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Configuration-space matrix elements of N -body potentials arise naturally and ubiquitously in the
Ritz-Galerkin solution of many-body quantum problems. For the common specialization of local,
finite-range potentials, we develop the Tensor HyperContraction (THC) method, which provides
a quantized renormalization of the coordinate-space form of the N -body potential, allowing for a
highly separable tensor factorization of the configuration-space matrix elements. This representation
allows for substantial computational savings in chemical, atomic and nuclear physics simulations,
particularly with respect to difficult “exchange-like” contractions.

PACS numbers:

The physics of many-body quantum systems is of-
ten captured by local, finite-range N -body potentials
V̂ (r1, . . . , rN ). Key examples include the Coulomb po-
tential of atomic and molecular physics, the Yukawa po-
tential of particle physics, and the effective Skyrme and
Gogny pseudo-potentials encountered in nuclear struc-
ture and nuclear astrophysics [1].

In some finite one-particle Ritz-Galerkin basis set
{ψi(r)}, the configuration-space representation of V̂ is
the spatial integral tensor,

�i . . . n|V̂ |i� . . . n�
� ≡

�
dr1 . . .

�
drN

ψ∗
i (r1) . . . ψ∗

n(rN )V̂ (r1, . . . , rN )ψi�(r1) . . . ψn�(rN ). (1)

The generation, manipulation, and storage of this tensor
is a major hurdle in many-body quantum simulations.

Tensor HyperContraction (THC) is a general tech-
nique developed to obtain computational savings
via physically-motivated tensor decomposition of the
configuration-space integral tensor (1). THC was first
introduced by some of us in the context of electronic
structure theory, where we have used several variants to
provide approximate resolution of the ubiquitous electron
repulsion integral (ERI) tensor, which encapsulates the
Coulomb potential between electrons [2–4].

In this letter, we show that an exact THC decom-
position (X-THC) is possible for specific choices of ba-
sis sets that are widely used, especially in nuclear and
atomic physics. Aside from providing significant gains for
problems involving these bases, this finding also provides
the rationale for the accuracy of approximate variants of
THC in more general bases.

Below, we first demonstrate the key features of the
X-THC representation through the pedagogical, but en-

tirely representative example of a 1-dimensional, 2-body
problem in Cartesian coordinates using Hermite func-
tions. The D-dimensional, N -body generalization of X-
THC is then presented. Finally, the approximate LS-
THC method for non-polynomial basis sets is briefly ex-
plained, and generalized to N -body potentials.

X-THC Example - For a canonical example, consider
the case of a 1-dimensional (D = 1) problem in Cartesian
coordinates, involving a finite basis of M + 1 Hermite
functions {ψi(x)} with a local 2-body (N = 2) potential
V̂ ≡ V̂ (x1, x2). The matrix elements are,

�ij|V̂ |i�j�� ≡

��
dx1 dx2

ψ∗
i (x1)ψ∗

j (x2)V̂ (x1, x2)ψi�(x1)ψj�(x2). (2)

The first stage in the X-THC procedure is to note that
all (M +1)2 products ψ∗

i (x1)ψi�(x1) are exactly spanned
by an orthonormal “auxiliary” basis {χA(x1)} consisting
of 2M + 1 Hermite functions with a slightly modified
spatial range, χA(x1) ≡ ψA(

√
2x1). Using the Einstein

summation convention here and throughout,

ψ∗
i (x1)ψi�(x1) = [ii�|A]χ∗

A(x1), (3)

where,

[ii�|A] ≡
�

R
dx1 ψ∗

i (x1)ψi�(x1)χA(x1). (4)

This step is analogous to the popular Density Fit-
ting (DF) procedure of electronic structure theory [5–8],
though here it is exact due to the closure properties of
the polynomial-based Hermite functions. The integrals
are now given as,

�ij|V̂ |i�j�� = [ii�|A][jj�|B]GAB , (5)
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where,

GAB
≡

��

R2
dx1 dx2 χ∗

A(x1)χ∗
B(x2)V̂ (x1, x2). (6)

Thus, the fourth-order integral tensor is expressed as a
product of second- and third-order tensors. Even though
we have compressed the fourth-order tensor, this repre-
sentation still precludes scaling reduction in “exchange-
like” terms. A canonical example of such a term is the
pairing field in the Hartree-Fock-Bogoliubov theory. This
is analogous to the exchange term of Hartree-Fock, but
easier to generalize for N -body operators,

∆ij ≡ �ij|V̂ |i�j��κi�j� = [ii�|A][jj�|B]GABκi�j� , (7)

where κ is the pairing tensor. Despite the factorization,
computing this term still scales as O(M4) = O(M2ND).

The critical step in the THC procedure is to resolve
the three-index overlap integral [ii�|A] to “unpin” the in-
dices i and i� across some additional linear-scaling index
P . That is, we seek a PARAFAC-like decomposition of
the form [ii�|A] = X∗P

i XP
i� Y

P
A [9]. Thanks to the choice

of a polynomial basis, the overlap integral is exactly inte-
grated by the 2M + 1-node Gaussian quadrature (in this
case, Gauss-Hermite) defined by the nodes and weights
{< xP , wP >} [10]. Therefore, the quadrature grid in-
dex provides the natural PARAFC decomposition of the
overlap integral,

[ii�|A] = wP ψ∗
i (xP )ψi�(xP )χA(xP ). (8)

This resolution is reminiscent of the discrete variable rep-
resentation [11–13] or pseudospectral [14] techniques of
chemical physics. Defining X∗P

i ≡ ψ∗
i (xP ) and Y P

A ≡

wP χA(xP ), we can form the intermediate object,

ZPQ
≡ Y P

A Y Q
B GAB . (9)

The full integral (2) is thus expressed as,

�ij|V̂ |i�j�� = X∗P
i X∗Q

j ZPQXP
i� X

Q
j� . (10)

This X-THC representation of the integral tensor is the
key for the exact O(M3) = O(MND+1) treatment of
the pairing term, via several intermediate summations,
indicated here by brackets for clarity,

∆ij = X∗P
i X∗Q

j ZPQXP
i� X

Q
j� κi�j�

= X∗P
i

�
X∗Q

j

�
ZPQ

�
XP

i�

�
XQ

j� κi�j�

����
. (11)

Interpretation - The Z operator appears here as a
mathematical intermediate, but actually is a rich phys-
ical object: it is a quantized renormalization of the
coordinate-space representation of the potential operator
V̂ . To see this, we first consider the continuous, renor-
malized potential operator V̄ , defined as,

V̄ (x1, x2) ≡ χA(x1)χB(x2)GAB . (12)

This operator is not equivalent to the original in physical
space, i.e., V̂ (x1, x2) �= V̄ (x1, x2), yet the matrix ele-
ments of both operators are identical, i.e., �ij|V̂ |i�j�� =
�ij|V̄ |i�j��. The renormalized operator is simply the raw
operator V̂ with all components outside of the finite
product space ψ∗

i (x1)ψi�(x1) ⇔ χA(x1) projected out in
each coordinate. This projection is serendipitous: the
coordinate-space integrand involving V̄ and the products
of basis functions is exactly resolved by the Gaussian
quadrature for the auxiliary basis, while the correspond-
ing integrand for V̂ is not exact under any finite quadra-
ture. Applying the Gaussian quadrature, we quantize
the renormalized operator V̄ to produce the operator Ṽ ,
adding quadrature weights to account for the spatial con-
tribution of each point,

Ṽ (x1, x2) ≡ wP wQδ(x1− xP )δ(x2− xQ)V̄ (x1, x2). (13)

As with V̄ , the matrix elements of Ṽ are identical to
those of V̂ . Integrating Ṽ instead of V̂ naturally exposes
the X-THC factorization,

�ij|V̂ |i�j��
{ψi}= �ij|Ṽ |i�j��

=
��

dx1 dx2 ψ∗
i (x1)ψ∗

j (x2)Ṽ (x1, x2)ψi�(x1)ψj�(x2)

= X∗P
i X∗Q

j ZPQXP
i� X

Q
j� . (14)

Here, the elements ZPQ are simply the quantized values
of the renormalized potential, with the weights rolled in,
i.e., ZPQ = wP wQV̄ (xP , xQ). An example involving a
Gaussian potential in Hermite functions is shown in Fig-
ure 1. The renormalized potential (right) clearly shows
the effects of projection from the raw potential (left).
The locations of the quantization to ZPQ are shown by
the small crosses on the right.
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FIG. 1: (color online) Example of the X-THC process for
a 1-dimensional, 2-body Gaussian potential V̂ (x1, x2) =
exp(−x2

12) in Hermite functions {ψi(x)} up to M = 5. Left
panel: raw V̂ (x1, x2). Right panel: renormalized, quantizable
V̄ (x1, x2).

Generalized X-THC - The generalization of the 1-
dimensional, 2-body, Hermite function example above to
N -body potentials in D-dimensions and other choices of
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polynomial direct-product bases is quite straightforward.
We present the main results here, and leave a full deriva-
tion for the supplemental material.

