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ABSTRACT 
 

In order to run computer simulations efficiently on massively parallel computers with hundreds of 
thousands or millions of processors, care must be taken that the calculation is load balanced across 
the processors.  Examining the workload of every processor leads to an unscalable algorithm, with 
run time at least as large as (N), where N is the number of processors.  We present a scalable load 
balancing algorithm, with run time (log(N)), that involves iterated processor-pair-wise balancing 
steps, ultimately leading to a globally balanced workload.  We demonstrate scalability of the 
algorithm up to 2 million processors on the Sequoia supercomputer at Lawrence Livermore 
National Laboratory.  
 
Key Words: Scalability, load balancing, high performance computing, Monte Carlo particle 
transport. 

 
 

1. INTRODUCTION 
 

In order to run computer simulations efficiently on massively parallel computers with hundreds 
of thousands or millions of processors, care must be taken that the calculation is load balanced 
across the processors.  We assume we have a distributed memory parallel supercomputer, using 
the Message Passing Interface (MPI) [1] for inter-process communication.  The work described 
in this paper is aimed at developing a scalable load balancing technique for a massively parallel 
Monte Carlo particle transport code [2], where the particle workload is distributed across 
processors.  The assumptions for this paper are that the computational cost of all the Monte Carlo 
particles is the same, and that any processor can process any particle.  In our previous load 
balancing algorithm [3], [4], a description of each processor’s workload was gathered to the 0th 
ranked processor, where a global communication graph was constructed to achieve a load 
balanced state.  This algorithm performed efficiently up to thousands of processors, but for larger 
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processor counts, the load balancing step itself required longer than the computation portion of 
the calculation.  As soon as one array of length proportional to the number of processors is 
required, the algorithm is already not scalable.  We define an algorithm to be scalable if its run 
time is at most proportional to the logarithm of the number of processors.  This definition rules 
out any global algorithm that needs to simultaneously know the workload of every processor.   
 
We have developed and implemented a scalable load balancing algorithm in the Mercury Monte 
Carlo particle transport code [2], [5].  Mercury is written in C++ with a Python user interface and 
uses distributed memory parallelism with MPI.  Mercury models dynamic neutron, gamma and 
light charged particle transport and also solves neutron criticality problems.   The geometry 
information through which the particles are transported is stored redundantly on all of the 
processors and is not domain decomposed in this case.  (Mercury has domain decomposition, but 
this paper only addresses particle replication). The number of Monte Carlo particles can be very 
large, and the particles are load balanced and distributed across processors.   
 
The run time of our previous load balancing algorithm [3] was (N2) where N is the total number 
of processors.  This algorithm performed efficiently up to several thousand processors, but on 217 
= 131,072 processors, the load balancing step itself took 90 times longer than the computation 
part of the calculation.  The load balancing step should take only a small fraction of the 
computation part of the calculation.  The load balancing algorithm was not initially written with 
scalability in mind, so we are now revisiting load balancing with a focus on scalability. 
 
Romano and Forget [6] address a similar problem with a different set of constraints and 
assumptions.  Their algorithm has the constraint that particles must be processed in a certain 
order, but in our case each particle has its own random number seed and may be processed on 
any processor in any order.  This is a much less constrained problem and allows for an efficient, 
scalable, load balancing solution. 
 
The remainder of this paper is organized as follows.  In Sec. 2, we describe the need for and 
goals of load balancing for Monte Carlo calculations.  We describe in Sec. 3 the scalable load 
balancing algorithm that we have developed and implemented in Mercury.  In Sec. 4, we present 
numerical results from weak scaling studies  that demonstrate the need for load balancing as well 
as the scalability of the load balancing algorithms we have developed.  We conclude the paper in 
Sec. 5 and offer suggestions for future work. 
 

2. LOAD BALANCING FOR MONTE CARLO CALCULATIONS 
 
The load balance efficiency of a calculation is the average amount of computational work per 
processor divided by the maximum amount of computational work on any processor.  Let w0, w1, 
…, wN-1 be the amount of computational work per processor, then the load balance efficiency is: 
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The goal of load balancing is to maximize the load balance efficiency of a calculation.  By 
moving work from one processor to another, we cannot change the average amount of work per 
processor, but we can change the maximum amount of work on any processor.  The goal of load 
balancing then becomes trying to minimize the amount of work on the processor that has the 
most work, thereby maximizing the load balance efficiency. 
 
