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Large-scale Stochastic Optimization for Unit Commitment and 

Economic Dispatch 
 

Introduction 
 

Our FY 2012 LDRD research on stochastic optimization with its application in power grid planning and 

operations has advanced the state-of-the-art of this area in the following aspects:  
 

(1) Deploying stochastic unit commitment on large real-world applications, 

(2) Stochastic optimization coupled with real-time production cost simulation (interleaved), and 

(3) Real-time stochastic optimization with rolling-horizon look-ahead. 

In conjunction, a number of computational experiments have been performed to evaluate the capability 

of the latest stochastic optimization software and explore opportunities for future research.   

In what follows, we discuss each of these contribution areas, including the results of our computational 

experiments and their implications on the scalability and solvability of large-scale stochastic 

optimization models. 

Problem Description 
 

The base power grid model that we use is one developed by the California Independent Systems 

Operator (CAISO) as part of a study they performed on operational requirements and market impacts at 

a 33% renewable portfolio standard (RPS).  The state of California has legislated transitioning to a 33% 

RPS by the year 20201, which means that fully 1/3 of the state’s electricity must come from renewable 

sources.  The CAISO study seeks to quantify the impacts of this mandate and identify operational 

requirements needed to run the state energy grid under this standard.   

 

The CAISO power grid model is a large-scale model of the Western Electricity Coordinating Council 

(WECC) power grid, which covers the entire western United States. The WECC model consists of 2486 

generators (including renewable energy sources) attached to 46 nodes representing transmission hubs 

(see Figure 1). These nodes are connected with 120 transmission lines, forming a zonal-level grid. The 

CAISO model includes definitions of reserves for ancillary power, including load following, regulation, 

spinning, and non-spinning reserve requirements.  It also includes 7 storage facilities, with head and tail 

storage.  Finally, the model contains numerous specialized classes of constraints tuned to the real-world 

operation of the California power grid.   

                                                           
1
 Bill SBX1 2, signed by Governor Brown in 2011; http://gov.ca.gov/news.php?id=16974.  

http://gov.ca.gov/news.php?id=16974
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Figure 1. Model of the WECC used in the CAISO 33% RPS study.  Nodes are represented by green dots 

and transmission lines by red lines. 

 

 

To assess and compare the impact of different types of future renewable energy buildouts, the CAISO 

model contains 7 different renewable energy profiles.  Load data is based on realized loads from the 

years 2005 and 2006, scaled to the year 20202.  Reserve requirements were calculated via a separate 

simulation analysis. 

 

The mathematical optimization problem that the CAISO model was deigned to answer is a unit 

commitment and dispatch problem: determine which generators need to be turned on, at which times, 

to satisfy the forecasted demand requirements across the grid, obeying storage and transmission 

capacities, and satisfying reserve requirements and side constraints. Conventionally this problem can be 

decomposed into two strongly coupled decisions: 

 

 unit commitment: which generators should be turned on, and at what times? 

 dispatch: given the unit commitment decisions of each generator, how should power be 

allocated to satisfy demand across the grid? 

 

In practice, CAISO and other ISOs solve these unit commitment and dispatch problems using a mixed-

integer programming approach, in which unit commitment and dispatch values are treated as variables, 

the system operating conditions are encoded as constraints, and the objective is to minimize system 

operating cost.3 

                                                           
2
 California Independent System Operator: Integration of Renewable Resources – Operational Requirements and 

Generation Fleet Capability at 20% RPS, 2010; http://www.caiso.com/2804/2804d036401f0.pdf.  Although the 
modeling methodology in the 20% RPS study is significantly different, the underlying data is substantially similar. 
3
 For a full mathematical programming formulation of this problem, see, for instance, Padhy: Unit Commitment – A 

Bibliographic Survey.  IEEE Transactions on Power Systems, 19(2):1196-1205, 2004, 
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01295033. 

http://www.caiso.com/2804/2804d036401f0.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01295033
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Stochastic Optimization 