For X-THC to hold, the one-particle basis must be of
the D-dimensional direct-product polynomial type, i.e.,
ψi(r) ≡

�D
µ=1 Piµ(rµ)vµ(rµ). In each dimension µ, Piµ

is a polynomial of up to degree iµ, and vµ is an arbi-
trary weight function (analogous to the Gaussian term
in the Hermite functions above). Such basis sets are
widely used in atomic and nuclear many-body physics
in Cartesian, cylindrical, spherical, and other coordinate
systems. The presence of a basis founded on polyno-
mials in each dimension automatically guarantees clo-
sure: For the Mµ + 1 functions in the dimension µ, the
span < ψ∗

iµ
(rµ)ψi�µ(rµ) > lies wholly inside a 2Mµ + 1-

function auxiliary basis, defined by a set of polynomials
orthogonal with respect to the weight |vµ(rµ)|2. Addi-
tionally, all quadratic products of auxiliary functions are
exactly integrated by a 2Mµ + 1-node Gaussian quadra-
ture {< rPµ , wPµ >}.

These properties allow for the X-THC factorization,

�i . . . n|V̂ |i� . . . n�
� = X∗P

i . . . X∗W
n ZP...W XP

i� . . . XW
n� ,
(15)

with each X∗P
i being the direct product of the D un-

derlying X
∗Pµ

iµ
. ZP...W is the straightforward generaliza-

tion of (9) above, though with N -body auxiliary integrals
GA...N . A full definition of these factors is presented in
the supplemental material.

Within the X-THC representation, the entirely
representative generalized pairing term, ∆i...n ≡

�i . . . n|V̂ |i� . . . n��κi�...n� , now scales as O(MND+1
µ ),

rather than O(M2ND
µ ), with no approximation or restric-

tion on the form of the local, finite-range potential V̂ .
It is worth noting that some alternative techniques to

reduce the cost of treating exchange-like terms involve
approximating the potential to be direct-product separa-
ble over Nw terms, e.g., by approximating the Coulomb
operator as a sum of separable Gaussians [15, 16]. This
reduces the cost of forming the generalized pairing tensor
to O(MND+N

µ ). X-THC can either avoid having to ap-
proximate the potential in this w-separable manner, for
example if the GAB factor can be computed analytically,
or can additionally capitalize on the knowledge that the
potential is w-separable to produce a O(MND+1

µ ) im-
plementation with lower prefactor and memory require-
ments. A summary of the scaling reductions afforded
with various technologies and local potentials is shown
in Table I.

Practical Demonstration - To illustrate the numeri-
cal equivalence and practical utility of the X-THC ap-
proach, a hybrid MATLAB/C++ code was developed to
produce generalized pairing fields for D-dimensional, N -
body forces in Hermite functions. A complete description
of the code is presented in the supplemental material.

TABLE I: Comparison of computational scalings for the pair-
ing term, using a variety of technologies and types of local
potentials.

Technology General Local w-Separable Local
Conventional/DF O(M2ND

µ ) O(NwMND+N
µ )

X-THC O(MND+1
µ ) O(NwMND+1

µ )

First and foremost, comparison of the generalized pair-
ing fields returned by conventional and X-THC technolo-
gies strongly indicates that X-THC is exact within the
machine precision (as expected mathematically). The
next consideration is timing data; the representative ex-
ample of N = 2 and D = 1, 2, 3 is depicted in Figure
2. For a general local potential, X-THC is clearly sev-
eral orders of magnitude faster than conventional for the
largest Mµ studied here. For a w-separable potential, the
scaling advantage of X-THC over conventional is smaller,
and the X-THC prefactor becomes visible, particularly
for large D and small N . However, w-separable X-THC
always scales lower than conventional, and can therefore
provide some savings for sufficiently large Mµ. Moreover,
X-THC with a conventional potential is generally of the
same order of expense as either technology with a w-
separable potential. Thus X-THC allows for the use of a
wholly general local potential with the same tractability
as a w-separable potential.
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FIG. 2: (color online) Wall times for pairing tensor formation
as a function of Mµ for N = 2 (log-log scale).

LS-THC - In some cases, more exotic bases than poly-
nomial types are preferred. A canonical example is the
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molecular physics problem, for which local atom-centered
Gaussian or Slater functions are used for the basis. In
these cases, the number of basis functions M is typically
chosen to be proportional to the number of particles in
the system, so the concepts of dimensionality or direct-
product separability have little meaning.

For this choice of basis, no exact linear-span closure
exists. In practice however, the locality of the basis
functions and the redundancies of the remaining basis
function pairs implies that a linear-span closure is ap-
proximately obtained. One might imagine that we could
simply substitute an approximate linear-scaling quadra-
ture grid and auxiliary basis into X-THC. However, we
have found that this “pseudospectral THC” (PS-THC)
approximation requires far too many points to be practi-
cally useful, in the context of the molecular ERI tensor.

A straightforward “least-squares THC” (LS-THC)
modification is to choose the X operator to come from an
approximate linear-scaling quadrature grid, and then to
choose the Z operator to minimize the vector 2-norm
of the residual in the desired integral tensor. A de-
composition of the form of (15) results, where now the
tuned Z largely corrects for deficiencies in the zeroth-
order quadrature grid. For an N -body potential, this
method yields the remakably analytical formula for the
Z-operator,

ZP...W = S−1
PP � . . . S−1

WW �

XP �

ii� . . . XW �

nn��i . . . n|V̂ |i� . . . n��, (16)

where the joint collocation is XP
ii� ≡ X∗P

i XP
i� and the

physical-space metric matrix is SPP � ≡ XP
ii�X

P �

ii� . In per-
turbation theory and coupled cluster applications in elec-
tronic structure, we have found that the LS-THC repre-
sentation is remarkably accurate [3, 4].

Summary and Outlook - In this Letter, we have
demonstrated that a quantized renormalization of the
coordinate-space form of any local, spatial, finite-range
N -body potential can be used to produce a powerful
tensor factorization of the configuration-space integrals,
a form denoted as Tensor HyperContraction or THC.
The key advantage of THC is that it allows almost cer-
tainly optimal scaling reductions in the computation of
exchange-like terms.

The determination of THC factors is a separate matter:
we have shown that for polynomial direct-product bases,
the X-THC factorization is exact, simple to form, and
based on the 2Mµ +1-node Gaussian quadratures related
to the orthonormal polynomials in the basis. For either
a non-direct-product basis or a direct-product basis built
on non-polynomial functions, LS-THC is established as a
a practical approximation, and is based on determining
the approximate quantized physical-space representation
of the potential by minimizing the 2-norm of the residual
in the integrals, under the constraint of a preselected
linear-scaling collocation grid.

In molecular physics, LS-THC separability of the ERI
tensor provides an accurate and efficient treatment of
many difficult terms in correlated methods. In nuclear
physics, the potential for THC may be even brighter:
the vast majority of basis sets are of the direct-product
polynomial form, and can immediately benefit from ap-
plication of X-THC, using the full span of local N -body
potentials.
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[8] O. Vahtras, J. Almlöf, and M. W. Feyereisen, Chem.

Phys. Lett. 213, 514 (1993).
[9] J. D. Carroll and J. J. Chang, Psychometrika 31, 279

(1970).
[10] M. Abramowitz and I. A. Stegun, Handbook of Math-

ematical Functions with Formulas, Graphs, and Mathe-

matical Tables, Dover Publications, New York, 1964.
[11] D. O. Harris, G. G. Engerholm, and W. D. Gwinn, J.

Chem. Phys. 43, 1515 (1965).
[12] A. S. Dickinson and P. R. Certain, J. Chem. Phys. 49,

4209 (1968).
[13] J. Lill, G. Parker, and J. Light, Chem. Phys. Lett. 89,

483 (1982).
[14] R. A. Friesner, Chem. Phys. Lett. 116, 39 (1985).
[15] J. Dobaczewski et al., Comp. Phys. Comm. 180, 2361

(2009).
[16] L. M. Robledo, Phys. Rev. C 81, 044312 (2010).



Supplemental material for: Tensor hypercontraction: A universal technique for the
resolution of matrix elements of local, finite-range N-body potentials in many-body

quantum problems

Robert M. Parrish,1 Edward G. Hohenstein,2, 3 Nicolas F. Schunck,4, ∗ C. David Sherrill,1, † and Todd J. Mart́ınez2, 3, ‡

1
Center for Computational Molecular Science and Technology,

School of Chemistry and Biochemistry,

School of Computational Science and Engineering,

Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
2
Department of Chemistry and the PULSE Institute, Stanford University, Stanford, CA 94305

3
SLAC National Accelerator Laboratory, Menlo Park, CA 94025

4
Lawrence Livermore National Laboratory, Livermore, CA 94551

INTRODUCTION

Below, we first discuss the high-level mathematics of
the THC representation, with particular regard to con-
ceptual understanding of the decomposition. We then
provide detailed derivations of X-THC and LS-THC
for N -body local potentials. We also provide a physi-
cal interpretation for the THC Z operator as a quan-
tized renormalization of the coordinate-space potential,
through a graphical example of 1-dimensional, 2-body
Hermite functions in a Gaussian potential. Finally, we
detail the implementation of and results from a MAT-
LAB/C++ code developed to provide accuracy and tim-
ings data for X-THC treatment of D-dimensional, N -
body local potentials in Hermite functions.

