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Abstract. We present a computational method for identifying partial and
interfacial dislocations in atomistic models of crystals with defects. Our
automated algorithm is based on a discrete Burgers circuit integral over the
elastic displacement field and is not limited to specific lattices or dislocation
types. Interfacial dislocations are identified by mapping atomic bonds from the
dislocated interface to an ideal template configuration of the coherent interface
to reveal incompatible displacements induced by dislocations and to determine
their Burgers vectors. In addition, the algorithm generates a continuous line
representation of each dislocation segment in the crystal and identifies dislocation
junctions.



1. Introduction

Crystal interfaces play an important role in defining properties of crystalline materials.
For instance, grain boundaries (GB) can act as dislocation sources and sinks, or
as barriers to dislocation motion, giving rise to Hall-Petch hardening. Absorption,
emission and transmission of dislocations at GBs are important phenomena that can
be studied by means of molecular dynamics (MD) and other atomistic simulation
methods. The so-called wicinal GBs can be described in terms of secondary grain
boundary dislocations and are believed to be major sources of lattice dislocations in
nanocrystalline and nanotwinned materials where conventional dislocation sources are
suppressed. Furthermore, secondary GB dislocations can participate in stress-induced
GB migration and deformation twinning.

Conventional structure identification methods for atomistic datasets [1] allow
filtering out undisturbed crystal atoms to reveal defects for visualization purposes [2].
However, the existing methods do not provide a means to discriminate dislocations
from non-dislocation defects, or to determine Burgers vectors of dislocations. While in
most crystal lattices the number of observable dislocation types is small, the spectrum
of dislocations in GBs can be much wider. With the Burgers circuit procedure, a
theoretical method exists that — at least in principle — allows one to determine the
Burgers vector of any dislocation. However, constructing Burgers circuits manually
is extremely laborious and error-prone. Furthermore, when it comes to analyzing
time-resolved reactions, e.g. involving lattice and interfacial dislocations, the manual
Burgers circuit method quickly becomes useless due to the complexity and rapid
evolution of defect structures.

Recently, we developed a computational analysis method [3] to identify
dislocations in atom-position datasets generated in atomistic simulations. This fully
automated algorithm analyzes the atomic positions in the crystal and identifies
all defects that are dislocations, determines their Burgers vectors, and outputs a
continuous line representation of the dislocation network. The original description
of the dislocation extraction algorithm (DXA) was, however, limited to perfect lattice
dislocations in only two simple crystal lattices (fcc and bee). In the following section
we present a general formulation of the DXA algorithm that allows identifying perfect
dislocations in arbitrary lattices. Then in section 3 we extend the DXA algorithm to
the identification of partial dislocations and secondary dislocations in semicoherent
crystal interfaces and GBs. Section 4 describes the application of our new general
algorithm to the test case of lattice dislocations interacting with a grain boundary. In
section 5 we discuss applicability and limitations of our algorithm in the analysis of
crystal defect structures and then summarize our results in section 6.

2. Dislocation extraction algorithm for arbitrary lattices

In this section we restate the DXA algorithm for the case of perfect dislocations in
arbitrary crystal lattices and introduce a few important concepts to be used later.
In the subsequent sections we will further generalize the approach to the analysis of
dislocations in crystal interfaces.



2.1. The Burgers circuit

A dislocation can be identified by means of the Burgers circuit procedure suggested
by Frank [4]. Given a closed path C (figure 1(a)), the Burgers vector b of the enclosed
dislocation defect is defined as the line integral of the elastic displacement field [5]:
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Note that the circuit C' is specified in the dislocated crystal, i.e. in spatial coordinates.
Hence, b is the true Burgers vector of the dislocation and is always a lattice vector of
the perfect crystal. This is in contrast to the local Burgers vector, which is obtained
by integration over a path that is closed in the perfect lattice (i.e. in the material
coordinate system): the latter integral is affected by elastic strains and differs, in
general, from the true Burgers vector.

The elastic displacement vector field U®(x) is given here in spatial coordinates
(Eulerian description) and relates the dislocated configuration % to a virtual, stress-
free reference configuration .. For now, we assume .Z to be the perfect crystal
lattice. The dislocated crystal is divided into a good region, where the atomic structure
deviates only slightly from the ideal lattice structure, and a bad region near the
dislocation line (the defect core) where the displacements are large and the atomic
arrangements do not resemble the regular lattice. The Burgers circuit C' must lie
entirely in the good region.
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Figure 1. The Burgers circuit method in a continuum setting (a) and in an
atomistic crystal (b-c).