At the start of each computational physics cycle, each processor starts with some number of 
particles.  The goal of the load balancing problem is for each processor to have the same number 
of particles (or have the maximum difference of particle counts be at most one if the number of 
particles is not a multiple of the number of processors).  The result of the load balancing 
algorithm is to have particles communicated between processors, so that after the communication 
the particle counts are balanced.  Then the computational physics cycle occurs, which may 
induce new load imbalance, and the load balance step is repeated. 
 
Running problems without load balancing results in the load balance efficiency decreasing as a 
function of generation in an eigenvalue calculation.  The load balance efficiency also decreases 
as the number of processors increases.  Load balancing the problem enforces that all processors 
have essentially the same number of particles, so the efficiency remains high. 
 

3. SCALABLE PARTNER PROCESSOR ALGORITHM 
 
An iterative load balancing algorithm was developed such that at each iteration, every processor 
finds a unique partner processor.  The partner processors send and receive the number of 
particles they own to each other.  Then both processors compute the average of these two 
numbers.  The partner that is above the average sends particles to the partner that is under the 
average, so both processors end up having the average number of particles.  If both processors 
have the same number of particles, then they are already load balanced and have nothing to do.  
This algorithm has pair-wise interactions between processors, never knowing what the global 
workload distribution looks like.   We define the processor rank to be the unique processor 
number in {0, 1, 2, …, N-1}, when there are N total processors.  After each iteration, the partner 
processors are individually balanced. By choosing the partner processor appropriately, on the kth 
iteration, all processor ranks with the same binary representation up to the last k digits will have 
exactly the same number of particles, i.e. processors in groups of 2k are balanced. 
 
We now define how the processors are paired.  Processors are paired based upon their processor 
rank and the current iteration number k of the algorithm.  We choose the partner processor on the 
kth iteration of the algorithm by defining the partner function fk, and the rank of the partner 
processor is given by:  partner = fk(rank), where 
 

௞݂ሺ݇݊ܽݎሻ ൌ ቊ
݇݊ܽݎ ൅ 2௞					if	the	݇௧௛	binary	digit	of	݇݊ܽݎ	is	0
݇݊ܽݎ െ 2௞					if	the	݇௧௛	binary	digit	of	݇݊ܽݎ	is	1

     

   (1) 
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Another interpretation of fk is to flip the kth binary digit of the input argument.  If an…a0 are the 
binary digits of the processor rank, then 

rank ൌ ܽ௡ܽ௡ିଵ …ܽ௞ାଵܽ௞ܽ௞ିଵ …ܽଵܽ଴ ൌ ෌ ܽ௜2୧
௡

௜ୀ଴
			where	a୧ ∈ ሼ0,1ሽ               (3) 

 
௞݂ሺ݇݊ܽݎሻ ൌ ௞݂ሺܽ௡ܽ௡ିଵ …ܽ௞ାଵܽ௞ܽ௞ିଵ …ܽଵܽ଴ሻ ൌ ܽ௡ܽ௡ିଵ …ܽ௞ାଵܽ௞തതതܽ௞ିଵ …ܽଵܽ଴      ሺ4ሻ 

 
௞തതതܽ		݁ݎ݄݁ݓ ൌ 1 െ ܽ௞																																																																																																																							(5) 

 
fk has the appealing property that it is self-inverting: fk(fk(rank)) = rank, i.e. fk is an involution, so 
fk

-1 = fk .  As a result of this property, 

fk(rank) = partner and fk(partner) = rank.                                       (6) 

 

Figure 1 shows a graph of the partner function fk  for k=0,1,2,3,4.  Note the functions are 
symmetric about the identity line (“y=x” line) at integer values, which characterizes involutions 
(self inverse functions). 

 

 
 
 

 
Algorithm 1 shows pseudocode for the implementation of a scalable load balancing algorithm.  If 
N = the number of processors, when N=2n is a power of 2, then  
BalanceWithPartnerWrapper()globally balances the number of particles per processor 
so that all processors have exactly the same number of particles at the end of the algorithm.  (Or 
the processor with the most number of particles has at most log(N) more particles than the 
processor with the least number of particles).  Furthermore the runtime of this algorithm is 
(log(N)).  The proof of these properties has been omitted for brevity but will be published in a 
future paper. 
 