A rather large number of indices appear in this work,
so we will summarize them here for clarity. The same
notation is used in the primary manuscript.

Particle Number: The particle number is denoted im-
plicitly by the presence of ellipses in relevant equa-
tions. This index ranges from 1 to N . We will often
work in the special case of a 2-body potential, with-
out loss of generality. This choice is often made for
intuitive reasons: the presence of an easily-written
chemists’ notation in the 2-body case aids markedly
in the visualization of the density fitting component
of the THC procedure.

Dimension: The dimension index is denoted by µ and
runs from 1 to D for each particle. In direct-
product bases (e.g., X-THC), dimensionality plays
a major role. In non-direct-product bases (e.g.,
LS-THC), dimensionality has little meaning, so we
omit any reference to dimension in LS-THC (all
scalings for the latter case can be found by substi-
tuting D = 1 into the scalings for the former).

Primary Basis: The primary single-particle basis is de-
noted by the indices i to n (bra), and i� to n� (ket).
In a direct-product basis, i is a composite index
corresponding to the underlying direct-product of
1-dimensional primary basis functions, e.g., |i� ≡

|ix�|iy�|iz�. In a polynomial direct-product basis,
the 1-dimensional primary basis functions in di-
mension µ range from 0 to Mµ (the zero is a conse-
quence of the polynomial definition of the basis). In
a non-direct-product basis, the full basis functions
range from 1 to M .

Auxiliary Basis: Auxiliary basis indices are denoted by
the indices A,B, . . . . In a direct-product basis, A
is a composite index corresponding to the underly-
ing direct-product of 1-dimensional auxiliary basis
functions, e.g., |A� ≡ |Ax�|Ay�|Az�. In a polyno-
mial direct-product basis, the 1-dimensional auxil-
iary basis functions in dimension µ range from 0 to
2Mµ (the zero is a consequence of the polynomial
definition of the basis). In a non-direct-product ba-
sis, the full auxiliary basis functions range from 1
to MA, where increasing MA increases the fidelity
of the approximate density fitting procedure.

Quadrature Grid: Quadrature grid indices are de-
noted by the indices P,Q, . . . . In a direct-product
basis, P is a composite index corresponding to the
union of the underlying one-dimensional quadra-
tures, e.g., rP ≡ (xPx , yPy , zPz ). In a polynomial
direct-product basis, the exact quadrature in di-
mension µ dimension µ range from 0 to 2Mµ (the
zero is a consequence of the polynomial definition
of the basis). In a non-direct-product basis, the LS-
THC quadrature grid ranges from 1 to MP , where
increasing MP increases the fidelity of the approx-
imate LS-THC procedure.

For cases where two classes of indices are required to re-
solve a tensor element, a double subscript is used, e.g.,
the P -th grid point in the µ-th dimension is denoted rPµ .
Also note that we use the generalized Einstein conven-
tion in this work: a repeated index on the right side of
an equation is contracted over if it appears twice, or hy-
percontracted over if it appears more than twice, so long
as the same index is not present on the left side of the
same equation.
Also note that in the general discussions below, we will
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try to distinguish between the case of a closed direct-
product polynomial basis (for which all decompositions
are exact) and the case of generic basis (for which all
decompositions are approximate, but rigorously com-
pletable).

MATHEMATICAL DEVELOPMENT

Local Configuration-Space Integrals

A local, finite-range N -body potential is a special case
of the most generic non-local, finite-range N -body po-
tential, and has the coordinate-space form,

V̂ (r1, . . . , rN ) = V̂ (r1, r
�
1
, . . . , rN , r�N )

δ(r1 − r�
1
) . . . δ(rN − r�N ). (1)

Here and throughout, the ellipses denote that the formal-
ism holds for an arbitrary number of particles. The coor-
dinate r has D components (r1, . . . , rµ, . . . , rD). In this
work, r is pedagogically understood to refer to spatial
coordinates in the one-particle Hilbert space. However,
there is certainly no restriction to this: the coordinate r
could refer to a momentum-space or any other orthogonal
representation of the one-particle Hilbert space.

We are considering the general configuration-space in-
tegral tensor for a local N -body potential in D dimen-
sions,

�i . . . n|V̂ |i� . . . n�
� =

�
dr1 . . .

�
drN

ψ∗
i (r1) . . .ψ

∗
n(rN )V (r1, . . . , rN )ψi�(r1) . . .ψn�(rN ). (2)

The functions ψi(r) are the finite Ritz-Galerkin basis
for the one-particle Hilbert space L2(RD). If the po-
tential were truly non-local, the coordinates in the ket
would carry primes. When formulated in configura-
tion, or spectral, space, all approaches to the quantum
many-body problem involve contracting the integral ten-
sor with an auxiliary object such as the one-body den-
sity matrix (Hartree-Fock), pairing tensor (Hartree-Fock-
Bogoliubov), amplitudes (coupled-cluster), etc.

A characteristics of the configuration space represen-
tation of V̂ is that the number of matrix elements (2)
scales as O(M2ND

µ ) independently of the nature of the
underlying potential (local, separable, etc.). The mini-
mal cost of contracting the integral tensor with another
tensor therefore scales as O(M2ND

µ ), in the specific case
that all indices in the second tensor already lie within
the integral tensor. By construction, the generic config-
uration space representation does not allow to take ad-
vantage of the specific properties of the potential. By
contrast, in the field formulation of the quantum many-
body problem, all contractions are expressed as integrals
in 2D dimensions: the specific properties of the potential

will be naturally exposed, and substantial computational
simplifications may thus occur. For example, assuming a
local potential reduces the dimensionality of the integrals
from 2D to D.
Ideally, one would like to retain the formal sim-

plicity (and abundant usage of linear algebra) of the
configuration-space formulation of the quantum many-
body problem while being able to take advantage of the
spatial properties of the potential. The Tensor Hyper-
Contraction (THC) representation of the integral tensor
is a particularly efficient method to achieve this goal.

THC Stage 1: Density Fitting

This step is easily seen by considering the specific case
of a 2-body potential, without loss of generality,

�ij|V̂ |i�j�� =

��
dr1dr2 ψ∗

i (r1)ψ
∗
j (r2)

V̂ (r1, r2)ψi�(r1)ψj�(r2). (3)

Because the potential is 2-body, we can invoke the
chemists’ notation for pedagogical purposes [2],

�ij|V̂ |i�j�� ≡ [ii�|V̂ |jj�] =

��
dr1dr2 ψ∗

i (r1)ψi�(r1)

V̂ (r1, r2)ψ
∗
j (r2)ψj�(r2). (4)

It is obvious that we can replace the bra and ket of the
chemists’ integral with the corresponding local products,

[ii�|V̂ |jj�] =

��
dr1dr2 ρii�(r1)V̂ (r1, r2)ρjj�(r2). (5)

This substitution is, as-yet, purely formal, and offers no
computational advantages. However, we may introduce
an auxiliary basis {χA(r)} of the Hilbert space and ex-
pand the local products on that basis,

ρii�(r) = dAii�χ
∗
A(r), (6)

leading to,

[ii�|V̂ |jj�] = dAii�G
ABdBjj� , (7)

with

GAB =

��
dr1dr2 χ∗

A(r1)V̂ (r1, r2)χ
∗
B(r2). (8)

This is the well-known Density Fitting (DF) procedure
from electronic structure theory (so-named because the
local products ρii� can be viewed as generalized probabil-
ity densities). Technically, exact equality is only achieved
in two special cases: (1) if the underlying finite primary
basis has a special structure admitting strict closure in
a linear-scaling auxiliary basis (we will exploit this in X-
THC) or (2) in a generic basis, if the complete basis limit
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is reached, which is obviously only conceptually useful.
In the latter case however (corresponding to the standard
DF procedure in molecular physics, and to LS-THC), the
rigorous information growth established above provides
for the existence of a δ-� approximation, in which the er-
ror decays exponentially with respect to the linear size
of the (well-chosen) auxiliary basis, and arbitrary gains
in accuracy can be formally guaranteed with only a lin-
ear increase in the number of auxiliary functions. When
the number of expansion coefficients in (6) is of the order
of Mµ (for each dimension µ), DF successfully identifies
the underlying rank structure of the integral tensor, ef-
fectively compressing the rank-4D integrals �ij|V̂ |i�j�� to
the rank-2D auxiliary integrals GAB .

The DF coefficients dAii� are determined in a number of
ways.

• If a closed primary basis is used, an exact, linear-
scaling, orthonormal auxiliary basis exists, and the
DF coefficients are simply the projection of the lo-
cal products onto this auxiliary basis, i.e., the over-
lap integrals,

dAii� = [ii�|A] =

�
dr1 ψ∗

i (r1)ψi�(r1)χA(r1). (9)

Note that these overlap integrals are rigorously
direct-product separable by dimension if the un-
derlying primary basis is direct-product separable.