Traditionally, ISO unit commitment decisions are made using a reserves adjustment method, in which 

uncertainties in load and renewable generation are accounted for by imposing extremely conservative 

reserve requirements.  This causes the grid to substantially overcommit resources as a means of 

ensuring that there is nearly always enough generation capacity to meet realized demand.  More 

recently, the approach of stochastic optimization has been employed as a means of more accurately 

accounting for these uncertainties and lessening the problem of overcommitment.  In a stochastic unit 

commitment approach, each of the uncertain parameters is associated with a set of possible scenarios 

encompassing the range of its possible outcomes.  Each of these scenarios is paired with a probability 

that represents the likelihood that such a scenario will be realized.  A bi-level mixed-integer program is 

used to determine the set of least-cost unit commitments that probabilistically account for each of the 

possible scenario realizations. 

Deploying stochastic unit commitment on large real-world applications 
 

In our research, we have adapted the CAISO 33% RPS model to solve for stochastic unit commitments, 

improving upon the reserves adjustment approach used in the original study.  This involved two major 

components: 

 developing a set of scenarios to capture the uncertainties in load and renewable 

generation; and 

 implementing a stochastic unit commitment algorithm over these scenarios. 

For the first step, we leveraged the work of an ongoing study for the California Energy Commission4 on 

evaluating demand response and storage alternatives.  This study employs the same underlying CAISO 

33% RPS model.  A novel feature of this study is that it uses an atmospheric model to determine possible 

weather trajectories, which are used to derive day-ahead load and solar/wind generation forecasts.  The 

atmospheric forecasts are generated using the Weather Research and Forecast (WRF) model, which is a 

fully compressible multi-physics atmospheric modeling software package.  A statistical sampling method 

is used to convert a large suite of forecasts into a smaller set of weather scenarios, each associated with 

a (potentially different) probability.  These weather scenarios are then used to determine the day-ahead 

load (via a dL/dTemp transformation), solar (from shortwave downward radiative flux), and wind (from 

wind speed/power curves) generation forecasts. 

To implement the stochastic unit commitment algorithm, we employ some novel capabilities of the 

PLEXOS software package.  PLEXOS5  is a power market simulation package based on mathematical 

programming that is capable of modeling many different areas of the energy sector at varying time 

                                                           
4
 Edmunds, T., Lamont, A., Schmidt, A., Mirocha, J., Simpson, M., Top, P., Smith, S., and Bulaevskaya, V.: 

Probabilistic Renewable Generation Scenarios for Analysis of Demand Response and Storage Resources.  California 
Energy Commission contract 500-10-051, 2012. 
5
 www.energyexemplar.com 
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horizons; this package was used for production simulation runs in the CAISO 33% RPS analyses.  We 

worked with the PLEXOS code developers to extend the underlying mathematical programming 

formulation to accommodate stochastic unit commitment over our set of load and solar/wind 

generation scenarios.  The resulting bi-level mixed-integer program treats the commitments of slow-

start generators as first-stage decisions (common to all scenarios), and the commitments of fast-start 

generators and economic dispatch as second-stage decisions (potentially different between scenarios).   

We next performed a number of experiments to address the computational demands associated with 

running large-scale stochastic unit commitment problems.  These experiments focused on two 

quantities of interest: 

 the relationship between the tolerance level (degree of optimality) required by the 

underlying mixed-integer programming algorithm, and solution times; and  

 the relationship between the number of forecast scenarios and solution times.   

Both of these relationships are key to the real-world applicability of stochastic unit commitment 

algorithms. 

Optimality Tolerance 

We evaluated the impact of changing the mixed-integer programming optimality tolerance on the 

quality of the resulting optimal solution, as shown in Table 1.  In this table, the operational cost column 

measures the quality of the optimal solution obtained. The 0.05% tolerance level is used as a default at 

CAISO, which is in accordance with the tolerance level established for their daily operational runs.  

 

Table 1.  Summary of optimality tolerance experiments, based on two scenarios for July 21, 2020.  

