Attach to Application
] C/C++ Postmortem Debugger ML Gl EE u
[£] C/C++ Remote Application N.umbz.ar _Gf Bud=s N 1
[¥] Fortran Local Application TimeLimit(-t): &
Java Applet Partition(-p): pdebug
Java Application Requested ModeList(-w):
@ Launch Group Excluded NodeList(-x):
< £ Parallel Application
&= mpi_array
& mpi_mm
&%+ mpi_pi_send
& MyMPlproject
Remote Java Application
<] I =)
FAlter matched 15 of 15 items
@j Close

Figure 16: Debug Configuration

It is common for a cluster to have a set of nodes dedicated for debugging use. This debug partition
should be specified as the partition to use in this configuration. Note that the icon on the Debugger tab
indicates an error in the configuration and the message at the top of the panel states that the path to
the debug executable must be specified. Clicking on the Debugger tab allows adding the path to the

22

PTP v5.0.3 Evaluation

SDM executable which can be found in the Eclipse installation plugin directory:
plugins/org.eclipse.ptp.debug.sdm_5.0.3.201110141146/sdm.

Clicking the Debug button will launch the project and bring up the Parallel Debug perspective (see Figure
17).

Hle Edit N Search Project fun Window Help
(e i | B0 Q- | = (B ot FACK++ Hparallel R... B2 Parallel D...
£ Parallel Debug 22 » a om w0 = {5~ T O % Breakpoints & - & Expressions T Signals [f} Amays | e variables =0
SLURM@Local: job1121353 - Root [4] . AT
oHFH+ ¥+

& mpi_amayr (e 44] {job1121353 Roar}

i Debug = » - 5 3 5T
= |7 mpi_array-debug [Parallel Application)
= §§ Process 0 (Suspended)
= 4@ Thread [1] (Suspended)
= 1 mainl)} mpi_array.c:35 40096e
= § Process 1 (Suspended)
= @ Thread [1] (Suspended)

— 1 main{) mpi_array,c:38 30098 g

o SLUAM@Local: b 16775051 2

: No details to display far the current selection.

& mpi_arayc 5 = 0/ &= outhne 5 L

R eoR =

+ i WPISIRER(gE

vip u mpih
i WPI_Comm_size(MPI_COMM_WORLD, &numtasks): k =
B if (numtasks % 4 1= 0) { j U stdioh
printf(-quitting, Number of MPL tasks must be divisible by 4.4n"); f u stdibh
ﬁh?::rli”‘l_tﬁm_mﬂw. 135 # ARRAYSIZE
2 3 ! # MASTER
13 MPI_Comn_rank {MPT_COMM_WORLD, Gtaskid); @ data : float[]
W tiprint? ("MPI task wd has started...\n®, taskid); » mainfint, char])
45 chunksize = (ARRAYSIZE / numtasks): :
46tage2 = L o update(int, int, int] : float
47 tagl = 2; &
B i
) console [} Memory 2] Error Log . Problems | =g Progress 5 W T =0

No operations to display at this time. |

Figure 17: Parallel Debug Perspective.

As is typical with a debug interface, this perspective is highly interactive and packed with information
concerning the running processes. The Parallel Debug view shows the job and the associated processes
(small diamonds icons). In this view, processes can be grouped into arbitrary sets allowing logical
process groupings to be examined independently. When initiated, all processes are contained in a root
set. The creation of sets is accomplished by mouse-dragging a rectangle over the processes (see red
rectangle in Parallel Debug view in Figure 17), and/or conventional ctrl-clicking to select individual
processes. Any number of sets can be created and uniquely named. Processes can be added or removed
from a set during the debug session. Only one set at a time will be displayed and operated on by the
debugger.

23

PTP v5.0.3 Evaluation

Individual processes, whether in a set or not, can be registered with the debugger to enable the
examination of its stack frames and threads. A registered process is indicated by a square around the
individual process diamond. The Debug view shows the registered processes and their associated
threads. Clicking on a process will change the context of the other views to that process. For instance,
the code view is associated with the selected process as well as the Breakpoints, Expressions, Signals,
Arrays, and Variables.