   (2) 

Figure 1: The partner function fk for k=0,1,2,3,4.   
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Figure 2 illustrates the initial workload of each processor before load balancing, and what the 
workload looks like after each round of load balancing.  The processor ranks are colored so that 
processors of the same color are “partners” and are communicating with each other; this 
partnership is also indicated with an arc drawn between the processor ranks communicating.  
After k rounds of load balancing, processors in groups of 2k have the exact same workload. 
 
We have also developed and implemented a generalized version of this load balancing algorithm 
that groups processors together in groups of size 2w, where w is a user-settable parameter of the 
algorithm.  The generalized algorithm has the advantage that the larger w is, the fewer rounds of 
load balancing are required to achieve global load balance (but each round takes longer).  For 
brevity, we omit the detailed description of the general algorithm but will publish it in a future 
paper. 
 

Algorithm 1: Pseudocode showing the implementation of a scalable load balancing algorithm 

BalanceWithPartnerWrapper() 
{ 
    int NumRounds = ceiling(log2(numProcessors)); 
 
    for ( int k = 0; k < NumRounds; k++ ) 
    { 
        BalanceWithPartner(k); 
    } 
} 
 
BalanceWithPartner(int binaryDigit) 
{ 
    // rank is this processor’s MPI rank 
    // all binary digits agree except binaryDigit is flipped in partner 
    int partner = rank ^ (1 << binaryDigit); 
 
    // Send and Recv with partner processor the number of particles each has 
    int aveNumParticles = ( myNumParticles + partnerNumParticles ) / 2; 
 
    if ( myNumParticles > partnerNumParticles ) // I am sending 
    { 
        // send (myNumParticles – aveNumParticles) particles to partner 
    } 
    else if ( myNumParticles < partnerNumParticles ) // I am receiving 
    { 
        // recv (partnerNumParticles – aveNumParticles) particles from partner 
    } 
} 
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4. NUMERICAL SCALING RESULTS 
 
The test problem that we use in this paper to investigate parallel scalability is the Godiva critical 
assembly test problem (HEU-MET-FAST-001) [7], a uranium sphere of radius 8.7407 cm and 
density 18.74 g/cm3.  The isotopic atom fractions are U234 = 0.01025002, U235 = 0.9376829 
and U238 = 0.05206708.  The Godiva problem was modeled using one spherical combinatorial 
geometry cell. 
 

4.1 Effects of Load Imbalance 

 
In this section, we demonstrate the effects of load imbalance for the Godiva critical sphere 
problem when run with large numbers of processors.  Lawrence Livermore National Laboratory 
has the Sequoia [8] super computer, which we use to study the processor scaling of the Godiva 
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Figure 2: Illustration of processor workloads during load balancing. 
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Static-K criticality calculation up to 2 million (221) processors.  We run Godiva as a weak scaling 
problem, that is, with fixed work per processor as we increase the number of processors.  Each 
processor has 10,000 particles, so the total number of particles increases as we increase the 
processor count up to 221 = 2,097,152 processors and 21 billion particles.  We demonstrate that 
running this problem without load balancing results in the load balance efficiency decreasing as a 
function of Static-K generation.  The load balance efficiency also decreases as the number of 
processors increases, because the amount of work on the most worked processor increases as the 
number of processors increases.  If each processor starts with the same number of particles, the 
number of particles on a processor at the end of an iteration follows a normal distribution [6].  As 
the number of processors increases, the normal distribution is sampled more often.  As a result, 
the most worked processor continues to increase and the efficiency decreases. 
 
Figure 3 shows the load balance efficiency for 6 Godiva Static-K calculations that are NOT load 
balanced and run on 21, 24, 28, 216, and 221 processors.  In general, the load balance efficiency 
decreases as the number of processors increases and decreases with the number of iterations 
(Static K generations). 
 

