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Overview
The goal of this document is to highlight the current state of knowledge governing different

aspects of the hydraulic fracture propagation process characteristic of many stimulation
operations. Specific emphasis is placed on how observations of seismic sources can be used to
infer the production behavior of the reservoir.

Failure of Rock and Rock Interfaces
For the case of a propagating fracture due to hydraulic fracture stimulation, micro-seismic data

collected from a number of projects indicate bulk fracture propagation of 0(10") m/s << 0(10)
m/s for the sound speed in intact rock. This is counter-intuitive when considering fracture
mechanics, where fractures in tension (Mode |) generally propagate near the Rayleigh wave
speed. If we resort to theoretical consideration of fluid-driven fractures in an elastic medium,
the anecdotally observed propagation velocity noted above is recovered [1]

A =4uE"v 0,73,

where wu is the viscosity, v is the mean fluid velocity into the fracture, E is the modulus of the
fluid, and oy is the confining pressure. For typical rock properties at confining pressures of 10-
100MPa, the tip velocity is O(1-10) m/s.

In general, this suggests stress equilibrium in the far field for bulk fracture propagation, such
that there exists a temporal scale separation between the resolution of stress in the local region
of a fracture and that at larger scales. This region, referred to in the literature as the “process
zone”, can often be decoupled from the solution of the mechanics in the rest of the domain
(referred to as the “far field”). For instance, numerical, multi-scale research [2—4] has suggested
that scale-separation, when implemented in numerical models in practice, can predict crack
fronts in mixed mode fracture situations where the forcing term is constant. For the case of a
hydraulically-induced fracture, where fluid forcing controls the crack front propagation, the
time constant is separated by an even greater scale, suggesting that this may be a viable path to
multi-scale coupling. In addition, a number of experimental studies in brittle, homogeneous
polymers are available for validation [5] of such multi-scale approaches.

For the case of failures either along the developed fracture network or in regions where the
stress field has been rotated enough to effect failure in pre-existing fractures, the failures are
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often Mode Il (strike-slip) events, as they are predominantly for laboratory hydraulic fracture
experiments [6—8]. A number of joint models can capture this effect [9—-15], and for clayey
interfaces, a more in-depth discussion is given later.

Near-source Signal Propagation

From experimental studies of shear attenuation in fractures Sy
in Berea sandstone [16], it is clear that a rough fracture can | oeReA swesTone ‘“ me o 3“—3
interrupt and attenuate a pressure pulse traveling through 1
a fluid-saturated, rough fracture in characteristic geologic
material. The 1dB/cm lower range would suggest the pulse
magnitude would drop by an order of magnitude within

10cm. The impedance mismatch between the fluid and the

fracture walls also causes the roughened fracture to act as

a wave guide to trap the energy of the pulse along the g 00 fog 800 o
fracture length. This suggests that the mechanisms being |
restricted to a finite (short) length of the fracture near the pulse initiation point and also
restricted mainly to the discontinuity itself with separable components traveling away from the
discontinuity into the far field continuum. However, caution must also be exercised, as it is also
clear that energy loss is dependent on confining pressure, with higher confining pressures
causing better mechanical coupling (i.e., reduced impendence mismatch) across the fracture
interface.

For the near source response, the material models must resolve a variety of effects, including
bulk plasticity, damage at different scales and through different mechanisms, wave propagation
in discontinuous materials, and wave dispersion and interaction. This topic is too detailed to
cover even cursorily here, and the reader is referred to a number of works on dynamic loading
of geomaterials [11], [17-25].

Multiple Fractures
Finally, there are issues with interactions between

discontinuities as the fracture system grows. Interacting
stress fields have a drastic effect on fractures as they
approach, indicating that the individual fractures cannot

necessarily be addressed separately, as is commonly
assumed for most traditional fracture mechanics work.
Analytical studies have sought to characterize this interaction [26], [27]. Several experimental
studies have also been performed to elucidate crack coalescence behavior in rock, including
studies by Wong [28] to investigate Mode |, Mode I, and mixed Mode I/Il fractures in brittle
materials with multiple discontinuities.
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Fracture maintenance (hydro-mechanical)

Maintaining fractures and determining their
response to changes in the stress tensor is a
major concern for establishing the behavior of a
reservoir and the response of the system. For
simple changes in the confining pressure, there
are well-established relationships between
fracture closure and confining pressure for a
number of geologic materials. An example for
the KTB pilot hole project at LLNL is shown at
right [29]. There is, however, a significant degree

of scatter in the data.

As shown by the work of Cipolla [30] in the graph
at the right, the data for offset (displaced) versus
mated (aligned) fractures exhibits a different
the geologic

functional form dependent on

material.

For a number of systems of engineering interest
(e.g., where injection of fluids alters the stress

tensor orientation), changes in the shear stress

components can lead to other effects on
permeability. Shearing of a fracture by a fraction
of a millimeter can lead to many orders of
magnitude change in the permeability, which is a
first-order effect in determining the hydrologic
response of the system. This is demonstrated by
Durham and Bonner [31] for Westerly granite
under 160 MPa confinement, as shown to the

right.
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asperities into gouge material that plugs the fracture and
reduces permeability.

If we expand the consideration of materials to those that are

unconsolidated (or become unconsolidated as gouge through shear
displacement along the fault face) and have high clay content, we
can appeal to the extensive literature on seismogenic gouge.