In an atomistic description of the solid, the Burgers circuit is composed of a set
of vectors C = {Ax} that form a closed atom-to-atom path (figure 1(b)), such that

0=) Ax. (2)
c

The line integral (1) can then be discretized. In our framework each vector Ax of the
circuit is mapped to a corresponding vector AX in the perfect crystal .Z (figure 1(c)).
The true Burgers vector is then

b=> AX. (3)
C



2.2. Mapping vectors from the dislocated to the perfect crystal

To implement an automated dislocation identification based on the Burgers circuit
method, two key problems need to be solved: (1) How to construct the atom-to-atom
path C, such that it encloses a single dislocation, and (2) how to determine the ideal
vector AX that corresponds to a given atom-to-atom vector Ax. We address the
elastic mapping Ax — AX first.

For the following considerations, we require that every vector Ax in a Burgers
circuit should connect two atoms that are nearest neighbors (NN). In case it does not,
it should be always possible to refine the path C' and replace Ax with a sequence
of shorter atom-to-atom vectors (Ax = ) . Ax;), such that each Ax; connects NN
atoms. For this purpose one can invoke an appropriate shortest-path search algorithm
[6] to find a sequence of NN vectors connecting two distant atoms.

According to Frank [4], a proper Burgers circuit must pass through so-called good
material only. Accordingly, an atom is defined to be part of a good region if the type
of its NN environment is that of the perfect lattice. To assign a lattice type to each
atom, one can use an atomic structure identification algorithm [1], such as the common
neighbor analysis (CNA) [7] (figure 2b). On the other hand, any atom is defined to be
a bad atom if its atomic environment is found to be different from the reference lattice
or is not recognized at all by the structure identification algorithm. By structure
identification algorithm we mean any computational method that attempts to assign
a structural type, e.g. fee, bec or hep, to every atom in the crystal by analyzing the
relative positions of its NN atoms.

The vector Ax is defined to belong to a good region if at least one of two atoms
it connects is a good atom. That means the atom has been identified to be of the
structural type corresponding to the reference lattice and its NN vectors can be
unambiguously mapped to corresponding bonds in the reference lattice in a one-to-
one fashion (figure 2c). Since according to our initial requirement, the second atom,
pointed to by the vector Ax, must be among the nearest neighbors of the first, this
determines the corresponding vector AX in the ideal lattice configuration .. We
refer to the earlier papers [3, 8, 9] for more details on this procedure to obtain the
elastic mapping Ax — AX.

Note that, for crystal lattices with point symmetries, the mapping of NN bonds to
ideal lattice directions is not unique: For the same central atom, there exist as many
equivalent one-to-one mappings (permutations) of its neighbor bonds to ideal lattice
directions as there are elements in the local point symmetry group. For performing
the Burgers circuit analysis it is necessary to pick the mapping in a consistent way for
all atoms in the good region. A locally compatible mapping requires AX,, = —AXp,
to hold for any two NN atoms a and b, and AX, + AXye + AX,, = 0 for a triplet
of NN atoms a, b, ¢ (all three being mutual nearest neighbors). In other words, the
local lattice directions assigned to the bonds of a good atom must be aligned with
those picked for its neighboring sites. To generate a globally compatible mapping for a
good region, we start at some seed atom in that region for which we pick an arbitrary
lattice orientation. We then adjust the bond mappings of all its neighbors such that
their respective orientations become locally compatible. As described in more detail
in [3] this is repeated recursively for the neighbors of neighbors and so on, until every
atom in the good crystal region has been visited and “reoriented” by permuting its
neighbor list. Note, however, that no globally compatible mapping exists if the good
region is intersected by a disclination.



2.3. Partitioning space into good and bad regions

In general, a defective crystal consists of one or more good regions in which one or
more bad regions are embedded. The bad regions are associated with the cores of
crystal defects (dislocations and others). At the same time a finite crystal may be
thought of as being surrounded by an infinite bad region bordering with the crystal
along its outer surfaces. Owing to the Burgers vector conservation a dislocation line
cannot end inside a crystal. Furthermore, the bad region surrounding a dislocation
that ends on the crystal’s surface becomes connected with the outer bad region.

Two Burgers circuits are said to be equivalent if they are located within the same
good region, and if one circuit can be continuously transformed into the other without
breaking the circuit or letting it cross the region’s boundary. If two Burgers circuits are
equivalent, then they enclose the same dislocation (or the same set of dislocations) and
their associated Burgers vectors are equal. A circuit encloses a single dislocation line if
and only if its shortest equivalent circuit is completely contained within the boundary
between the good crystal and the bad core region. Thus, for optimal resolution, the
dislocation identification algorithm should work only with such irreducible circuits,
which are embedded in the good region’s boundary, to guarantee that each individual
dislocation line will be identified.