Tolerance (%) Time (min) Cost Delta Cost %  

0.05 13.8 88042.94 0 

0.1 13.75 88042.94 0 

0.25 10.1 88246.26 0.23 

0.5 9.9 88465.73 0.48 
 

 

We observe that even if the tolerance is raised by an order of magnitude (from 0.05% to 0.5%), the 

overall cost increases by less than 0.5%.  We conclude that a larger (say, 0.5%) tolerance level can 

feasibly be employed to reduce computation time without a significant deterioration in performance, 

which is especially important for runs with many scenarios.  This relationship can clearly be seen in 

Figure 2, which is based on the data from Table 1.  Here we observe that the execution time decreases 

by around 30% as the tolerance is varied from .05 to .5, with a negligible increase in overall cost. 
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Figure 2.  Graph of optimality tolerance experiments, based on two scenarios for July 21, 2020. 

These findings are particularly relevant given the large amount of uncertainty in the underlying data for 

the CAISO 33% RPS model, much of which is based on projections for the year 2020.  The tolerance 

value of .05% may be appropriate for daily operational models in which CAISO is accountable for even a 

small percentage of error, but we argue that planning models can be feasibly run at lower tolerance 

levels with negligible difference, especially given the inherent uncertainty of such results.  These findings 

are in agreement with previous observations on the optimality tolerance associated with the non-

stochastic version of the CAISO 33% RPS model.6 

Number of Forecast Scenarios 

Table 2 summarizes our computational findings on the relationship between the number of scenarios, 

solution time, and peak memory usage.  

Table 2.  Summary of scenario number experiments. Based on two scenarios for July 21, 2020 and 

optimality tolerance = .05%.  For the 12-scenario case, the run was terminated with a feasible solution 

within 4.8% of optimality. 

Number of 
Scenarios 

Solution Time 
(min) 

Peak Memory Usage 
(GB) 

2 13.8 1.7 

4 106 5.8 

6 207 7.5 

8 268 8 

10 331 9.8 

12 456 13.2 

                                                           
6
 Yao, Y., Meyers, C., Schmidt, A., Smith, S., and Streitz, F.: Observations on the Optimality Tolerance in the CAISO 

33% RPS Model.  Technical Report LLNL-TR-501034, Lawrence Livermore National Laboratory, 2011. 
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From the table, we observe that PLEXOS can solve stochastic unit commitment problems with 10 

scenarios or fewer within a 6-hour time window.  Determining commitments for 10 scenarios for a 

monthly timespan would take about 7 days, and for a year would take 84 days, assuming these run 

times are representative of the average.  This strongly suggests that the number of scenarios used in 

stochastic optimization should be limited to a number for which the solution time is not considered an 

excessive burden. 

Finally, we note that the execution times of daily runs can vary significantly over time, as demonstrated 

in Table 3. 

Table 3.  Summary of daily experiments, based on four scenarios and optimality tolerance = 0.05%. 

Date Time (min) 

7/2/2020 32 

7/3/2020 25 

7/4/2020 76 

7/5/2020 34 

7/6/2020 135 

7/7/2020 135 

7/8/2020 70 
 

 
 
 

  Here we observe that there can be a factor of four separating the solution times for consecutive days.  

While this finding may seem troublesome, it is not entirely unexpected in the mixed-integer 

programming domain, in which small changes in problem formulations can lead to large differences in 

solution times.7  Fortunately, subsequent experimentation has shown that the differences are not 

usually much greater than those observed here, and the times in Table 2 are indeed representative of a 

fairly ‘average’ day.  All of these factors must be kept in mind when deploying stochastic optimization 

methods on large-scale real-world problems.  

Stochastic Optimization Coupled with Real-Time Production Cost 

Simulation (Interleaved) 
 

In the real-world CAISO power grid, unit commitment and dispatch decisions are naturally made on 

differing time scales: unit commitments of slow-start generators are optimized and set the day before 

operation, while dispatch and fast-start generation are determined and modified throughout the course 

of the day, in response to demand and the realization of uncertainties in renewable generation.  Most 

grid optimization models fail to realistically capture this time-span dichotomy, or consider only part of 

the problem (such as optimizing over dispatch while assuming unit commitments are fixed).  In our 

research we have identified a method for optimizing over both time spans simultaneously, filling a gap 

in the grid optimization literature. 
                                                           
7
 See, for instance, Danna, E.: Performance Variability in Mixed-Integer Programming.  In 5

th
 Workshop on Mixed-

Integer Programming, 2008, http://coral.ie.lehigh.edu/~jeff/mip-2008/talks/danna.pdf. 

http://coral.ie.lehigh.edu/~jeff/mip-2008/talks/danna.pdf
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Our method is as follows. 