Coefficient of Friction

Generally, lab experiments and behavior extrapolated from field

observations of seismic events agree in terms of qualitatively similar

0 10 20 30 40 50

functional forms of strain-friction response (e.g., 2 inflection points, Shear Strain

a local maximum at strains below 10%, etc.). Functional relationships of the type proposed by
Dieterich [33], [34] and others [35—39] provide a reasonable form for capturing this behavior;
recently, Zoback [40] has suggested using such models for capturing slow slip events in
stimulated reservoirs. An example of laboratory data recording the behavior of sheared clayey
materials is shown at left from Fig. 3 of Ikari [41]; many other experiments exist [42—45]. Shear-
induced permeability decrease is consistently observed in clayey materials, indicating that
though one may accomplish plastically, aseismically, slow-slip regions in such materials [40], the
accompanying permeability changes would be deleterious to production goals. Specific hydro-
mechanical properties of shales, specifically, can be found found in a number of references,
e.g., [46-48].

The effects of loading on permeability demonstrate the coupling effects from mechanical to
hydrologic. There are also effects coupled from hydrologic to mechanical in terms of effective
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stress changes due to elevation of pore pressure, which can lead to failure and shearing of pre-
existing fractures and faults. This illustrates the bi-directional coupling between hydrology and
mechanics.

Fracture morphology changes, which can be caused by a number of mechanisms, including
shear-induced compaction, changes in normal compressive stress (which can reduce the mean
aperture or cause permeability increases from fracture offset), precipitation and dissolution,
and thermally-induced cracking and spall in the fracture walls, may also cause large magnitude
changes in the permeability. Along with basic permeability alteration comes the possibility of
local flow transitions between laminar to turbulent. Even in nominally low flow rate situations,
as fractures change geometry, the flow profile can transition from laminar to turbulent within
the discontinuities with consequent reduction in the flow within the reservoir [49], which can
function to reduce production. To add an additional mechanism, the introduction of non-
Newtonian fluids, as are common in colloidal working fluids and proppant entrained fluids
employed in industry, can also introduce new sensitivities, including an enhancement of the
effects of path tortuosity in the fractures [50].

Fracture monitoring (dynamic mechanical)
Two of the most difficult behaviors to predict in subsurface systems are the generation of a

seismic source term and the associated wave propagation and dispersion of that term as it
travels through the rock. Though a number of models exist for characterizing the effective
continuum response [51] and the explicit response of rock joints [12], the ability to upscale
these models to be useful in large scale wave propagation continues to be a challenge, though
methods have been successfully verified and validated for some

systems.

RH15

Field measurement methods, such as microseismic arrays, also
provide a data component to match calculations and include
information on extent, orientation, and rate of fracture

propagation for stimulation operations. An example of I
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microseismic characterization of fracture propagation at . B

Rosemanowes, UK, is shown at the right. For computational ‘
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conditions, and boundary conditions, but given such a method, ’ g?z \ziszmvo
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field measurements of seismicity can offer a way of completing the Gt et
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loop to relate subsurface changes to observations and to use such
observations to improve models.
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For the source term, the determination of seismic versus aseismic (creep) displacement is
related both to the flow into the fracture as well as the fracture roughness. Experiments
performed by Nemoto [52] show how a wet

joint can transition between the modes

depending on the roughness of the joint, as Smooth(§230)

Roughest(#16)

shown in the figure to the right. Thus, gouge

Slip displacement (mm)
S
T

formation [40] is not the only mechanism for
inducing slow slip events. Determining the roughness, though, in a practical application is non-
trivial, since diagnostics are limited to small patches and often acquired through quasi-one-
dimensional cross-sections via well logs. A significant amount of aleatoric error is associated
with the characterization of the joints; however, there is promise in inverting these properties,
in a stochastic sense, from historical data for a particular site. Another note on the data from
Nemoto is that the characteristic time scale for a complete slip event (i.e., source term
generation) is 0(10%) seconds for a displacement of 0(102) m, or 0(10%) m/s (for the low
frequency components) << wave speed in the material. This also suggests the possibility for
temporal and spatial scale decoupling to resolve the source term event.

Precipitation and dissolution (hydro-thermo-chemical)
The total time for a typical hydraulic fracture stage rarely exceeds a typical work day [53]. The

precipitation and dissolution of material is often considered to occur at rates where
permeability alteration effects are noted after no less than a day, suggesting that geochemical
effects can be neglected when considering the initial fracture network stimulation. A somewhat
separate issue, however, is the formation of a “filter cake” on the fracture surfaces, which
causes the well-known reduction of permeability between a fracture and the matrix rock that it
interfaces as a function of time [53-55]. The flow of fluid from the fracture conduits into the
surrounding matrix rock is often referred to as “leak-off”. The leak-off has competing processes
that can either reduce (as through the filter cake formation) or enhance (as through thermally
induced cracking) the permeability through the fracture interface. These effects, though
complex at a microscopic scale, are often treated effectively with empirical relations at larger
scales [56].

Conclusions
There are a number of important attributes of the subsurface that can be inferred from

microseismic wave propagation. To achieve this more effectively will require appropriate
treatment of the joint model (a rate- and state- dependent friction model with appropriate
inclusion of saturation and calibrated to the specific geology), inclusion of poroelastic effects
away from the fracture, and treatment of the pre-existing joints in a stochastic manner.
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