• If a non-closed primary basis is used, the DF co-
efficients are typically determined by least-squares
fitting against some positive definite 2-body oper-
ator Ô,

dAii� =

��
dr1dr2 ψ∗

i (r1)ψi�(r1)Ô(r1, r2)χB(r2)

×

���
dr1dr2 χ∗

B(r1)Ô(r1, r2)χA(r2)

�−1

. (10)

The DF representation often provides substantial sav-
ings in integral generation and/or storage, and also can
be used to produce scaling gains for certain “Coulomb-
like terms” such as, e.g., the direct 2-body term in
Hartree-Fock theory, involving the contraction of the in-
tegral tensor with an auxiliary object,

Jii� = �ij|V̂ |ij��ρj�j = [ii�|V̂ |jj�]Djj� =

dAii�
�
GAB

�
dBjj�Djj�

��
, (11)

where ρ is the one-body density matrix. For N = 2, the
scaling is reduced fromO(M4D

µ ) toO(M2D+1

µ ). However,
this term is somewhat serendipitous: the key contraction
index is the compound index jj�, which occurs in one
piece in the factor dBjj� . For more generic contractions,
such scaling reductions are not realized by the DF fac-
torization, due to the ungainly “pinning” of the indices

i and i� in the density fitting coefficients: The common
thread between all “exchange-like” terms which cannot
be factored by density fitting is that two or more of the
contraction indices occur on the same side of the physi-
cists’ integral, implying that two or more of the density
fitting coefficient tensors are required to remove the con-
traction indices. A canonical and entirely representative
example is the pairing term of Hartree-Fock-Bogoliubov
theory,

∆ij = �ij|V̂ |i�j��κi�j� = dAii�d
B
jj�G

ABκi�j� , (12)

where κ is the pairing tensor. The best possible DF fac-
torization is,

∆ij = dAii�
�
GAB

�
dBjj�κi�j�

��
. (13)

Not only does it still scale as O(M4D
µ ), it now has also a

markedly higher prefactor than conventionally. In fact,
it is often better computationally to collapse the density-
fitted integrals to re-form the conventional integrals be-
fore performing exchange-like contractions. In this case,
the DF procedure only helps reduce integral generation
and/or storage costs.

THC Stage 2: Unpinning

The key realization of THC is that the indices i and
i� must be “unpinned” from each other (and from A)
in the DF coefficients by direct-product expansion over
some other linear-scaling decomposition index P . That
is, we need a PARAFAC decomposition of the form,

dAii� = X∗P
i XP

i Y P
A (14)

The index P appears three times on the right: this is
not a conventional two-factor contraction, but rather a
higher-order “hypercontraction.” If such a decomposi-
tion exists in linear rank P , the Y operators may be
contracted with the auxiliary integrals G to form the in-
termediate Z operator,

ZPQ = Y P
A GABY Q

B . (15)

This yields the THC representation,

�ij|V̂ |i�j�� = X∗P
i X∗Q

j ZPQXP
i� X

Q
j� . (16)

The pairing term is now factored naturally as,

∆ij = �ij|V̂ |i�j��κi�j�

= X∗P
i

�
X∗Q

j

�
ZPQ

�
XP

i�

�
XQ

j�κi�j�

����
. (17)

This factorization scales as O(MND+1

µ ) for each bracket.
The pre-factor comes from the number of brackets to con-
sider, which itself is a function of the number of particles.
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If the underlying basis is of the direct-product type, the
direct-product separability of the factors XP

i =
�D

µ X
Pµ

iµ

can be exploited to perform this term in O(MN+1

µ ) (with
an increase in the pre-factor cost). If the basis is not of
the direct-product type (implying no concept of dimen-
sionality), this term can be performed in O(MN+1).

This finding is, as-yet, only conceptual, as we have
not yet provided a physical justification or practical al-
gorithm for the existence of the linear-scaling PARAFAC
of (14). The former is quite simple. Whether the primary
basis has exact closure or not, the DF coefficients can be
taken to depend on the three-center overlap integrals,

[ii�|A] =

�
dr1 ψ∗

i (r1)ψi�(r1)χA(r1). (18)

For a closed primary basis, this is precisely the DF co-
efficient tensor dAii� = [ii�|A], which provides an exact
decomposition. For a non-closed primary basis, this is
part of the N -sided overlap-metric DF procedure, where
dAii� ≡ [ii�|B][B|A]−1, which provides an approximate de-
composition. While the number of elements in the over-
lap integral above is näıvely O(M3D

µ ), the local product
ψ∗
i (r1)ψi�(r1)χA(r1) lives in L2(RD), and thus contains

strictly O(MD
µ ) nonredundant combinations of elements.

Thus, a linear-scaling PARAFAC decomposition must ex-
ist.

Having established the existence of a PARAFAC of the
form of (14), it remains to actually compute the decom-
position by some practical algorithm. One approach is
to directly apply an iterative PARAFAC algorithm to
the three-center overlap integrals; this was the approach
of our demonstration-level PARAFAC THC (PF-THC)
procedure. However, it turns out that there exist two
far more practical recipes: X-THC for closed polynomial
bases and LS-THC for generic bases. Key features of
both variants are the use of quadrature grids to provide
the PARAFAC separability, and the presence of an ana-
lytical (i.e., non-iterative) factorization.

It is fairly obvious that a linear-scaling spatial quadra-
ture {< rP , wP >} of the overlap integrals provides an
(at-least approximate) PARAFAC decomposition,

[ii�|A]
?

≈ ψ∗
i (rP )� �� �
X∗P

i

ψi�(rP )� �� �
XP

i�

χA(rP )wP� �� �
Y P
A

. (19)

The key is that the integrand of the three-index overlap
integral is naturally direct-product separable, and the in-
vocation of quadrature explicitly exposes this over the
index P . For a closed, polynomial direct-product basis
withMµ+1 primary basis functions in dimension µ, there
always exists an exact DF representation with 2Mµ + 1
auxiliary functions, and the resultant three-index overlap
is thus exactly integrated by a Gaussian quadrature with
2Mµ + 1 nodes. Therefore, the ? symbol in the above is
the equality. This is the eXact THC (X-THC) procedure

discussed below. For non-closed bases, no exact quadra-
ture exists, but we may certainly apply an approximate
linear-scaling quadrature recipe. This is the idea behind
the Least-Square THC (LS-THC) discussed further.

Full N-body D-dimensional X-THC Derivation

A direct-product basis founded on polynomials has the
form,

ψi(r) ≡
D�

µ=1

Piµ(rµ)vµ(rµ). (20)

In each dimension µ, Piµ is a polynomial of up to degree
iµ, and vµ is a weight function, typically chosen to bring
the polynomial into L2(D), where D is the domain of the
problem, and also to provide qualitative conformation
to some a priori knowledge of the future shape of the
wavefunction. The iµ index runs from 0 to Mµ, so the
polynomials range up to a maximum degree of Mµ. Note
that these polynomials do not have to be orthogonal,
though they are often defined to be so. The product
of polynomials being itself a polynomial of up to order
2Mµ, the local product ψ∗

iµ(rµ)ψi�µ(rµ) in dimension µ
lies inside the span of the 2Mµ + 1 auxiliary functions,

χAµ(rµ) = P̃Aµ(rµ)|vµ(rµ)|
2, (21)

where P̃Aµ is a polynomial of up to order 2Mµ, often
different from PAµ . We will choose these auxiliary func-
tions to be orthonormal for convenience (this avoids DF
metric matrices).
The auxiliary functions χAµ(rµ) yield an exact DF rep-

resentation for this basis,

�i . . . n|V̂ |i� . . . n�
� = [ii�|A] . . . [nn�

|N ]GA...N . (22)

The overlap integrals are separable in coordinates,

[ii�|A] =
D�

µ=1

[iµi
�
µ|Aµ]. (23)

However, in general, the auxiliary potential integrals are
not separable,

GA...N
≡

�
dr1 . . .

�
drN

χ∗
A(r1) . . .χ

∗
N (rN )V̂ (r1, . . . , rN ). (24)

To produce the THC representation, it remains to find
an exact quadrature for the three-index overlap integrals.
Owing to the closure in the product iµi�µ, any quadrature
which can exactly integrate the auxiliary overlap metric
�Bµ|Aµ� = δBµAµ can exactly integrate the three-index
overlap integrals [iµi�µ|Aµ], as the spans are identical in



5

both cases. A quadrature which can exactly integrate
all quadratic products of functions based on orthogonal
polynomials of up to degree 2Mµ is precisely the defini-
tion of the 2Mµ + 1-node Gaussian quadrature. Regard-
less of the choice of weight vµ(rµ), the nodes and roots
of this Gaussian quadrature can always be determined
efficiently by the Golub-Welsch algorithm. In the full
direct-product basis, we will use the collapsed notation
for the collocations of this Gaussian quadrature,

XP
i =

D�

µ=1

X
Pµ

iµ
, Y P

A =
D�

µ=1

Y
Pµ

Aµ
, (25)

to save space. However, in real implementation, the
direct-product separability of these two quantities is very
important to achieve near-optimal scaling in formation of
the X-THC factorization and subsequent utilization.