In the source code view, two types of breakpoints can be created at specific points in the code. A global
breakpoint will apply to all processes in the job. With no other breaks specified, each process will
continue execution to this type of break point. A global breakpoint is typically used to bring all processes
to a common break at which point the developer can begin to drill down into specific logic in specific
processes. This drill-down debugging is done by setting a set breakpoint which will only be applied to an
individual process set.

6.3 Evaluation

Stepping through parallel processes in a SDM debug session takes a bit of getting used to, but once
familiar, the tool is quite powerful in showing the individual process flow as well as process interaction.
Using global breakpoints is straightforward in that all processes will execute until the breakpoint is
reached. Sets and set breakpoints may be created only after the job is submitted and are not retained
from one run to the next. For this reason the ‘stop in main’ option should always be selected in the
debug configuration to ensure the suspension of execution after processes have been initialized.

Setting and keeping track of breakpoints for individual sets and processes rely heavily on the visual
information provided in each of the views (refer to Figure 18). First it’s important to ensure that each
process to be examined is registered — as indicated by the selected process diamonds in the Parallel
Debug view. The Debug view shows the current stack trace of each thread in each registered process.
The state each thread is in is shown (e.g. suspended, running, etc.) and if suspended, the source code
line number is given. Selecting a specific process thread in this view allows stepping through the
execution of the selected thread while all other processes remain suspended. If the thread reaches a
‘running’ state and trace step icons become disabled (i.e. greyed-out), then it’s likely that the process
has reached a dependency point with another suspended process.

24

PTP v5.0.3 Evaluation

Fle Edit Nawvigate Search Project Run Window Help
e W 0 B Qe |2 | B A £ TUCIC++ [Parallel R... £ Paraliel D..|
Sw

28 Paraliel Debug 0w o0 & - - = O)(% reak . & Expre | 5 Signal | [f} Arays|os varisbl | B Machin| @ Resowr| = O

SLWAM@Local: job1121613 - Root [4] _\' - % s* o ‘ 5 ._‘- S
job:] @ 1 - :

'gj:hii:i::: + BEse ¥ mpi_arrayec [line: 44] {job1121455:Root}

£ job11214%7 5 mpd_array e [ine: 107] (job1121813:Aoot)

o }nhluusq & mpi_arrayc [line: 107] {joh112145%:tasks}

& jobl121462

k3|
% Debug 2 O = b 3

= 1 main{) mpi_array.c:114 400e5h
w §@ Process 2 (Suspended)
= @ Thread [1] (Suspended) |
= 1 man() mpi_array.c:111 400dea Mo details to display for the cument selection.
= @& Process 3 (Suspended)
= @ Thread [1] iSuspended)
— 1 main(} mpi_aray.c:111 400des [
o SLURM@Local: job_16779091 '

|l mpi_amay.c & O polle =8 & outline &2 Y-
3 rl’l_Recvtf-offset, L Pl'?l_lln. source, tagl, Ni?l_cnlﬂ_mw. &status): (= &R W s s
164 HPI_Recvibdataoffset], chunksize, MPI_FLOAT, source, tag2, =
165 MPI_COMM WORLD, &status); o mpih

o stdioh

o stdib.h

/* Send my results back to the master fask #/ # ARRAYSIZE

15 dest - MASTER,; MASTER

data - float]]

mainfint, chart{]) - mt
update(int, int, int) - float

mysum = update{offset, chunksize, taskid);

02, MPT_COMM WORLD) ;

} /* end of non-master

© Console £ (1 Memory| @ Eror Log & Problems | =; Progress - v i [ElE ¢ 8- r3- =0
mpi_anray-debug | Paralle] Apy | SLURM@Lacal: job_16775081
Task 3 mysum = L. 1199868410

Task L mysum = &, 7999052409

Task 2 mysum = 7.9999188+39

[~ E——F

Figure 18: Debug session in progress.

The source code view highlights the source statements for the execution trace of all registered
processes in the selected set. Hovering over the break marker, to left of the line number, shows which
processes are currently suspended at that statement.

Adding other views to this perspective can be quite beneficial. For instance, bringing in the Machine
view allows drill down on the job execution nodes (see Figure 19). This view in turn shows the jobs and
processes running on that node. Drilling into the properties of a specific process shows the process
details and output generated by just that process.