Computationally, we partition the crystal into good and bad regions as follows.
Given the atom coordinates, we first generate a space-filling decomposition into
tetrahedral elements (figure 2d) using the Delaunay constructionf. All resulting
tetrahedra will be subsequently classified as belonging to either a good or a bad region.
To this end, we attempt to assigned an ideal vector AX,;, to each edge a — b of the
Delaunay tessellation using the method described in section 2.2. The assignment,
however, may fail in the following cases:

e An edge may be completely inside a bad crystal region meaning that the structure
identification algorithm has failed to identify the local crystal structure around
both end atoms so that no local lattice orientation can be established.

e A tessellation edge may connect two distant atoms that are not immediate
neighbors. In such a case we attempt to find an atom-to-atom path that connects
the two end atoms of the edge as described in section 2.2. Failure to map any
one of the sub-steps in that path to an ideal lattice path signals that the path
crosses a bad region and that our algorithm is unable to assign an ideal vector to
the tessellation edge.

Even when no ideal lattice vector could not be assigned to a tessellation edge for one
of the above reasons, the algorithm does not give up and tries to infer an ideal lattice
vector from the ideal vectors assigned to two adjacent edges forming a triangle with
some third vertex. Only when all of this fails, the tessellation edge is left unassigned.

In the next step, each tetrahedral element is classified as either a good or a
bad tetrahedron based on the ideal vectors assigned to its six edges (figure 2e). A
tetrahedron is classified as bad if mapping to the ideal lattice failed for at least one
of its edges. For a tetrahedron to be classified as good, all six of its edges should have
been assigned ideal lattice vectors, which must form a compatible set. This means
the six lattice vectors must form a closed tetrahedron in the reference configuration

1 We do not make use of the specific properties of a Delaunay tessellation. Any other space-filling
tessellation connecting all atoms and composed of non-empty, non-overlapping tetrahedra, would
work too.



£, i.e., the sum of the ideal edge vectors must vanish for each of the four triangular
faces of the tetrahedron (e.g., AX,p + AXpe + AX,, = 0 for a triangular face a-b-¢
of the tetrahedron). This condition corresponds to performing the Burgers circuit
test for each of the four faces of the tetrahedron and making sure that none of the
faces is intersected by a dislocation. Within a good tetrahedron, the elastic mapping
between the physical configuration % and the stress-free reference configuration £ is
compatible and unique (up to rigid-body rotations) allowing one to compute a local
elastic deformation gradient [10].
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Figure 2. Two-dimensional schematic of the interface mesh construction steps:
(a) Input set of atomic coordinates; (b) Atomic structure identification, labeling
atoms as good (crystalline) or bad (unmatched); (¢) Mapping of the atomic bonds
to ideal lattice directions (only for good atoms); (d) Generation of the space-filling
Delaunay tessellation; (e) Partitioning of the tessellation into contiguous good and
bad regions, and construction of the separating interface boundary.

2.4. Construction of the interface mesh

To resolve individual dislocations, especially in dense dislocation tangles, it is
important to ensure that Burgers circuits over which the integral (3) is computed
do not enclose more than one dislocation. As was stated in section 2.3, for a circuit to
have minimal length among all other possible circuits enclosing the same dislocation
it should lie on the boundary between the dislocation’s core region (bad) and the
surrounding crystal lattice (good). To search for such minimal circuits efficiently, it is
useful to first extract the boundary surface that separates good tetrahedra from bad
tetrahedra. This boundary is a two-dimensional manifold consisting of all triangular
tessellation faces shared by one good and one bad tetrahedron. We refer to this oriented
and closed manifold as the interface mesh. Tt consists of vertices (atoms), edges, and
triangular facets. With the interfae mesh being a closed manifold, each edge of it is
shared by exactly two triangular faces, and it is convenient to use a halfedge structure
[11, 12] to represent it. In this data structure, each halfedge a — b is paired with an
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opposite halfedge a ~— b, bounding the facet on the opposite side.

While generating the interface mesh, the ideal vectors AX,; previously assigned
to the Delaunay edges are copied over to the halfedges of the interface mesh. Since
each triangular face of the interface mesh is derived from a face of a good tetrahedron,
the three halfedges of every interface mesh face will have three ideal lattice vectors
associated with them that add up to zero. Furthermore, given that a halfedge a — b
is assigned an ideal vector AXy,, its reverse halfedge a «— b is assigned the reverse
vector AXp, = —AXyp-

2.5. Construction of Burgers circuits and discovery of dislocations

To discover dislocation lines, the algorithm constructs trial circuits on the interface
mesh (which encloses dislocations as well as non-dislocation defects, i.e. all bad
material). Such a trial circuit is a closed sequence of three or more halfedges, and its
Burgers vector is computed from the discrete integral (3) by summing their respective
ideal vectors. All possible trial circuits up to some prescribed maximum length (usually
not more than ten edges) can be efficiently enumerated using a recursive breath-first
search algorithm on the graph of halfedges forming the interface mesh.