With these definitions, the X-THC Z operator reads

ZP...W = Y P
A . . . Y W

N GA...N , (26)

which yields the the full N -body D-dimensional X-THC,

�i . . . n|V̂ |i� . . . n� = X∗P
i . . . X∗W

n ZP...WXP
i� . . . X

W
n� .
(27)

The Z operator is not, in general, direct-product sepa-
rable, but the factors X and Y are. In forming Z, the
contraction of the Y factors with the auxiliary potential
integrals would näıvely scale as O(MND+D

µ ). However,
for each Y , we can perform the transformation in one
dimension at a time (e.g., replacing Ax with Px, etc), re-
ducing the formal scaling to O(MND+1

µ ). Similarly, the
separability of theX and Y factors is critically important
to reduce the scaling of the generalized pairing term,

∆i...n = �i . . . n|V̂ |i� . . . n�
�κi�...n� . (28)

This contraction of a rank-ND tensor with the integral
tensor is in fact the worst possible scenario, as far as
the DF representation is concerned, since the compound
contraction index involves all N DF coefficient tensors,

∆i...n = dAii� . . . d
N
nn�GA...Nκi�...n� . (29)

In general, this term will always scale as O(M2ND
µ ) with

both conventional and DF approaches, though the com-
putational pre-factor is markedly higher in the latter
case. Its THC factorization now reads

∆i...n = �i . . . n|V̂ |i� . . . n�
�κi�...n�

= X∗P
i . . .

�
X∗W

n

�
ZP...W

�
XP

i� . . .
�
XW

n� κi�...n�
����

. (30)

Any contraction involving X here would näıvely scale
as O(MND+D

µ ). However, for each X, we can perform
the transformation in one dimension at a time (e.g., re-
placing i�x with Px, etc), reducing the formal scaling to
O(MND+1

µ ).

Full LS-THC Derivation

In a finite non-direct-product non-polynomial basis
with M functions, in exact arithmetic, the number of
exactly non-redundant local products ψ∗

i (r)ψi�(r) could
be as high as M2. Therefore, to produce an exact appli-
cation of THC as in X-THC, a quadratric-scaling auxil-
iary basis and a quadratic-scaling quadrature grid would
be required, leading to no computational savings. How-
ever, as discussed below (2), the asymptotic growth of
the non-redundant combinations of local products must
be linear. In practice, this manifests in exponential de-
cay of the singular values of the overlap metric between
local products,

Sii�,jj� ≡

�
dr1 ρii�(�r1)ρjj�(�r2). (31)

Since the decay is exponential, arbitrary relative accu-
racy can always be achieved in a linear number of aux-
iliary functions, providing for the existence of the ef-
ficient and well-adopted approximate DF procedure in
electronic structure theory.
To achieve a good THC factorization in these cases,

it is critical to ensure that the projection on coordinate
space brought about by the finite quadrature will not in-
troduce an alias. we can insure this by requiring that a
dealiased Z operator be chosen such that the 2-norm of
the residual tensor is minimized. It turns out that an
analytic form exists for such a Z, and that a separate
DF step can be used to massively accelerate its forma-
tion. The results for the 2-body case have already been
established in our series in the molecular physics series,
so we will give the essential steps for the derivation in
the N -body case here.
We assert,

�i . . . n|V̂ |i� . . . n�
�

≈ X∗P
i . . . X∗W

n ZP...WXP
i� . . . X

W
n� . (32)

Equivalently (for shorthand), we define the joint colloca-
tion XP

ii� ≡ X∗P
i XP

i� , so the above is,

�i . . . n|V̂ |i� . . . n�
� ≈ XP

ii� . . . X
W
nn�ZP...W . (33)

Defining the residual tensor,

�i
�...n�

i...n = �i . . . n|V̂ |i� . . . n�
� −XP

ii� . . . X
W
nn�ZP...W . (34)

The fidelity metric is the 2-norm of the residual tensor
(squared to achieve a quadratic form, scaled for conve-
nience),

O(ZP...W ) =
1

2
�i

�...n�

i...n �i
�...n�

i...n . (35)

We seek to minimize O under an unconstrained Z. The
weak form of the minimization is the stationary condi-
tion,

∂O

∂ZP �...W � = 0, ∀ P � . . .W �. (36)
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Evaluating the derivative, this leads to,

XP �

ii� . . . X
W �

nn��i
�...n�

i...n = 0, ∀ P � . . .W �. (37)

This asserts that the projection of the residual onto the
fitting subspace is zero, which is the canonical finding of
least-squares. Expanding the residual,

XP �

ii� . . . X
W �

nn�
�
�i . . . n|V̂ |i� . . . n�

� −XP
ii� . . . X

W
nn�ZP...W

�
= 0,

∀ P � . . .W �. (38)

Moving the first term to the RHS (note the extra primes
to distingish the summations in the Einstein convention),

XP
ii�X

P �

ii� . . . X
W
nn�XW �

nn�ZP...W

= XP �

i���i���� . . . X
W �

n���n�����i��� . . . n���
|V̂ |i���� . . . n����

�,

∀ P � . . .W �. (39)

Defining the grid metric matrices (symmetric positive
definite if the collocations are full rank),

SPP � = XP
ii�X

P �

ii� =
�
X∗P

i X∗P �

i

� �
XP

i� X
P �

i�

�
. (40)

leads to

SPP � . . . SWW �ZP...W

= XP �

ii� . . . X
W �

nn��i . . . n|V̂ |i� . . . n�
�,

∀ P � . . .W �. (41)

Finally, applying the inverses (or pseudoinverses, if rank
problems arise in the collocation matrices),

ZP...W = S−1

PP � . . . S−1

WW �

XP �

ii� . . . X
W �

nn��i . . . n|V̂ |i� . . . n�
�. (42)

The rate-limiting step here is the projection of the ex-
act integrals onto the grid, forming the matrix EP �...W �

,

EP �...W �
≡ XP �

ii� . . . X
W �

nn��i . . . n|V̂ |i� . . . n�
�. (43)

This näıvely scales as O(M2ND+1), which is not accept-
able for almost any application. However, the knowledge
that the operator is local automatically provides for the
existence of an accurate approximate DF representation,
with any choice of fitting metric,

�i . . . n|V̂ |i� . . . n�
� ≈ dAii� . . . d

N
nn�GA...N . (44)

Here the choice of DF metric is reflected in the selec-
tion of DF coefficients dAii� . We may substitute Eq.(44)
into Eq.(43). By forming the intermediate L objects, via
Coulomb-like contractions.

LP
A = dAii�X

P �

ii� , (45)

the E matrix may be formed as,

EP �...W �
≈ LP �

A . . . LW �

N GA...N . (46)

In general, this scales as O(MN+1). However, it is
worth noting that the formation of the L object scales
as O(M4), and is technically rate-limiting for the case
N = 2.

Z-Operator Visualization

Recall that the X-THC Z-operators are,

ZP...W = Y P
A . . . Y W

N GA...N =

wP . . . wWXP
A . . . XW

N GA...N , (47)

with the collocation XP
A = χA(rP ). These are extremely

interesting physical objects, as they contain the quan-
tized renormalization of the physical-space N -body po-
tential,

V̂ (r1, . . . , rN )
{ψi}
= δ(r1 − rP ) . . . δ(rN − rW )ZP...W .

(48)
The quadrature weights in the Z-operators correct for
the length scales and number of quadrature points in-
volved, and thus are related to the quantization of the
integral rather than the value of the renormalized poten-
tial. The object corresponding directly to the quantized,
renormalized N -body potential is the Z-operator with
the quadrature weights removed, which we denote here
by V̄ P...W ,

V̄ P...W = XP
A . . . XW

N GA...N . (49)

In fact, we can roll back one step further by general-
izing the collocation locations, and extract a continuous,
renormalized potential Ṽ for the primary basis at hand,

Ṽ (r1, . . . , rN ) ≡ χA(r1) . . .χN (rN )GA...N . (50)

It is easily verified that (due to the closure of the X-
THC case), the spectral integral tensors for the operators
V̂ and Ṽ are identical,

�i . . . n|V̂ |i� . . . n�
� = �i . . . n|Ṽ |i� . . . n�

�. (51)

However, it is also obvious that, for a generic V , the
spatial forms of these operators are not equivalent,

V̂ (r1, . . . , rN ) �= Ṽ (r1, . . . , rN ). (52)

In fact, V̂ still lies in the full space, but Ṽ lies in the
finite subspace spanned by the products ii�, etc. Thus,
no general finite spatial quantization of V̂ will provide
an exact quadrature for the integral tensor. In contrast,
because we know that Ṽ lives in ii� (and ii� does too),
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we can quantize the potential Ṽ in an exact manner by
applying the Gaussian quadrature.

