
LLNL-CONF-609973

Scalable Load Balancing for Massively
Parallel Distributed Monte Carlo Particle
Transport

M. J. O'Brien, P. S. Brantley, K. I. Joy

January 14, 2013

International Conference on Mathematics and Computational
Methods Applied to Nuclear Science & Engineering
Sun Valley, ID, United States
May 5, 2013 through May 9, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering
(M&C 2013), Sun Valley, Idaho, USA, May 5-9, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013)

SCALABLE LOAD BALANCING FOR MASSIVELY PARALLEL
DISTRIBUTED MONTE CARLO PARTICLE TRANSPORT

Matthew J. O’Brien and Patrick S. Brantley

Lawrence Livermore National Laboratory
7000 East Avenue

Livermore, CA 94550
mobrien@llnl.gov; brantley1@llnl.gov

Ken I. Joy

Institute for Data Analysis and Visualization
Computer Science Department

University of California
One Shields Avenue

Davis, CA 95616
joy@cs.ucdavis.edu

ABSTRACT

In order to run computer simulations efficiently on massively parallel computers with hundreds of
thousands or millions of processors, care must be taken that the calculation is load balanced across
the processors. Examining the workload of every processor leads to an unscalable algorithm, with
run time at least as large as (N), where N is the number of processors. We present a scalable load
balancing algorithm, with run time (log(N)), that involves iterated processor-pair-wise balancing
steps, ultimately leading to a globally balanced workload. We demonstrate scalability of the
algorithm up to 2 million processors on the Sequoia supercomputer at Lawrence Livermore
National Laboratory.

Key Words: Scalability, load balancing, high performance computing, Monte Carlo particle
transport.

1. INTRODUCTION

In order to run computer simulations efficiently on massively parallel computers with hundreds
of thousands or millions of processors, care must be taken that the calculation is load balanced
across the processors. We assume we have a distributed memory parallel supercomputer, using
the Message Passing Interface (MPI) [1] for inter-process communication. The work described
in this paper is aimed at developing a scalable load balancing technique for a massively parallel
Monte Carlo particle transport code [2], where the particle workload is distributed across
processors. The assumptions for this paper are that the computational cost of all the Monte Carlo
particles is the same, and that any processor can process any particle. In our previous load
balancing algorithm [3], [4], a description of each processor’s workload was gathered to the 0th
ranked processor, where a global communication graph was constructed to achieve a load
balanced state. This algorithm performed efficiently up to thousands of processors, but for larger

O’Brien, Brantley and Joy

International Conference on Mathematics and Computational Methods Applied to Nuclear Science &
Engineering (M&C 2013), Sun Valley, Idaho, USA, May 5-9, 2013

2/12

processor counts, the load balancing step itself required longer than the computation portion of
the calculation. As soon as one array of length proportional to the number of processors is
required, the algorithm is already not scalable. We define an algorithm to be scalable if its run
time is at most proportional to the logarithm of the number of processors. This definition rules
out any global algorithm that needs to simultaneously know the workload of every processor.

We have developed and implemented a scalable load balancing algorithm in the Mercury Monte
Carlo particle transport code [2], [5]. Mercury is written in C++ with a Python user interface and
uses distributed memory parallelism with MPI. Mercury models dynamic neutron, gamma and
light charged particle transport and also solves neutron criticality problems. The geometry
information through which the particles are transported is stored redundantly on all of the
processors and is not domain decomposed in this case. (Mercury has domain decomposition, but
this paper only addresses particle replication). The number of Monte Carlo particles can be very
large, and the particles are load balanced and distributed across processors.

The run time of our previous load balancing algorithm [3] was (N2) where N is the total number
of processors. This algorithm performed efficiently up to several thousand processors, but on 217
= 131,072 processors, the load balancing step itself took 90 times longer than the computation
part of the calculation. The load balancing step should take only a small fraction of the
computation part of the calculation. The load balancing algorithm was not initially written with
scalability in mind, so we are now revisiting load balancing with a focus on scalability.

Romano and Forget [6] address a similar problem with a different set of constraints and
assumptions. Their algorithm has the constraint that particles must be processed in a certain
order, but in our case each particle has its own random number seed and may be processed on
any processor in any order. This is a much less constrained problem and allows for an efficient,
scalable, load balancing solution.

The remainder of this paper is organized as follows. In Sec. 2, we describe the need for and
goals of load balancing for Monte Carlo calculations. We describe in Sec. 3 the scalable load
balancing algorithm that we have developed and implemented in Mercury. In Sec. 4, we present
numerical results from weak scaling studies that demonstrate the need for load balancing as well
as the scalability of the load balancing algorithms we have developed. We conclude the paper in
Sec. 5 and offer suggestions for future work.