Trial circuits of increasing length are generated until a circuit with a non-zero
Burgers vector is encountered. As described in the next section (and in more detail
in a previous paper [3]), this seed Burgers circuit is subsequently used to discover the
rest of the dislocation it encloses.

o

Crystal lattice

atoms
T
‘- »
; :
i e
b Pbdpr s .'.'.? |
4+ :
4 - ‘
iy
Bad ~
| : tetrahedra
Disordered b
atoms NNHEV
Burgers
vector
Burgers
. | circuit
Dislocation
line

Figure 3. Illustration of the generalized dislocation extraction algorithm. In
this example, a prismatic dislocation loop in a bcc single crystal is identified,
indexed and converted to a continuous line representation (see text for a detailed
description).



2.6. Tracing dislocations by sweeping along the interface mesh

Once a circuit with a non-zero Burgers vector is discovered in the previous step,
the algorithm creates a duplicate of the circuit in which the sense of all halfedges is
reversed. The original circuit is a so-called forward circuit, while the reversed copy
is a backward circuit. The two circuits are then advanced in the opposite directions
on the interface mesh sweeping along the dislocation line (figure 4(a)). During this
sweeping phase, a one-dimensional line representation of the dislocation is generated
by computing the new center of mass position of a circuit each time it advances along
the boundary of the dislocation core. Here, a circuit can be pictured as a rubber
band tightly wrapped around the dislocation’s core. As the circuit moves along the
dislocation segment, it may need to locally expand to sweep over wider sections of the
core, e.g. kinks or jogs. To prevent the two circuits from sweeping past dislocation
junctions or interfaces, we impose a hard limit on the maximum length of circuits.
The circuits are advanced along the interface mesh in elementary moves —
sweeping one triangular mesh facet at a time. A single move entails modification
of the circuit’s halfedge sequence, for instance, by replacing a single halfedge with
two other halfedges to traverse one mesh facet on the right-hand side of the circuit§.
Moves that reduce the length of the circuit are given precedence over moves that
extend it. Note that every such unit move is guaranteed to leave the Burgers vector of
the circuit unchanged. Once a mesh facet has been traversed by an advancing circuit,
it is marked as belonging to the current dislocation segment and no other circuit is
allowed to sweep the same triangle again. The advancement of the Burgers circuit is
halted whenever its length reaches a prescribed maximum number of halfedges or all
mesh triangles in front of it have been already swept/assigned by some other circuit.

Terminating

Backward circuit Burgers circuits

Forward circuit

(a) (b) (c)

Figure 4. (a) Illustration of the sweeping process by a stepwise advancement of
a forward and a backward circuit. (b) At a dislocation junction, multiple circuits
meet on the interface mesh. (¢) Upon detection of the junction, the corresponding
line segments are connected in the generated line network.

Once it is found that the currently processed dislocation segment cannot be
extended any further, the algorithms returns to probing trial circuits on still unvisited
parts of the interface mesh (Sec. 2.5) until a new circuit with a non-zero Burgers vector
is discovered. Eventually, the algorithm will have found every distinct dislocation

& Handedness of every triangular mesh facet and, hence, the direction of sweeping moves is defined

with respect to the circuit’s sense direction and the direction of the positive normal of the interface
mesh. The latter is defined to point toward the good crystal region.
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segment in the crystal and converted it to a continuous line. At this stage of the
analysis, each extracted dislocation segment is associated with the following data
record:

e The forward circuit and the backward circuit on the interface mesh that terminate
the segment.

e An ordered sequence of points that was obtained by computing the position of a
circuit’s center of mass each time any of the two circuits advanced. Connecting
these points together yields a line representation of the dislocation segment.

e The Burgers vector of the segment computed by evaluating the discrete line
integral over the initial forward circuit.

Finally, the algorithm identifies dislocation junctions by detecting instances when
multiple circuits run into each other on the interface mesh (figure 4(b)). The
terminating circuits of three (or more) dislocation segments forming a junction will
leave no unvisited facets between them so that every halfedge within one terminating
Burgers circuit will have an opposite halfedge that is part of one of the other
terminating circuits. The Burgers vector conservation at any junction node identified
by the algorithm (figure 4(c)) is automatically obeyed simply because, by construction,
the two ideal lattice vectors assigned to a halfedge and its opposite halfedge add to
zZero.