25

PTP v5.0.3 Evaluation

Fle Edit MNawigate Search Project Run Window Help
P~ SRR B A R S £ THC/C++ [Parallel R, [B6 Parael D..|
BR Parallel Debug = i - "o 8 i ta= = O % Break |4 Expre | FeSignal | [i Amays [+ vadabl | B Machin 2 - (D Resour| =0
SLURAM@Local: job1121454 - Root [4] SLURM@Local: sierat4s - Root [1872] CY o e
[l » lobi131454 Lo PEEE £ L
I joha121455 e T T Re
REEEE e
£ job1121457 24 9[99 @ ol &) & 9 o9 e
i jdil1a430 3 K sEE
& job1121462 48 [[() [e)) 1 1
£ job1121613 S0 (9 [[100 00 |0 1 I I [1
£ job1121818 T2 [(9] [(] [1 [1 [(8 [[
2 jeb1121618 o ! B4 [) (9 9 19 () [) L 1
— 96 9 e |
% Debug 2 = = b - (o - sl ~ 108 S e B O (D B [
W gy PrOLess U (SUsjenied) u =) -Node Attrbutes - Process info
= o Thread [1] (Suspended) | Attnbute Value i # j0b1121454:j0b1121454.0
= 1 main[) mpi_array.c:65 400b26 HNarme serral2 e jab1121454: job1171454.1 |
= & Process 1 (Suspended) e Node Numt 0 | + j0b1121454:j0b1121454.2 F
= @ Thread [1] iSuspended) Hode Stats ALLOCATED o [0B1121454:job1121454.3
= 2 update() mpl_array.c-134 400f1° 05 Linux | # job1121455:j0b1121455.0
= 1 main{) mpi_array.c:107 400dd4 coreNumb & Ly + |ob1121455:j0b1121455 1
w § Process 2 SR omm s e T ¥ job112145%5:j0b1121455.2
B Thrmasd P11 /B immimm %)) — - . —
l¢ mpi_amayc |8 job1121454:j0b1121454.0 5 jobd1231454:job1121454.1 & . FH job1121454:job1121454.2 = 8 5 outline 2 T
Procass detsils An outhne 13 not available.
PID: NjA
Status; SUSPENDED
= Frogram output
Task 1 mysum = 4.799905e409
@ Console & - (] Memory| ¥ Emor Log % Problems. = Progress] " 'ld,—,r.,— o @vriv=0
mpi_seray-debug [Parallel Applhication] SLUR M@Local: job 16775108 =
WI task 0 has started... 1a
Initialized array sum = 1. 279981e+10
Task 1 mysum = 4, 7999058+09 q
14
m i
o ? SUSPENDED PID: KA

Figure 19: Individual process views for debugging.

An alternative debugger available here at LLNL is the TotalView debugger available from Rogue Wave
Software [6]. Like the SDM client, the TotalView interface consists of multiple windows, or views, each
focused on specific functionality for a debug session. Besides the basic functionality found in PTP’s SDM,
TotalView provides several advanced features including memory tracking, and support of C++ template

libraries.

As the SDM debugger continues to mature it may begin to include some of these more advanced
features. However, the basic functionality currently integrated into the PTP plugin is well presented in
the interface and provides a quick and easy means for an iterative code/debug cycle.

7 Evaluation Summary

The key advantage of any IDE is the Integration. The editing of source code is integrated with the
compiler allowing real-time feedback on code syntax. Integration with the linker ensures adherence to
the protocol of included or created library functions. Developing source code for a project is, and should
be, a very iterative process. All software developers will create a subset of desired basic functionality,
execute the code to test/debug, add more functionality — test/debug, etc. This cycle is repeated multiple

26

PTP v5.0.3 Evaluation

times until all functional requirements are met, and the code executes flawlessly. This cyclic process is
where the Eclipse IDE shines in increasing the productivity of the developer.

The Parallel Tools Platform (PTP) is a plug-in module for Eclipse that aids in the development of parallel
applications. PTP incorporates the popular CDT (C/C++ Development Tooling) module to provide a
source code editor with color-coded syntax highlighting, context sensitive code completion, and
compile-time error checking. PTP includes the SDM debugging tool for parallel applications, and utility
tools to submit and monitor jobs on a parallel system.