2. LOAD BALANCING FOR MONTE CARLO CALCULATIONS

The load balance efficiency of a calculation is the average amount of computational work per
processor divided by the maximum amount of computational work on any processor. Let w0, w1,
…, wN-1 be the amount of computational work per processor, then the load balance efficiency is:

Scalable Load Balancing

Load	Balance	Efficiency ൌ
௜ሻݓሺ݁ݒܽ
௜ሻݓሺݔܽ݉

ൌ 	

1
ܰ∑ ௜଴ஸ୧ழ୒ݓ

max
଴ஸ୧ழ୒

௜ݓ

The goal of load balancing is to maximize the load balance efficiency of a calculation. By
moving work from one processor to another, we cannot change the average amount of work per
processor, but we can change the maximum amount of work on any processor. The goal of load
balancing then becomes trying to minimize the amount of work on the processor that has the
most work, thereby maximizing the load balance efficiency.

At the start of each computational physics cycle, each processor starts with some number of
particles. The goal of the load balancing problem is for each processor to have the same number
of particles (or have the maximum difference of particle counts be at most one if the number of
particles is not a multiple of the number of processors). The result of the load balancing
algorithm is to have particles communicated between processors, so that after the communication
the particle counts are balanced. Then the computational physics cycle occurs, which may
induce new load imbalance, and the load balance step is repeated.

Running problems without load balancing results in the load balance efficiency decreasing as a
function of generation in an eigenvalue calculation. The load balance efficiency also decreases
as the number of processors increases. Load balancing the problem enforces that all processors
have essentially the same number of particles, so the efficiency remains high.

3. SCALABLE PARTNER PROCESSOR ALGORITHM

An iterative load balancing algorithm was developed such that at each iteration, every processor
finds a unique partner processor. The partner processors send and receive the number of
particles they own to each other. Then both processors compute the average of these two
numbers. The partner that is above the average sends particles to the partner that is under the
average, so both processors end up having the average number of particles. If both processors
have the same number of particles, then they are already load balanced and have nothing to do.
This algorithm has pair-wise interactions between processors, never knowing what the global
workload distribution looks like. We define the processor rank to be the unique processor
number in {0, 1, 2, …, N-1}, when there are N total processors. After each iteration, the partner
processors are individually balanced. By choosing the partner processor appropriately, on the kth
iteration, all processor ranks with the same binary representation up to the last k digits will have
exactly the same number of particles, i.e. processors in groups of 2k are balanced.

We now define how the processors are paired. Processors are paired based upon their processor
rank and the current iteration number k of the algorithm. We choose the partner processor on the
kth iteration of the algorithm by defining the partner function fk, and the rank of the partner
processor is given by: partner = fk(rank), where

௞݂ሺ݇݊ܽݎሻ ൌ ቊ
݇݊ܽݎ ൅ 2௞					if	the	݇௧௛	binary	digit	of	݇݊ܽݎ	is	0
݇݊ܽݎ െ 2௞					if	the	݇௧௛	binary	digit	of	݇݊ܽݎ	is	1

 (1)

O’Brien, Brantley and Joy

International Conference on Mathematics and Computational Methods Applied to Nuclear Science &
Engineering (M&C 2013), Sun Valley, Idaho, USA, May 5-9, 2013

4/12

Another interpretation of fk is to flip the kth binary digit of the input argument. If an…a0 are the
binary digits of the processor rank, then

rank ൌ ܽ௡ܽ௡ିଵ …ܽ௞ାଵܽ௞ܽ௞ିଵ …ܽଵܽ଴ ൌ ෌ ܽ௜2୧
௡

௜ୀ଴
			where	a୧ ∈ ሼ0,1ሽ (3)

௞݂ሺ݇݊ܽݎሻ ൌ ௞݂ሺܽ௡ܽ௡ିଵ …ܽ௞ାଵܽ௞ܽ௞ିଵ …ܽଵܽ଴ሻ ൌ ܽ௡ܽ௡ିଵ …ܽ௞ାଵܽ௞തതതܽ௞ିଵ …ܽଵܽ଴ ሺ4ሻ

௞തതതܽ		݁ݎ݄݁ݓ ൌ 1 െ ܽ௞																																																																																																																							(5)

fk has the appealing property that it is self-inverting: fk(fk(rank)) = rank, i.e. fk is an involution, so
fk

-1 = fk . As a result of this property,

fk(rank) = partner and fk(partner) = rank. (6)

Figure 1 shows a graph of the partner function fk for k=0,1,2,3,4. Note the functions are
symmetric about the identity line (“y=x” line) at integer values, which characterizes involutions
(self inverse functions).