To provide some physical insight into the X-THC
renormalization and quantization processes, we consider
the case of a 1-dimensional, 2-body Gaussian force,

V̂ (x1, x2) = αw exp(−βwx
2

12
). (53)

For sake of simplicity, we consider αw = 1 and βw = 1.
We take the basis to be Hermite functions of up to order
M with a spatial range of bx = 1.

Plots for M = 5 and M = 9 are shown in Figures 1
and 2, respectively. In each case, the top panel shows
the Gaussian potential V̂ , which is obviously central and
invariant to the basis used. The middle panel shows the
renormalized operator Ṽ , which is overall qualitatively
similar to V̂ , but differs in several quantitative details.
Most obviously, the projection through ii� (via A) atten-
uates the potential for x1 ≈ x2 � 0 and x1 ≈ x2 � 0,
as the finite basis ii� has no support for these regions of
physical space. More subtly, incompleteness of ii� induces
small differences (alias) between the potentials through-
out physical space, with the differences becoming more
marked near the periphery. Note that exact integration
(e.g., an infinite quadrature grid) of either potential with
the basis functions would return the same integral ten-
sor, for this choice of basis. However, because we know
that Ṽ lies wholly in ii�, we can invoke the finite Gaus-
sian quadrature to quantize and integrate this potential
exactly. This is denoted by the grid of dots on the middle
panel. However, we cannot apply this same finite grid to
V̂ : the alias, depicted in the bottom panel of each figure,
is nonzero at the quadrature nodes.

In the limit that the primary basis is complete, Ṽ ap-
proaches V̂ , as the finite primary basis spans the full
Hilbert space, and there are no alias components to be
projected. This is visible by comparing the M = 5 and
M = 9 difference plots (note that the M = 9 quadrature
spans a larger spatial region than M = 5). In the central
region, from roughly x = −2 to x = 2, the M = 9 Ṽ
is much closer to V̂ than in the M = 5 case; this cor-
responds to the additional completeness of the primary
basis in this region for M = 9. The boundary regions of
the quadratures are also interesting; the larger differences
at the edges are similar, regardless of M . At the edges,
the M = 5 and M = 9 primary basis sets have a qualita-
tively identical approximate span, albeit at a markedly
different maximum spatial value.

These results indicate that X-THC can be interpreted
as a two phase process: (1) production of a basis-specific
potential Ṽ by projection of V̂ through A to clip compo-
nents outside of ii� (renormalization) and then (2) alias-
free invocation of the finite quadrature grid P to provide
separability (quantization).
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FIG. 1: Visualization of the original potential V̂ (top), renor-

malized potential Ṽ (middle), and difference (alias) Ṽ − V̂
(bottom) for M = 5.
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FIG. 2: Visualization of the original potential V̂ (top), renor-

malized potential Ṽ (middle), and difference (alias) Ṽ − V̂
(bottom) for M = 9.

DEMONSTRATION CODE

Overview

To support the mathematical demonstraction of ex-
act X-THC resolution of the potential integral tensor,
and to provide a practical example of the scaling gains
provided by X-THC, a mixed MATLAB/C++ code was
developed for the case of D-dimensional Hermite func-
tions with N -body w-contracted Gaussian forces. In this
code, the required potential integrals (in the primary or
auxiliary basis) and possible X-THC factors are gener-
ated in MATLAB and written to disk, for the given basis
size Mµ, dimensionality D, number of bodies N , and
number of w-contraction points Nw. For each integral
technology and w-separable vs. w-nonseparable case, the
generalized pairing field is computed for a randomly gen-
erated pairing tensor in a standalone C++ code for the
particular w-separability and integrals technology case.
In each C++ code, the integrals and factors are read in,
the w indices contracted over first if simulating a non-
separable force, and then the generalized pairing tensor
is computed according to the algorithms discussed below.

MATLAB was chosen for the integral and factor gen-
eration routines due to ease of implementation, and par-
ticular strength in treatment of arbitrary rank tensors.
As this portion of the total procedure would typically be
performed as a single-use overhead step (e.g., before HFB
iterations or before application of the integrals in corre-
lated methods), we do not include this step in the tim-
ings for the generalized pairing tensor, and thus there is
no penalty for using the interpreted and rather memory-
näıve MATLAB language for this stage. For the heavy
linear algebra work of pairing tensor formation, C++ was
selected for its “close to the metal” properties, particu-
larly including explicit control of memory allocation and
ability to swap pointers without performing explicit deep
copy operations. Wherever possible (and for absolutely
all contraction operations), BLAS calls are used, with
the algorithms designed so as to allow for permutation of
memory to be hidden in BLAS3 or BLAS2 operations as
much as possible. The algorithms were formulated so as
to rely preferentially on the BLAS3 DGEMM operation,
followed by the BLAS2 DGEMV, followed by various
BLAS1 operations. Every effort was expended to pro-
duce well-optimized algorithms, with the same amount
of optimization present in both the X-THC and conven-
tional methods. With these considerations, we believe
that the timings reported are entirely representative of
a practical application of the various integrals technolo-
gies, and show a wholly fair comparison of X-THC and
conventional methods.

The C++ codes are compiled with the Intel icpc

12.0.1 compiler, using -O3 optimization. The BLAS
calls are handled with Intel’s very efficient MKL 7.0.1
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library, with threading disabled. Performance measure-
ments are performed using the PAPI 5.0.1 library, which
features a wall timer accurate to ∼ 1 microsecond. Ac-
cumulated averaging was performed to ensure that all
pairing kernels ran for at least 1 second of wall time,
which ameliorates startup and noise costs for small prob-
lem sizes. All timings were produced on a single-socket
node featuring a quad-core 3.4 GHz Intel i7 Processor
(Sandy Bridge) with 32 GB of DDR3 and 8 MB of L3
cache. All timings are for wall times using a single thread.

Note that we do not show results for density-fitted al-
gorithms in this study, though we have coded generalized
pairing routines for this technology. All accuracy results
are of essentially the same quality as X-THC (e.g., nu-
merically exact to within a small pre-factor of the ma-
chine epsilon). For w-separable forces with N > 1, the
optimal pathway is to contract the DF intermediates to
the conventional integrals, and then form the pairing ten-
sor in the conventional manner. As a result, the DF
timings results for w-separable potentials are essentially
indistinguishable from the conventional case. For non-w-
separable potentials, the DF algorithms require the same
O(M2ND

µ ) scaling as the conventional case, but the pre-
factors are many orders of magnitude larger, due to the
larger auxiliary basis sizes involved. Moreover, in the
non-w-separable case, formation of the conventional in-
tegrals from the DF integrals exhibits a higher scaling of
O(M2ND+1

µ ), and is therefore not a viable alternative. In
any case, the conventional algorithm always outperforms
the DF algorithm for the generalized pairing tensor, so
we have elected to not include the DF results here. This
failure of DF methods for “exchange-like” contractions
is well known, and was the primary motivation for the
development of the THC representation.

Basis/Potential Choice

Hermite Function Primary Basis

The primary basis functions chosen for this demonstra-
tion are direct products of generalized Hermite functions,

ψi(r) =
D�

µ

ψiµ(rµ). (54)

Below, we will drop the µ labels and work in 1D (r ≡

x) unless otherwise noted. The 1D generalized Hermite
function is,

ψi(x) = (bµ)
1/2 (

√
π2ii!)−1/2Hi(z) exp(−z2/2)� �� �

φi(z)

, (55)

where Hi is the i-th Hermite polynomial and the nondi-
mensional coordinate is,

z = bµx. (56)

i runs from 0 to Mµ. Note that we reserve φi(z) for the
true non-dimensional Hermite function, where bµ = 1 .

The auxiliary functions for this problem are also gen-
eralized Hermite functions,

χA(x) = (
√
2bµ)

1/2(
√
π2AA!)−1/2HA(z

�) exp(−z�2/2),
(57)

where now,

z� =
√
2bµx, (58)

and A runs from 0 to 2Mµ. The THC quadrature for
this problem is thus the 2Mµ + 1-node Gauss-Hermite
quadrature with a spatial length scale of

√
2bµ.

Gaussian Potential

For flexibility, we use for potential a linear combination
of Gaussians. Given the set {< αw,βw >}, the form of
the potential is,

V̂ (x1, . . . , xN ) =
Nw�

w

N−1�

η=1

N�

ξ=η+1

α1/D
w exp(−βwx

2

ηξ).

(59)
For a 2-body potential in 1 dimension, with Nw = 1 this
reduces to the usual Gaussian force,

V̂ (x1, x2) = α1/D
w exp(−βwx

2

12
). (60)

For higher N , this is simply a sum of two-body Gaus-
sian forces over all possible pairs of two-body coordinates,
xηξ = xη − xξ.

We use a set of {< αw,βw >} with Nw = 8 which
approximates the Coulomb operator 1/r12 for all compu-
tations shown in this work. This allows us to show sepa-
rate accuracy and timings results for the w-separable and
non-w-separable cases, depending on whether we choose
to sum over the w index first or last.