This concludes the description of the general dislocation extraction algorithm for
arbitrary crystal lattices. Note that, in contrast to the original formulation of the
algorithm [3], which was limited to fcc and bece lattices, a space-filling tessellation was
used here to partition the simulation domain into good and bad regions. The interface
mesh, subsequently used to detect and sweep dislocation segments, is now defined as
the boundary between good and bad tetrahedra without reference to any underlying
atomic structure of the crystal.

3. Partial dislocations and interfacial dislocations

So far we have been defining the good crystal as a region containing atoms whose
neighbor bonds can be uniquely mapped to a perfect crystal. Here the perfect crystal
serves as the strain-free reference configuration to which the Burgers circuit’s segments
are translated. As we show below, this concept of a strain-free reference configuration
can be naturally extended to coherent crystal interfaces.

Consider first the familiar Burgers circuit procedure to the case of a partial
dislocation bounding a semi-infinite stacking fault (figure 5(a)). To be able to
determine the Burgers vector, the Burgers circuit encircling the partial dislocation
has to pass through the stacking fault at some point. However, inside the stacking
fault the atomic arrangement differs significantly from that of the perfect crystal
making it virtually impossible to map atomic bonds inside the fault to a perfect
lattice. Consequently, the stacking fault defect must be part of the bad crystal region,
which a valid Burgers circuit must not cross. Conversely, if the atomic bonds inside
the stacking fault could be mapped back to a perfect lattice, then the stacking fault
would be part of the good region and the Burgers circuit would remain valid. However,
in this case the circuit would consist entirely of steps mapped to perfect lattice vectors
and the resulting Burgers vector could only be a full lattice vector (including zero),
not a partial. To enable the detection and indexing of partial dislocations in coherent
crystal interfaces, we therefore need to extend our definition of good crystal regions.

9
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Figure 5. A Burgers circuit enclosing (a) a partial dislocation and (b) a GB
dislocation.

3.1. Perfect crystal interface

Perfect and infinite stacking faults, antiphase boundaries, grain boundaries and other
coherent (lattice-matched) crystal interfaces all have in common that they do not
induce long-ranged stress fields in either of the two crystal lattices. This property
makes them candidates for the reference configuration, which is needed to define the
purely elastic displacements as required for the Burgers circuit analysis (equation 1).
Therefore, in our extended definition, a good crystal region includes all atoms that can
be locally mapped to either a perfect lattice or some specific type of coherent crystal
interface structure.

Note that, for our purposes, stacking faults and antiphase boundaries can be
viewed as particular types of GBs with no lattice misorientation (X = 1). Therefore, it
is sufficient to define only one general mapping procedure for coherent crystal interfaces
that will enable the identification of partial lattice dislocations too.

For a given grain misorientation and boundary plane inclination, the equilibrium
structure of a coherent interface can be calculated using an appropriate atomistic
model [13], usually in a simulation cell with periodic boundary conditions to model
an infinite interface. Finding the ground state of a crystal interface may require
removing certain atoms prior to relaxing the atomic positions inside the interface, and
determining the optimal relative shift of the two crystals [14].

A bicrystal containing a coherent interface can be divided into three regions
(see figure 6(a)): two perfect crystals and the core region separating them. In the
core region, the atomic arrangement is distinctly different from the perfect lattice
structure(s). However, in every coherent interface one can identify a periodic motif
(or unit template) commensurate with the two adjacent lattices. An atomic structure
identification algorithm can be “trained” to recognize occurrences of such an ideal
boundary structure template in the simulation data.

3.2. Dislocated interface

Analogous to a single crystal, a dislocated crystal interface (figure 5(b)) can be divided
into good regions, where the atomic arrangements deviate only slightly from the
structure of the ideal, fully-coherent interface, and bad regions near the dislocation
lines (their cores) where atomic configurations do not resemble and cannot be mapped
onto the ideal interface structure.

Using an atomic structure identification algorithm we mark sections of the
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dislocated interface where the local atomic arrangement closely matches the known
structure of the ideal interface. As a result, the bicrystal is partitioned into contiguous
clusters of atoms whose local arrangement matches the ideal crystal or the ideal
interface template, figure 6(b). On the other hand, the atomic structure in the
dislocation core does not match any of the pre-defined reference structures: All such
atoms are attributed to the bad crystal region. Subdividing the good region into
atomic clusters serves the following purpose: Within one cluster, every bond vector
Ax can be mapped to the same reference configuration, i.e., all ideal vectors AX can
be expressed in the same frame of reference associated with that particular cluster.