Algorithm 1 shows pseudocode for the implementation of a scalable load balancing algorithm. If
N = the number of processors, when N=2n is a power of 2, then
BalanceWithPartnerWrapper()globally balances the number of particles per processor
so that all processors have exactly the same number of particles at the end of the algorithm. (Or
the processor with the most number of particles has at most log(N) more particles than the
processor with the least number of particles). Furthermore the runtime of this algorithm is
(log(N)). The proof of these properties has been omitted for brevity but will be published in a
future paper.

 (2)

Figure 1: The partner function fk for k=0,1,2,3,4.

Scalable Load Balancing

Figure 2 illustrates the initial workload of each processor before load balancing, and what the
workload looks like after each round of load balancing. The processor ranks are colored so that
processors of the same color are “partners” and are communicating with each other; this
partnership is also indicated with an arc drawn between the processor ranks communicating.
After k rounds of load balancing, processors in groups of 2k have the exact same workload.

We have also developed and implemented a generalized version of this load balancing algorithm
that groups processors together in groups of size 2w, where w is a user-settable parameter of the
algorithm. The generalized algorithm has the advantage that the larger w is, the fewer rounds of
load balancing are required to achieve global load balance (but each round takes longer). For
brevity, we omit the detailed description of the general algorithm but will publish it in a future
paper.

Algorithm 1: Pseudocode showing the implementation of a scalable load balancing algorithm

BalanceWithPartnerWrapper()
{
 int NumRounds = ceiling(log2(numProcessors));

 for (int k = 0; k < NumRounds; k++)
 {
 BalanceWithPartner(k);
 }
}

BalanceWithPartner(int binaryDigit)
{
 // rank is this processor’s MPI rank
 // all binary digits agree except binaryDigit is flipped in partner
 int partner = rank ^ (1 << binaryDigit);

 // Send and Recv with partner processor the number of particles each has
 int aveNumParticles = (myNumParticles + partnerNumParticles) / 2;

 if (myNumParticles > partnerNumParticles) // I am sending
 {
 // send (myNumParticles – aveNumParticles) particles to partner
 }
 else if (myNumParticles < partnerNumParticles) // I am receiving
 {
 // recv (partnerNumParticles – aveNumParticles) particles from partner
 }
}

O’Brien, Brantley and Joy

International Conference on Mathematics and Computational Methods Applied to Nuclear Science &
Engineering (M&C 2013), Sun Valley, Idaho, USA, May 5-9, 2013

6/12

4. NUMERICAL SCALING RESULTS

The test problem that we use in this paper to investigate parallel scalability is the Godiva critical
assembly test problem (HEU-MET-FAST-001) [7], a uranium sphere of radius 8.7407 cm and
density 18.74 g/cm3. The isotopic atom fractions are U234 = 0.01025002, U235 = 0.9376829
and U238 = 0.05206708. The Godiva problem was modeled using one spherical combinatorial
geometry cell.

4.1 Effects of Load Imbalance

In this section, we demonstrate the effects of load imbalance for the Godiva critical sphere
problem when run with large numbers of processors. Lawrence Livermore National Laboratory
has the Sequoia [8] super computer, which we use to study the processor scaling of the Godiva

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

W
o
rk
lo
ad

Processor Rank

Before Load Balancing

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

W
o
rk
lo
ad

Processor Rank

1 Round of Load Balancing

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

W
o
rk
lo
ad

Processor Rank

2 Rounds of Load Balancing

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

W
o
rk
lo
ad

Processor Rank

3 Rounds of Load Balancing

Figure 2: Illustration of processor workloads during load balancing.

Scalable Load Balancing

Static-K criticality calculation up to 2 million (221) processors. We run Godiva as a weak scaling
problem, that is, with fixed work per processor as we increase the number of processors. Each
processor has 10,000 particles, so the total number of particles increases as we increase the
processor count up to 221 = 2,097,152 processors and 21 billion particles. We demonstrate that
running this problem without load balancing results in the load balance efficiency decreasing as a
function of Static-K generation. The load balance efficiency also decreases as the number of
processors increases, because the amount of work on the most worked processor increases as the
number of processors increases. If each processor starts with the same number of particles, the
number of particles on a processor at the end of an iteration follows a normal distribution [6]. As
the number of processors increases, the normal distribution is sampled more often. As a result,
the most worked processor continues to increase and the efficiency decreases.