 

 
 

4.2 Partner Processor Algorithm Results 

 
In this section, we investigate the parallel scalability of the partner processing load balancing 
algorithm.  We ran a weak scaling study for N=1, 2, 4, 8, 16, …, 217 = 131,072 processors on the 
Dawn supercomputer (IBM Blue Gene/P [9]) at Lawrence Livermore National Laboratory.  The 
test problem is the Godiva critical assembly test problem again run with 10,000 particles per 
processor.  So every time we doubled the number of processors, we doubled the total number of 
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particles.  We ran 5 iterations of a Static-K calculation.  The results of the scaling study are 
shown in Figure 4. 
 

Figure 4 plots the wall time spent executing the load balancing algorithm at processor counts of 
20, 21, 22, …, 217 = 131,072.  This plot is almost linear on a log-linear scale.  The linear 
regression line through the data has slope 0.0633s/(doubling of processors).  Each time we 
double the number of processors, we pay a fixed cost of 0.0633s, regardless of the number or 
processors.  These calculations confirm that the load balancing algorithm is in fact proportional 
to the log of the number of processors.  

 

 

 

4.3 Generalized Load Balancing Algorithm Results 

 
We study the processor scaling of the Godiva Static-K criticality calculation up to 2 million (221) 
processors using the Sequoia supercomputer.  The results in this section used the generalized 
load balancing algorithm briefly described in Sec. 3.  We examine how the load balance 
efficiency scales, shown in Figure 5, and how the particle tracking time scales, shown in Figure 
6. We also examine how the load balancing step itself scales with the number of processors, 
shown in Figure 7.  We have proven the algorithm scales like (log(N)), which is what we 
observe when we time the algorithm. 
 

Figure 5 is a plot of the average load balance efficiency vs. log2(Num_Processors), comparing 
load balancing against not load balancing.  With load balancing, the efficiency remains above 
95%, even at 2 million processors.  Without load balancing, the efficiency decreases with 
processor count down to 68% at 2 million processors. 
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Figure 6 shows the wall time spent tracking particles vs. log2(Num_Processors), comparing load 
balancing against not load balancing.  With load balancing, we see essentially perfect scaling up 
to 2 million processors.  Since each processor has the same amount of work, the calculation takes 
the same amount of time at any scale.  Without load balancing, dispersion in the number of 
particles per processor occurs, and the calculation cannot proceed until the most worked 
processor has finished.  This dispersion in processor workload results in an increase in tracking 
time. 
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Figure 5: Average load balance efficiency vs. log2(Num_Processors) 
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Figure 7 shows the scaling behavior of the load balancing algorithm by plotting the load 
balancing time vs. log2(Num_Processors).  The wall time should scale roughly like a straight 
line, since the algorithm is (log(N)).  The algorithm balances particle workloads in processors 
of group size 29, so we see an extra added expense at 29 and 218, since the algorithm needs to do 
an additional round of communication. 

 

 
 

5. CONCLUSIONS 
 
We have developed, implemented, and proven correct a scalable load balancing algorithm that 
has a computational complexity of (log(N)).  This algorithm globally balances all of the 
processors’ work without globally knowing what the work distribution looks like.  Through a 
sequence of local operations, global load balance can be achieved.  We ran a scaling study up to 
221=2,097,152 processors on the Sequoia (IBM BG/Q) supercomputer at Lawrence Livermore 
National Laboratory, and the observed results agree very well with the theoretical predictions.  
We believe that this algorithm applies to a broad class of homogeneous load balancing problems 
where the units of work all cost the same amount and any processor can process any unit of 
work.  This algorithm allows for load balanced computations on the next generation of 
supercomputers with millions of cores.  The new algorithm represents a significant improvement 
over our previous algorithm which would have taken 17 days on 2 million processors of Sequoia, 
while this new algorithm takes less than 1 second. 
 
We also implemented a parameterized version of the load balancing algorithm in which the user 
may select the Processor Group Size parameter w which is the number of processors to group 
together when doing a local load balance step.  Instead of load balancing processors 2 at a time, 
the general algorithm load balances processors in groups of size 2w.  We will publish the full 
details of the generalized algorithm in a future paper.  
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Figure 7: Scaling of the generalized load balancing algorithm  
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In a future paper, we will also consider scalable load balancing for domain decomposed 
problems, where the geometry information (in addition to the particles) are distributed across 
processors and allowed to scale with the number of processors. 
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