= reference =
frames
$ - Cluster A
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irreducible
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(a) Perfect interface (b) Dislocated interface (¢) Cluster graph

Figure 6. (a) A bicrystal containing a coherent grain boundary is divided
into three regions 1, 2, and B corresponding to two grains and the boundary
core. Two rotation matrices Tp_,1 and Tp_o are derived from this ideal
reference template to describe the misorientation of the interface’s coordinate
frame with respect to Cartesian frames of the two grains. (b) For the dislocation
analysis, the dislocated interface is partitioned into four contiguous good clusters
and a distorted dislocation core region. (c) From this decomposition, a graph
representation of the bicrystal is constructed in which the edges are associated
with the rotation matrices between adjacent clusters.

3.3. Reference frames

Even though, in principle, the Cartesian reference frame for a contiguous cluster
of good atoms can be chosen arbitrarily, we use the following convention: The
reference frames PR, and Ry, which are used to express ideal vectors in the two crystal
grains, are aligned with their respective grain’s lattice orientation (so-called isoclinic
configurations [15]). This ensures that all ideal lattice vectors, and with them all
computed Burgers vectors, will take on familiar values (e.g. AX = a/2(110) in fcc).
For the perfect interface it is convenient to select the Cartesian reference frame to be
aligned with the interface plane normal and the periodic directions of the motif (cf.
figure 6(a)). All ideal vectors within the good interface regions are expressed in this
third frame Ry, that is, in general, rotated with respect to the two lattice frames.

The relative orientations of these three reference frames are fully specified by two
rotation matrices T .1 and Ty, 2, and the product rotation Ty .o (Tbﬂl)f1 =Ti_»
provides the misorientation of the two crystal grains of the ideal interface.

Any Burgers circuit enclosing an interfacial dislocation must pass through
multiple good clusters, each being associated with one of the three frames i, Rs,
or Ry,. Therefore, to compute the closed circuit integral (1) it is necessary to sum
vectors expressed in different reference frames. It is convenient to associate each ideal
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vector AX with the frame it is expressed in, and store it as a pair (AX,R). Then the
summation rule for two such vectors is

(AXAv sRA) + (AXBv fRB) = (TA—>BAXA + AX37 i)%B)a (4)

where T 4_, g is the transformation matrix that translates an ideal vector from frame
R4 to Rp. The Burgers circuit sum b = ) AX is evaluated by successively applying
summation rule (4) to the sequence of steps in the circuit. The resulting Burgers vector
(b,R) is then expressed in the reference frame of the last lattice vector of the circuit,
which is associated with one of the good clusters adjacent to the dislocation core
region. One is free to express this Burgers vector in either one of the two Cartesian
lattice frames, Ry or Ry, by applying the appropriate transformation matrix.

3.4. Polycrystals

A polycrystal consists of multiple grains separated by a network of grain boundaries
of various types. Given a sufficiently rich catalog of boundary templates representing
various coherent boundaries in the five-dimensional misorientation-inclination space,
one can expect every boundary (or boundary facet) in the GB network to be close
to one or another ideal boundary type. Leaving aside a possible non-uniqueness of
any such partitioning of the 5-space, deviations from the ideal boundary templates
are accommodated by secondary GB dislocations, steps, and/or their combinations
(misconnections). The main purpose of our new extended dislocation extraction
algorithm is to identify and index such GB dislocations|.

In the two preceding sections we described how a bicrystal with a single GB
dislocation can be partitioned into four clusters (figure 6(b)). Here we consider a
general polycrystal (figure 7(a)) and use the same procedure to partition it into a
larger number of clusters — one for each grain or contiguous atom cluster matching
an ideal interface template. Any such partitioning can be represented by a graph,
as shown in figure 7(b). Each node in this graph corresponds to a single contiguous
cluster and every pair of neighboring clusters is connected by an edge. Every edge
of this so-called cluster graph stores the rotation matrix describing the (strain-free)
misorientation relationship between two connected clusters. As was already explained,
these transformation matrices are pre-computed from the relative orientations of the
crystal grains in the corresponding interface template. Note that, during generation
of the cluster graph, possible symmetry transformations of the lattice and interface
structures need to be taken into account to determine the actual transformation matrix
connecting the reference frames of two clusters.