Figure 3 shows the load balance efficiency for 6 Godiva Static-K calculations that are NOT load
balanced and run on 21, 24, 28, 216, and 221 processors. In general, the load balance efficiency
decreases as the number of processors increases and decreases with the number of iterations
(Static K generations).

4.2 Partner Processor Algorithm Results

In this section, we investigate the parallel scalability of the partner processing load balancing
algorithm. We ran a weak scaling study for N=1, 2, 4, 8, 16, …, 217 = 131,072 processors on the
Dawn supercomputer (IBM Blue Gene/P [9]) at Lawrence Livermore National Laboratory. The
test problem is the Godiva critical assembly test problem again run with 10,000 particles per
processor. So every time we doubled the number of processors, we doubled the total number of

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Lo
ad

 B
al
an

ce
 E
ff
ic
ie
n
cy
 [
%
]

Iteration

Load Balance Efficiency vs. Iteration

2^1 Procs

2^4 Procs

2^8 Procs

2^12 Procs

2^16 Procs

2^21 Procs

Figure 3: Load balance efficiency for 6 Godiva Static-K calculations that are NOT load
balanced.

O’Brien, Brantley and Joy

International Conference on Mathematics and Computational Methods Applied to Nuclear Science &
Engineering (M&C 2013), Sun Valley, Idaho, USA, May 5-9, 2013

8/12

particles. We ran 5 iterations of a Static-K calculation. The results of the scaling study are
shown in Figure 4.

Figure 4 plots the wall time spent executing the load balancing algorithm at processor counts of
20, 21, 22, …, 217 = 131,072. This plot is almost linear on a log-linear scale. The linear
regression line through the data has slope 0.0633s/(doubling of processors). Each time we
double the number of processors, we pay a fixed cost of 0.0633s, regardless of the number or
processors. These calculations confirm that the load balancing algorithm is in fact proportional
to the log of the number of processors.

4.3 Generalized Load Balancing Algorithm Results

We study the processor scaling of the Godiva Static-K criticality calculation up to 2 million (221)
processors using the Sequoia supercomputer. The results in this section used the generalized
load balancing algorithm briefly described in Sec. 3. We examine how the load balance
efficiency scales, shown in Figure 5, and how the particle tracking time scales, shown in Figure
6. We also examine how the load balancing step itself scales with the number of processors,
shown in Figure 7. We have proven the algorithm scales like (log(N)), which is what we
observe when we time the algorithm.

Figure 5 is a plot of the average load balance efficiency vs. log2(Num_Processors), comparing
load balancing against not load balancing. With load balancing, the efficiency remains above
95%, even at 2 million processors. Without load balancing, the efficiency decreases with
processor count down to 68% at 2 million processors.

y = 0.0633x

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

W
al
l T
im

e
 [
Se
co
n
d
s]

Log2(Num_Processors)

Load Balancing Wall Time vs.
Log2(Num_Processors)

Figure 4: Wall time spent executing the load balancing algorithm.

Scalable Load Balancing

Figure 6 shows the wall time spent tracking particles vs. log2(Num_Processors), comparing load
balancing against not load balancing. With load balancing, we see essentially perfect scaling up
to 2 million processors. Since each processor has the same amount of work, the calculation takes
the same amount of time at any scale. Without load balancing, dispersion in the number of
particles per processor occurs, and the calculation cannot proceed until the most worked
processor has finished. This dispersion in processor workload results in an increase in tracking
time.

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

0 5 10 15 20

A
ve
ra
ge

 E
ff
ic
ie
n
cy
 [
%
]

Log2(Num_Processors)

Average Efficiency vs. Log2(Num_Processors)

Not Load
Balanced

Load
Balanced

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

2.50E+02

3.00E+02

3.50E+02

6 11 16 21

Tr
ac
ki
n
g
Ti
m
e
 [
Se
co
n
d
s]

Log2(Num_Processors)

Tracking Time vs. Log2(Num_Processors)

Not Load
Balanced

Load Balanced

Figure 6: Wall time spent tracking particles vs. log2(Num_Processors)

Figure 5: Average load balance efficiency vs. log2(Num_Processors)

O’Brien, Brantley and Joy

International Conference on Mathematics and Computational Methods Applied to Nuclear Science &
Engineering (M&C 2013), Sun Valley, Idaho, USA, May 5-9, 2013

10/12

Figure 7 shows the scaling behavior of the load balancing algorithm by plotting the load
balancing time vs. log2(Num_Processors). The wall time should scale roughly like a straight
line, since the algorithm is (log(N)). The algorithm balances particle workloads in processors
of group size 29, so we see an extra added expense at 29 and 218, since the algorithm needs to do
an additional round of communication.