Installation

By necessity the installation is more involved than simply pointing Eclipse to an update site and
downloading a plugin. Several utilities must be built from source on the parallel host system in order to
ensure proper executing on each specific cluster. The included documentation was well done,
presenting step-by-step instructions for installing each utility. As a side note, at the beginning of this
evaluation an earlier version of PTP was installed and subsequently upgraded to v5.0.3. The upgrade
documentation did an excellent job of walking through the steps necessary to rebuild these utilities and
re-pointing the IDE preferences to use the newly built version.

Environment Configuration

Configuring the ToolChain for the desired compiler, linker, and libraries is a bit frustrating. More
standard configurations could be provided in the default set. More importantly the ability to add a new
configuration as opposed to overriding an existing default should be available.

Code Development

The process of creating projects, editing/importing code and running an executable exceeded
expectations. The use of a proxy to communicate with the actual resource manager proved to make
running on a parallel cluster nearly seamless as compared to running on a standalone node. While there
was the extra complexity of having to build, configure, and start the proxy, the benefit was well worth
the effort. The proxy allows the integration of the machine configuration, parallel node status and
monitoring of each running process to simply be included in another view of the IDE.

Debugging

The SDM debugging tool has a learning curve to understand how to step through specific processes,
with basic debugging functionality present. The ability to drill into a process starting at the node view is
a nice feature. While more complicated issues with highly parallel code may be better debugged with
the additional features provided in a debugger such as TotalView, the SDM debugger has the necessary
capabilities to step through individual threads examining the variables and behavior along the way. For
this integrated functionality, it’s hard to beat the free price.

27

PTP v5.0.3 Evaluation

8 References

1. Gregory R. Watson, Craig E. Rasmussen. A Strategy for Addressing the Needs of Advanced Scientific
Computing Using Eclipse as a Parallel Tools Platform. Los Alamos : Los Alamos National Laboratory,
2005. LA-UR-05-9114.

2. anonymous. PTP - Parallel Tools Platform. Eclipse.org. [Online] Eclipse Foundation. [Cited: November
7, 2011.] http://eclipse.org/ptp/.

3. Livermore Computing Services. Open Computing Facility - OCF. High Performance Computing @
Lawrence Livermore National Laboratory. [Online] Livermore Computing Services, 12 07, 2011. [Cited: 12
10, 2011.] https://computing.linl.gov/?set=resources&page=0CF_resources#sierra.

4. Parallel Tools Platform (PTP) User Guide. Eclipse Online Help. Ottawa : Eclipse Foundation, Inc., 2011.

5. CDT Project. Eclipse.org. [Online] Eclipse Foundation. [Cited: January 3, 2012.]
http://www.eclipse.org/cdt/.

6. Parallel Tools Platform (PTP) Wiki page. PTP - Eclipsepedia. [Online] Eclipse Foundation. [Cited: 11 7,
2011.] http://wiki.eclipse.org/PTP.

7. Rogue Wave Software. TotalView. roguewave.com. [Online] Rogue Wave Software. [Cited: December
10, 2011.] http://www.roguewave.com/products/totalview.aspx.

28

	3.2.1 Installation 5
	4.2.1 ToolChain configuration 7
	4.2.2 Out of the box MPI Example 7
	4.2.3 Editing / Building 11
	4.2.4 Resource Manager Configuration 14
	4.2.5 Launching 17
	1 Introduction
	2 Evaluation Hardware Platform
	3 PTP Installation
	3.1 Description
	3.2 User Experience
	3.2.1 Installation
	3.2.1.1 Resource Manager Proxy
	3.2.1.2 Parallel Debugger

	3.3 Evaluation

	4 Developing MPI Projects
	4.1 Description
	4.2 User Experience
	4.2.1 ToolChain configuration
	4.2.2 Out of the box MPI Example
	4.2.3 Editing / Building
	4.2.4 Resource Manager Configuration
	4.2.5 Launching

	4.3 Evaluation

	5 Monitoring
	5.1 Description
	5.2 User Experience
	5.3 Evaluation

	6 Debugging
	6.1 Description
	6.2 User Experience
	6.3 Evaluation

	7 Evaluation Summary
	8 References