A closed Burgers circuit C, passing through more than one atomic cluster, can be
mapped to a circuit C* in this abstract cluster graph. Sequential application of the
transformation matrices associated with the edges of C* allows to perform a simple
disclination test: any circuit passing through n clusters and enclosing a disclination
[16] must yield a net rotation, i.e. Ty,.1Tp_1-p ... T23T12 # I (Frank-Nabarro
circuit). Disclinations are common defects in polycrystal, e.g. associated with the
triple junctions, and their identification is an important prerequisite for a robust
dislocation identification algorithm. This is because any Burgers circuit enclosing
a disclination is invalid and must be discarded even if it is entirely contained in the
good region.

|| We leave it to future work to extend the algorithm to indexing steps and misconnections.
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Figure 7. (a) A small fragment of a polycrystalline microstructure partitioned
into clusters by the atomic structure identification algorithm. Three grains and
several coherent GB segments (B1-B5) as well as a stacking fault (SF) have been
identified. The unidentified bad regions in between are potential locations of
dislocations. (b) The cluster graph derived from the input microstructure. The
edges between adjacent clusters are associated with matrices that rotate vectors
from one frame to the next. The Burgers circuit C enclosing the triple junction
line has been translated into a corresponding circuit C* in the cluster graph
making it possible to detect disclinations (the triangle symbol).

Synopsis of the generalized dislocation extraction algorithm

In the preceding sections we developed all the concepts required for a general and
robust dislocation extraction algorithm. The algorithmic steps are as follows:

(i)

(i)
(iif)

An atomic structure identification method is invoked trying to match every atom
to one of the known ideal structure templates and to partition the system into
contiguous clusters of good (matched) atoms.

A spacefilling tessellation of the system is generated using the Delaunay
construction.

The algorithm attempts to assign an ideal vector (AX,fR) to every tessellation
edge of the Delaunay tetrahedra based on the local mapping of atomic bond
vectors to the ideal templates structure assigned in step 1.

Every tetrahedron is classified as good or bad based on the six ideal lattice vectors
assigned to their edges (local compatibility test).

A two-dimensional manifold (interface mesh) is built that separates contiguous
sets of good and bad tetrahedra.

Closed circuits of increasing length are generated on the interface mesh until a
first circuit with a non-zero Burgers vector is found.

This Burgers circuit (and a reverse copy) is advanced along the interface
mesh, triangle by triangle, in both directions producing a one-dimensional line
representation of the dislocation segment.

Steps (6) and (7) are repeated until the entire interface mesh has been scanned
for circuits on its surface with non-zero Burgers vector content and all dislocation
segments in the crystal are discovered.
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(ix) Dislocation junctions are identified by detecting collisions of multiple circuits on
the interface mesh.

4. An application example

We demonstrate the capabilities of the described algorithm with an example. The
test configuration, shown in figure 8, is a snapshot taken from an MD simulation
of nanoindentation in an FCC bicrystal using an interatomic potential representing
aluminum. The bicrystal contains a %11 [011](311) symmetric tilt boundary that
is impinged on by several prismatic dislocation loops nucleated and pushed into the
material by the indenter. The reactions between extrinsic lattice dislocations and
the GB result in absorption, dissociation and re-emission of dislocation segments into
the second grain. In the depicted simulation snapshot, a prismatic dislocation loop
is partially absorbed by the GB and a leading Shockley partial is transmitted into
the lower grain, giving rise to complex junction reactions involving several boundary
dislocations and partial lattice dislocations within both grains.

For the atomic structure matching algorithm to identify structural types of all
atoms outside the dislocation cores, in this particular case it is sufficient to define only
three ideal structure templates: the perfect fcc lattice, the intrinsic stacking fault, and
the ideal ¥£11 boundary structure. Figure 8(a) shows the outcome of this first phase
of the analysis, where the atoms are colored according to the structure templates they
match.

Figure 8(b) shows the generated interface mesh that encloses all tetrahedra that
fail the local compatibility test, i.e., that are intersected by a dislocation. Finally,
the extracted dislocation lines are depicted in figure 8(c). The Burgers vector of
each segment has been determined by summing the ideal vectors over the enclosing
circuits, equation 3. By default, the so-computed Burgers vector is expressed in the
lattice frame in which the segment is embedded. If needed, it can be automatically
transformed into any other frame using the misorientation matrices stored in the
generated cluster graph.

The configuration depicted by figure 8 comprises only a small sub-region of a
larger simulation domain. The dislocation analysis of the full snapshot, which is shown
in figure 9 and which comprises 7.5 million atoms, takes 30 seconds on 64 processor
cores. The resulting dataset contains about 300 dislocation segments and 120 junction
nodes. The side-by-side picture, figure 9, demonstrates that the algorithm is capable of
providing a precise and high-resolution description of the complex dislocation network
in the region beneath the indenter. Hence, the dislocation analysis can optimally
complement the conventional atomistic visualization, which fails to elucidate the
dense and therefore unidentifiable accumulation of defects. More applications of the
DXA, such as measuring the dislocation density and quantifying the population of slip
systems, have been discussed and demonstrated before [17, 18].