5. CONCLUSIONS

We have developed, implemented, and proven correct a scalable load balancing algorithm that
has a computational complexity of (log(N)). This algorithm globally balances all of the
processors’ work without globally knowing what the work distribution looks like. Through a
sequence of local operations, global load balance can be achieved. We ran a scaling study up to
221=2,097,152 processors on the Sequoia (IBM BG/Q) supercomputer at Lawrence Livermore
National Laboratory, and the observed results agree very well with the theoretical predictions.
We believe that this algorithm applies to a broad class of homogeneous load balancing problems
where the units of work all cost the same amount and any processor can process any unit of
work. This algorithm allows for load balanced computations on the next generation of
supercomputers with millions of cores. The new algorithm represents a significant improvement
over our previous algorithm which would have taken 17 days on 2 million processors of Sequoia,
while this new algorithm takes less than 1 second.

We also implemented a parameterized version of the load balancing algorithm in which the user
may select the Processor Group Size parameter w which is the number of processors to group
together when doing a local load balance step. Instead of load balancing processors 2 at a time,
the general algorithm load balances processors in groups of size 2w. We will publish the full
details of the generalized algorithm in a future paper.

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

0 5 10 15 20

W
al
l T
im

e
 [
Se
co
n
d
s]

Log2(Num_Processors)

Load Balancing Time vs. Log2(Num_Processors)

Figure 7: Scaling of the generalized load balancing algorithm

Scalable Load Balancing

In a future paper, we will also consider scalable load balancing for domain decomposed
problems, where the geometry information (in addition to the particles) are distributed across
processors and allowed to scale with the number of processors.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

REFERENCES

[1] "MPI: A Message-Passing Interface Standard," (2011). [Online]. Available:
http://www.mcs.anl.gov/research/projects/mpi.

[2] P. Brantley and M. McKinley, "Mercury Web Site," (2011). [Online]. Available:
https://wci.llnl.gov/codes/mercury/.

[3] M. O'Brien, J. Taylor and R. Procassini, "Dynamic Load Balancing of Parallel Monte Carlo
Transport Calculations," in The Monte Carlo Method: Versatility Unbounded In A Dynamic
Computing World, Chattanooga, TN, (2005).

[4] R. Procassini, M. O'Brien and J. Taylor, "Load Balancing of Parallel Monte Carlo Transport
Calculations," in Mathematics and Computation, Supercomputing, Reactor Physics and
Nuclear and Biological Application, Palais des Papes, Avignon, France, (2005).

[5] G. Greenman, M. O'Brien, R. Procassini and K. Joy, "Enhancements to the Combinatorial
Geometry Particle Tracker in the Mercury Monte Carlo Transport Code: Embedded Meshes
and Domain Decomposition," in Proceeding from the ANS Mathematics and Computation
2009 Meeting, (2009).

[6] P. Romano and B. Forget, "Parallel Fission Bank Algorithms in Monte Carlo Criticality
Calculations," Nuclear Science and Engineering, vol. 170, no. 2, pp. 125-135, (2012).

[7] "International Handbook of Evaluated Criticality Safety Benchmark Experiments," Nuclear
Energy Agency, on CD-ROM (2010).

[8] "Advanced Simulation and Computing- Sequoia," Lawrence Livermore National
Laboratory, (2012). [Online]. Available: https://asc.llnl.gov/computing_resources/sequoia/.

[9] B. Barney, "Using the Dawn BG/P System," (2011). [Online]. Available:
https://computing.llnl.gov/tutorials/bgp.

[10] G. Zheng, A. Bhatele, E. Meneses and L. V. Kale, "Periodic Hierarchical Load Balancing
for Large Supercomputers," International Journal of High Performance Computing
Applications, (2011).

[11] G. Zheng, "Achieving high performance on extremely large parallel machines: performance
prediction," Ph. D. thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, (2005).

[12] C. Englemann and A. Geist, "Super-Scalable Algorithms for Computing on 100,000
Processors.," Proceedings of ICCS, (2005).

O’Brien, Brantley and Joy

International Conference on Mathematics and Computational Methods Applied to Nuclear Science &
Engineering (M&C 2013), Sun Valley, Idaho, USA, May 5-9, 2013

12/12

[13] P. Balaji, D. Buntinas, D. Goodell and W. Gropp, "MPI on a Million Processors," in
EuroPVMMPI'09, Helsinki, Finland, (2009).