 

1) First, we produce an optimal day-ahead hourly (60-minute) unit commitment schedule for 

slow-start generators over all  forecast scenarios; 

2) Next, we perform intra-hour (5-minute) unit commitment on fast-start generators and 

economic dispatch (ED) based on the realized scenario.  

 

For each day, the hourly unit commitment schedule from the unit commitment run dictates the 

commitment status of the long-start generators in the subsequent economic dispatch run. Within each 

hour, additional runs are made at 5-minute timesteps to determine the dispatch values and the 

commitment status of fast-start generators.  This is reasonably close to the way that CAISO actually 

operates, minus intra-minute grid stability analyses that are not well captured by a mixed-integer 

programming approach. 

Performing sequential unit commitment/economic dispatch daily runs require that the system status at 

the end of a day is passed as initial conditions to the next day’s optimization decisions. This is necessary 

to avoid violations in generator ramp rates in transitioning from one day to the next.  We employ data 

stitching tools to pass the unit commitment schedule and system status from one day to the next and to 

set up the corresponding PLEXOS runs correctly. The PLEXOS file setup for this two-stage optimization 

approach is outlined in Figure 3.  

  

Figure 3.  Specification of PLEXOS file setup for two-stage interleaved optimization. 

 

The optimization setup for running PLEXOS in sequence with stitching tools to perform daily stochastic 

unit commitment and sub-hourly economic dispatch is outlined in Figure 4.   

 

 

 For all generators, extract the values for Initial Generation, Initial Units Generating, Initial 

Hours Up, and Initial Hours Down from a file. Set all values in these “initial state” files to 

0 at the beginning of day 1. 

 In Model->Report check the box next to "Text Files", and select Generation, Unit 

Generating, Hours Up, and Hours Down to output in every period in “state output” files. 

 Set load and wind/solar input files to “forecast” data in the “stochastic unit commitment” 

tag. 

 Set Generator’s Commitment to the Unit Generating state output file in the “15-minute 

dispatch” tag. 

 Set load and wind/solar input files to “realized” data in the “15-minute dispatch” tag. 
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Figure 4.  Specification of PLEXOS model sequencing for interleaving unit commitment and dispatch. 

 

With these specifications, it is possible in PLEXOS to run a simulation of the CAISO grid at a greater 

degree of realism than was previously achievable.  We have worked extensively with the PLEXOS 

developers to vet and test this solution process and diagnosed and fixed many problems along the way. 

Real-Time Stochastic Optimization with Rolling Horizon Look-ahead 
 

To further improve the realism and solution quality produced by the CAISO model, we assessed the 

benefits of adding a look-ahead component to the solution process.  In a look-ahead strategy, the 

solution at one time interval is generated using partial information about the next time period.  A real-

world analog might involve using forecasted demands from day 2 to influence the end-of-day ramping 

behavior of generators on day 1.  These kinds of strategies are regularly employed by CAISO to help 

improve overall system cost. 

Mathematically, the mixed-integer program from the first time period is augmented with a linear 

programming relaxation for each of the look-ahead time periods.  Including information about the 

subsequent time periods allows the solver to find a potentially better solution overall, while limiting the 

augmented periods to linear programming relaxations helps mitigate the computational demands 

associated with this look-ahead.  In subsequent time periods, the horizon ‘rolls’ forward, so that the 

mixed-integer program for the second time period is solved using the same number of look-ahead 

periods as the first, and thus including the data for one additional time period. 

In our analyses, we considered a look-ahead on two time horizons:  

 Day-ahead hourly stochastic unit commitments of slow-start generators, with look-

ahead on a daily timestep; and 

 5-minute unit commitment of fast-start generators and economic dispatch, with look-

ahead on a 5-minute timestep. 