Potential Integrals (MATLAB)

All of the D-dimensional N -body potential integrals
above can be constructed from primitive 1-dimensional 2-
body potential integrals. For conventional integral tech-
nology, four-index integrals in the primary basis are re-
quired. For X-THC technology, two-center integrals in
the auxiliary basis are required. Integrals of this type
are discussed extensively in [1], where Moshinski trans-
formations and length-scale transformations are used to
provide analytical conventional integrals (the generaliza-
tion to auxiliary integrals is straightforward).
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Conventional Integrals

Following [1], the 1-dimensional 2-dimensional primary
integrals are computed as,

�ij|V̂ w
|i�j�� = α1/D

w

��
dx1dx2 ψi(x1)ψj(x2)×

exp(−βwx
2

12
)ψi�(x1)ψj�(x2)

= α1/D
w DAa

mnD
Ab
m�n�Daa�(ηw)Dba�(ηw), (61)

where all summations run from 0 to 2Mµ. DAa
mn are the

Moshinski transformation coefficients, and Daa�(ηw) are
the length-scale transformation coefficients (see below).
The length-scale change parameter is

ηw =
1�

1 + 2βw/b2µ
. (62)

Auxiliary Integrals

By extension, the 1-dimensional primary integrals are
computed as,

GAB
w = α1/D

w

��
dx1dx2 χA(x1) exp(−βwx

2

12
)χB(x2)

=
1

√
2bµ

α1/D
w

4

�
1 + 2βw/b2µ

DNn
ABDnn�(ηw)INIn� , (63)

where again all summations run from 0 to 2Mµ. The
IN quantities are primitive integrals over single Hermite
functions of unit length,

IN =

�
dz ψN (z) =

�
4
√
π
√
2 (N−1)!!√

N !
N even

0 N odd
(64)

Moshinski Transformation Coefficients DAa
mn

The Moshinski transformation coefficients relate prod-
ucts of Hermite functions in Eulerian coordinates x1 and
x2 to corresponding Hermite functions in the Lagrangian
coordinates X and x, where,

X =
1
√
2
[x1 + x2], x =

1
√
2
[x1 − x2], (65)

The transformation is

ψn1(x1)ψn2(x2) = DN,n
n1,n2

ψN (X)ψn(x). (66)

As the Gaussian potential is central (i.e., depends only
on x, not X), invoking the Moshinksi transformation re-
duces the two-coordinate potential integrals to a sepa-
rable product of one-coordinate integrals in X and x.

If n1 and n2 each range from 0 to Mµ, N and n each
range from 0 to 2Mµ. The well-known selection rule is
n1 + n2 = N + n. A simple, explicit formula for these
coefficients is [1]

DN,n
n1,n2

= δn1+n2,N+n

�
n1!n2!

N !n!

��
1
√
2

�N+n

×

i<N,j<n,i+j=n1�

i,j=0

�
N
i

��
n
j

�
(−1)j . (67)

However, this formula is unstable for large values of
N + n due to the summation over alternating quantities
which are both large. We have therefore derived stable
recurrence relations for the Moshinksi coefficients. The
recurrence relation in the first coordinate is,

DN,n
n1+1,n2

=
1
√
2

��
N

n1 + 1
DN−1,n

n1,n2
+

�
n

n1 + 1
DN,n−1

n1,n2
.

�

(68)
And the corresponding recurrence relation in the other
coordinate is,

DN,n
n1,n2+1

=
1
√
2

��
N

n2 + 1
DN−1,n

n1,n2
−

�
n

n2 + 1
DN,n−1

n1,n2
.

�

(69)
The seed is of course,

D0,0
0,0 = 1. (70)

For implementation purposes, any Moshinski transforma-
tion coefficient with a “negative” index can be taken to
be zero.

Length-Scale Transformation Coefficients Dnn�(ηw)

The length-scale transformation coefficients provide
the correspondence between Hermite polynomials of dif-
ferent length-scales,

Hn(z) = (η)−1/2Dnn�(η)Hn�(z� = z/η) (71)

Note that the transformation automatically renormalizes
the polynomials. n and n� both run from 0 to Mµ.
A closed-form expression of these coefficients is [1]

Dnn�(η) = Fn,n�(−1)
n−n�

2

�
n!

n�!

�1/2 ηn
�
+1/2(1− η2)

n−n�
2

2
n−n�

2

�
n−n�

2

�
!

,

(72)
on the condition that n > n�, and that the parity agrees,

Fn,n� =
1

2
[1 + (−1)n+n�

] =

�
1, n+ n� even
0, n+ n� odd

(73)

Because η ≤ 1, this formula appears to be univer-
sally stable. However, the numerators and denomina-
tors above both involve divergent values, so a log-space
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formalism is required for explicit evaluation to prevent
overflow. This may lose a few digits of precision, so we
have elected to use a recurrence relation for these coef-
ficients, which is easily derived. The recurrence relation
is,

Dn+1,n� = η

�
n� + 1

n+ 1
Dn,n�+1 + η

�
n�

n+ 1
Dn,n�−1

−

�
n

n+ 1
Dn−1,n� . (74)

The seed is,

D0,0(η) =
√
η. (75)

For implementation purposes, any length-scale transfor-
mation coefficient with a “negative” index can be taken
to be zero.

D-Dimensional, N-Body Integrals

The generalization to N -body integrals as described
above is carried out at the 1-dimensional stage, and is
currently hard-coded for only the 3-body case (this could
easily be extended, but the point is already demonstrated
by 3-body). For primary-basis integrals, the required in-
tegral is simply,

�ijk|V̂ w
|i�j�k�� = �ij|V̂ w

|j�j��δkk�

+ �ik|V̂ w
|i�k��δjj� + �jk|V̂ w

|j�k��δii� . (76)

For auxiliary basis integrals, there is no delta function
in the third coordinate, but rather a normalized primi-
tive Hermite integral, i.e., the quantity IN defined in the
auxiliary potential integrals. Thus, the auxiliary poten-
tial integral is,

GABC
w = GAB

w IC +GAC
w IB +GBC

w IA. (77)

In practice, the generalization to 3-body integrals is per-
formed in MATLAB on the 1-dimensional integrals, be-
fore integrals are written to disk.

The generalization to non-w-separable D-dimensional
potentials is carried out by summing over w, e.g., in the
2-dimensional, 2-body case,

�ij|V̂ |i�j�� =
Nw�

w

�ixjx|V̂
w
|i�xj

�
x��iyjy|V̂

w
|i�yj

�
y�, (78)

or,

GAB =
Nw�

w

GAxBx
w GAyBy

w . (79)

In practice, the production of the nonseparable Z fac-
tors or conventional integrals is carried out in blocks in

C++, to save memory. The formation of these integrals
is not counted in the pairing timings, as infinite memory
is assumed. The overhead for this is many orders of mag-
nitude larger for the conventional case than the X-THC
case, due to the larger size of the rank-2ND conventional
integral tensor.

X-THC Factors (MATLAB)

To complete the X-THC factorization, the Gauss-
Hermite quadrature nodes/weights and collocation ma-
trices X and Y are required.

Quadratures

The THC grid for this problem is the 2Mµ + 1 node
Gauss-Hermite quadrature with the spatial range param-
eter

√
2bµ.

First, the non-dimensional quadrature is generated.
The orthonormal-basis position operatorXPQ = �P |x̂|Q�

in the auxiliary Hermite functions is,

XPQ = �P |x̂|Q� =

�
P + 1

2
(δP+1,Q + δP,Q+1) . (80)

This operator is symmetric tridiagonal, with zero diago-
nal. The eigen-decomposition is formed,

XPQ = QPP �xP �QQP � . (81)

The eigenvalues are the nondimensional quadrature
nodes. The weights are determined by first generating
the moment vector,

vP = 4
√
πδP0. (82)

and applying the diagonalizing transformation,

vP � = QPP �vP (83)

The full weights are then given by,

wP � = v2P � exp(x2

P �). (84)

The nodes and weights are then transformed to the prob-
lem domain, by,

xP =
xP �
√
2bµ

, wP =
wP �
√
2bµ

. (85)

Collocation

The X and Y X-THC factors require collocations at
the quadrature nodes. This is accomplished by efficient,
stable recurrence relations for the Hermite functions.
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The non-dimensional coordinate is first computed,

z = bµx. (86)

The first two non-dimensional Hermite functions are
computed explicitly,

ψ0(z) = π−1/4 exp(−z2/2), (87)

and

ψ1(z) =
√
2zπ−1/4 exp(−z2/2) =

√
2zψ0(z). (88)

The recurrence relation is then applied iteratively,

ψi+1(z) =

�
2

i+ 1

�
zψi(z)−

�
i

2
ψi−1(z)

�

=

�
2

i+ 1
zψi(z)−

�
i

i+ 1
ψi−1(z). (89)

And finally the length-scale normalization is added,

ψi(z) = (bµ)
1/2ψi(z). (90)

The X factor is,

XP
i = ψi(xP ) = (bµ)

1/2ψi(z = bµxP ), (91)

and the Y factor is,

Y P
A = wPχA(xP ) = wP (

√
2bµ)

1/2ψA(z
� =

√
2bµxP ).