5. Discussion

The described dislocation extraction algorithm relies on an atomic structure
recognition method (to identify local atomic arrangements). This recognition is based
on a set of ideal reference structures, or templates, which must be supplied by the
user (including the ideal crystal lattice, possible stacking faults, ideal CSL boundaries
etc.). In other words, it is left to the user to define which reference configurations
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Figure 8. Lattice dislocations reacting with a $11 [011](311) symmetric tilt
boundary in fcc aluminum. The depicted configuration is a small fragment of
a larger nanoindentation simulation (see figure 9). (a) Local atomic structure
analysis reveals a perfect X11 boundary (green atoms), stacking faults (beige
atoms), and disordered atoms (dark gray). The inset shows the orientation of
reference frames in the two grains. (b) An interface mesh enclosing the dislocation
cores is generated. (¢) Dislocation network extracted by the algorithm. The line
colors indicate the Burgers vector types, e.g. % (112) + blue, 2—12 (147) + green,
% (1114) + red. In the magnified view on the right, all dislocation segments
are labeled with their respective Burgers vectors as determined by the algorithm.
The Burgers vectors can be represented in either one of the two lattice frames
(grains A and B).

to use for the subsequent dislocation analysis. That means that any GB dislocation
identified by the algorithm is extrinsic to the local reference interface type, while the
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(a) (b)

Figure 9. Results of the automated dislocation analysis of a nanoindentation
simulation showing the extracted dislocation line network (a) and the conventional
atomistic visualization (b) for comparison. As indicated by the line colors,
dislocations in the ¥11 grain boundary have non-standard Burgers vectors
in contrast to those occurring in the bulk fcc region (which include perfect
dislocations, Shockley partials, and stair-rod dislocations).

atomic reference pattern carries the remaining intrinsic misorientation of the interface.
Ultimately, it is left to the user to separate the dislocation content into intrinsic and
extrinsic components, whereas the DXA itself is unambiguous.

Resolution and efficiency of the DXA depend upon robustness of the atomic
structure identification algorithm. In particular, the DXA can subsequently fail to
identify every dislocation in a crystal if the structure identification algorithm fails to
recognize some of the good atoms surrounding their dislocation cores. Development
of robust structure recognition methods, capable of discriminating between a wide
variety of distinct atomic arrangements in the presence of elastic distortions and other
perturbations, remains a challenge. Methods such as the common neighbor analysis
(CNA) are sensitive to thermal vibrations that can impair their structure recognition
acuity and, subsequently, impede the dislocation analysis. In addition to the described
DXA, other computational crystal analysis techniques, such as the decomposition of
atomic-level strain into elastic and plastic components [10], depend on the same class
of methods for identifying local atomic structures and, accordingly, may suffer the
same limitations.

Any two dislocations are recognized as separate lines only if their cores do not
overlap, i.e., each core must be fully surrounded by some good material. Otherwise
the generated interface mesh will enclose both dislocations, and they will be identified
as a single super dislocation. The cores of some GB dislocations can be fairly wide
making it difficult to resolve defects in the boundary. In such cases, identification and
indexing of GB dislocations can be difficult and error-prone no matter which method
— manual or automated — is employed.
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6. Summary

We have described an extended version of the dislocation extraction algorithm (DXA)
[3] that identifies and indexes dislocations in arbitrary lattices and coherent crystal
interfaces, including partial dislocations and secondary grain boundary dislocations.
Our algorithm aims to automatically detect any such dislocations in atomistic
configurations, compute the Burgers vectors, and represent arbitrary dislocation
networks by connected and fully indexed line segments so familiar from the classical
dislocation theory.

Our approach is based on the (implicit) calculation of the incompatible elastic
displacement field surrounding dislocations that involves mapping bond vectors from
the distorted atomic configuration to an ideal, strain-free reference configuration. The
reference configuration is determined locally using an atomic structure identification
algorithm and a set of ideal structural motives that include, in addition to the perfect
lattices, also the ideal stacking faults and coherent crystal interfaces.

The described algorithm reveals dislocations in atomistic simulations of complex
crystal structures and automatically extracts and labels them in a matter of seconds.
Therefore, the extended dislocation extraction algorithm has clear advantages over the
manual Burgers circuit analysis that is error-prone, laborious and, in many cases, even
unfeasible. In developing the algorithm we tried to achieve the often-conflicting goals
of generality, efficiency and high resolution. We hope the described technique will
enable its users to significantly enhance the useful information content of atomistic
simulations, which often suffer from intractable complexity.
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