Table 4 gives our results for runtimes for look-ahead of various lengths applied to day-ahead hourly 

stochastic unit commitments of slow-start generators, using 6 stochastic wind samples. 

   For each day in the planning horizon: 

 Run the prescheduling (PASA) and medium-term (MT) model to set constraints for the 

short-term (ST) model; 

 Run the ST model to obtain stochastic hourly unit commitment decisions; 

 Run the intra-day stitching process to pass generator commitments to the economic 

dispatch  model; 

 Run the intra-hour economic dispatch model at a 5-minute time step; and  

 Run inter-day stitching to pass the system’s ending status to the start of the next day. 
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Table 4.  Runtimes of stochastic unit commitment for various look-ahead lengths.  Stochastic samples 

are based on six wind scenarios in the Pacific Gas & Electric and Southern CA Edison service regions; 

optimality tolerance = 0.5%. 

 

  Real Time UC/ED Look-ahead Periods 

  0 1 2 5 Mean 

15-Jan-20 0:56:14 0:55:33 1:05:35 1:30:06 1:06:52 

29-Apr-20 2:37:01 2:30:41 2:42:46 1:36:34 2:21:45 

21-Jul-20 1:34:29 1:41:19 1:49:05 2:40:36 1:56:22 

1-Oct-20 1:13:52 1:21:21 1:26:50 1:29:50 1:22:58 

Mean 1:35:24 1:37:14 1:46:04 1:49:16 1:42:00 

 

Here, we observe that performing look-ahead for a moderate number of time periods (1 or 2) does not 

increase the computational demands significantly.  Extending to a look-ahead of 5 time periods can 

increase the solution time by up to a factor of 50%, but this is not consistent and a look-ahead of this 

length should also be considered potentially practical. 

Table 5 gives our results for total system costs for 5-minute unit commitment of fast-start generators 

and economic dispatch based on the realized scenario, with look-ahead of varying time steps. 

Table 5.  Total system costs of day-ahead stochastic UC and 5-minute UC/ED for various look-ahead 

lengths.  Total costs include all generators’ start-up, generation, and emission costs. 

  Real Time UC/ED Look-ahead Periods 

  0 1 2 5 Mean 

15-Jan-20 9.2703E+04 9.2848E+04 9.2821E+04 9.2815E+04 9.28E+04 

29-Apr-20 7.0849E+04 7.0537E+04 7.0388E+04 7.0038E+04 7.05E+04 

21-Jul-20 1.2360E+05 1.2384E+05 1.2381E+05 1.2390E+05 1.24E+05 

1-Oct-20 9.8403E+04 9.8586E+04 9.8656E+04 9.8421E+04 9.85E+04 

Mean 9.6388E+04 9.6452E+04 9.6419E+04 9.6294E+04 9.64E+04 

 

Surprisingly, we do not observe a significant cost reduction by adding look-ahead (of any length), which 

is counterintuitive.  Our investigation suggests that the ineffectiveness of this look-ahead may be due to 

the small intra-hour variability of the synthetic load data used in the experiments.  One of the main 

advantages of look-ahead that it allows preemptive adjustment of ramp rates and generator levels in 

anticipation of future fluctuations in demand, but without these fluctuations, the potential benefit is 

likely to be much smaller.  Thus, it seems our dataset is not well-suited to take advantages of the 

benefits that look-ahead can afford; however, this may be a valuable technique for other datasets and 

should still be considered a potentially valuable tool to add to the modeling arsenal. 
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Conclusions and Future Research 
 

We have described our progress in applying stochastic optimization techniques to real-world power grid 

planning problems, advancing the state-of-the-art in terms of both application size and modeling 

methodology.  In the future, we will be deploying these techniques on a full-scale yearly optimization of 

CAISO grid operations, which will undoubtedly lead to further avenues of research.  We also have an 

active engagement with IBM and we anticipate solving these problems on a supercomputing platform 

using a distributed-memory solver currently under development.  This may require further 

decomposition of the underlying mixed-integer programming formulation in order to effectively 

leverage the work assigned to each of the supercomputing nodes.  We expect the products of this 

research to find immediate application in ongoing engagements with the California Energy Commission 

and utilities in the state of California. 