(92)
If desired, the DF 3-index overlap integrals can be gen-

erated exactly (within numerical precision) from the X-
THC factors,

[ii�|A] = XP
i XP

i� Y
P
A . (93)

The X-THC Z operators are immediately formed from
the Y factors and corresponding G auxiliary potential
integrals,

ZPQ
w = Y P

A Y Q
B GAB

w . (94)

Generalized Pairing Algorithms (C++/BLAS)

Algorithms for the generalized pairing tensor with con-
ventional or X-THC integrals, and general or w-separable
potentials are described below, and depicted in Algo-
rithms 1-4. In these algorithms, we use ellipses to denote
arbitrary rank in D or N , and we follow the convention
that dimensions are striped as the slow superindex, and
particles are striped as the fast superindex. The ten-
sors used in these algorithms are stored in practice as a
collapsed single-dimensional array (a double*), regularly
striped so that the left-most index is the fastest dimen-
sion and the right-most index is the slowest dimension
(Fortran order, which allows for convenient application

of BLAS operations). For key contraction operations,
we group sets of neighboring indices to form the three
superindices i (result row or fast index), j (result col-
umn or slow index) and k (contraction index) for use in
GEMM,

Cij = AikBkj . (95)

Note the use of color to emphasize the choice of su-
perindices. By changing the order of A and B and al-
tering the GEMM transposition arguments, we can take
i, j, and k in any order in the factor tensors A or B
(e.g., the contraction index could actually be the row di-
mension in A). However, striding is not permitted with
BLAS3 operations, e.g., a tensor contraction of the form,

Cijk = AilBjlk. (96)

would require explicit transposition to Bljk or Bjkl to be
able to group the compound jk index. Our algorithms
are designed to eliminate such explicit transposition as
much as possible. However, no transposition-free algo-
rithm exists for X-THC w-separable potentials in arbi-
trary N , see the discussion below.

Note that our discussions and codes all assume
isotropic basis sets for simplicity (e.g., Mx = My), but
X-THC is certainly not restricted to this. In general, X-
THC can handle differing values of Mx and My, and even
different classes of basis functions in each dimension (e.g.
cylindrical coordinates).

Conventional Integrals, General Potential

This algorithm is quite simple, but extraordinarily ex-
pensive (this is why non-w-separable forces are rarely
used in high D or N cases). The physicists’ integral
tensor is used in a simple matrix-vector product with the
generalized pairing tensor, which is carried out by GEMV
in M2ND

µ ≡ O(M2ND
µ ) operations.

In practice, such an algorithm will almost certainly be
orders of magnitude more expensive than reported here.
In our demonstration, we simulate infinite memory by
forming blocks of the integrals prior to GEMM (i.e., an
integral direct procedure). The integral generation costs
O(M2ND

µ ) (in this case by contracting out the w index)
with a much larger prefactor than the GEMV itself. In
a fully generic potential, the integrals would have to be
generated explicitly, at possibly even higher cost. This
integral formation is not counted in the wall times re-
ported here, but would increase the practical wall time
considerably in the usual case that the rank-2ND inte-
gral tensor does not fit in core memory.
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X-THC Integrals, General Potential

This algorithm works by cyclically transforming from
configuration space i�µ to the quantized coordinate space
Pµ by GEMM, scaling the coordinate-space pairing ten-
sor by Z, and then performing another cyclic transforma-
tion to bring Pµ back to iµ via GEMM. The cyclic trans-
formations are written so that the fast index in the cur-
rent buffer is contracted off, and the replacement index is
placed at the slow index of the result buffer. The point-
ers for the result and current buffer are then swapped,
and the next contraction index automatically appears in
the fast index of the current buffer, without any need for
explicit transposition.

Formally, O(MND+1

µ ) operations are required for the
cyclic permutations. The prefactor arises from the ∼

2Mµ size of the quadrature index, and from the fact that
two cyclic permutations are required.

This algorithm currently requires essentially three
buffers of size 2NDMND

µ (T , U , and Z). An efficient
blocked or disk-based algorithm could be developed if this
becomes a bottleneck, with considerable performance
gains expected over conventional disk-based or integral-
direct algorithms with general potentials.

Conventional Integrals, w-Separable Potential

This algorithm works by cyclically applying the inte-
grals for dimension µ via GEMM, for each w point. Ex-
plicit transposition is avoided by placing the replacement
index (i . . . n)µ as the slow index of the result, allowing
(i� . . . n�)µ+1 to be exposed as the new fast index. The
formal scaling of this algorithm is O(NwMND+N

µ ) op-
erations, with remarkably small external overhead. The
memory requirement is essentially 2 MND

µ buffers (T and
U). The small overhead, combined with the efficiency of
the long (i� . . . n�)µ contraction index and small mem-
ory footprint explains much of the current success of w-
separable potentials.

X-THC Integrals, w-Separable Potential

This algorithm works by, for each w point and di-
mension µ, cyclically forward transforming from i�µ to

Pµ, applying the Z
(P...W )µ
w operation, and then cyclically

backtransforming from Pµ to iµ. The formal prefactor is
O(NwMND+1

µ ) FMA operations. The required memory
is essentially 2 2NMND

µ buffers T and U , a factor of 2N

more than the conventional w-separable algorithm.
Unfortunately, an explicit transposition is required for

this algorithm for general N . The genesis of this require-
ment is that the cyclic permutation is not carried through
all ND coordinates, but only N coordinates at a time.

In the 2-body case, a specialized algorithm can be ap-
plied to avoid the explicit transposition. The transfor-
mation in each dimension reads,

Uj�LP ← Ti�j�LX
P
i�

UQLP ← Tj�LPX
Q
j�

UQLP ← TQLPZ
PQ
w

UQLi ← TQLPX
P
i

ULij ← TQLiX
Q
j

(97)

Here L is the compound index corresponding to the other
dimensions, and pointer swap is assumed between each
step.
One additional modification can attenuate the prefac-

tor somewhat, at the cost of doubling the buffer space.
The forward transformation of the first dimension from
κ(i�j�)1L to UL(PQ)1

is the same for all w points, as κ
is w-independent. Moreover, the back transformation of
the last dimension from UL(PQ)D

to ∆L(ij)D does not de-
pend on the individual w points, but only on their sum.
Thus the buffers UL(PQ)1

and UL(PQ)D
can be used in a

prelude/epilogue construct. In the limit that Nw → ∞,
the savings are 100%, 50%, and 33%, for D = 1, 2,, and
3, respectively. In the limit that Nw = 1 or D → ∞, the
savings approach 0%, so the deployment of this modifi-
cation would depend greatly on the context and memory
capacity.

Computational Results

Timings and accuracy results for generalized pairing
tensor formation are shown in Figures 3 and 4, respec-
tively, for various integral technologies, dimensions, num-
ber of bodies, and problem sizes. To help crystallize the
information in the timing data, asymptotic scaling and
predicted crossover metrics are presented in Tables I and
II, respectively.
The accuracy results of Figure 4 depict the relative

maximum residual D in the pairing tensor, defined as,

DMethod =

��∆Method

i...n −∆Reference

i...n

��
∞��∆Reference

i...n

��
∞

. (98)

Here the w-separable conventional integral technology
was selected as a reference for the accuracy.[3] It is ap-
parent that all methods (conventional and THC) are
exact to within a reasonable growth factor against the
machine epsilon. In fact, the worst relative maximum
residual seen here is less than 10−12 (compared to the
double-precision machine epsilon of 2.2×10−16), and does
not seem to be grow markedly with respect to problem
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size. This provides strong numerical evidence that X-
THC is a lossless compression of the potential integral
tensor. Further agreement could doubtless be obtained
if the Moshinksi coefficients were evaluated with higher
precision.[4]

The timing results of Figure 3 are quite clean as tim-
ings go, with very smooth increase with respect to prob-
lem size, indicating that the accumulation procedure
(smaller Mµ) or sheer size of the problem (larger Mµ)
are sufficient to eliminate the bulk of the noise that often
plagues timing studies. On a log-log scale, All timing
curves exhibit a slight upward concavity which quickly
tends toward linearity for larger Mµ as the rate-limiting
DGEMM-based steps become dominant relative to the
lower-scaling operations. Two noticable “jumps” exist:
the last few points of the 2-body, 1-dimensional conven-
tional separable case and the last few points of the 2-
body, 3-dimensional THC separable case. These jumps
are likely due to working set size limits exceeding some
discrete performance threshold in hardware, for instance,
cache or memory bank limits, respectively. From these
plots, power-law regression of the form,

tPairing = αMβ
µ , (99)

is performed, using points selected above an Mµ which
appears to be visually free of noise in each case. The β
from these regressions are depicted in Table I. The pre-
dicted THC crossover points from these regressions (the
criticalMµ at which X-THC becomes practically superior
to conventional integrals) are shown in Table II. For all
cases in which an explicit crossover occurs, the predicted
crossover point from the power-law model is within 1 Mµ

of the observed value. Note that the observed asymptotic
scaling is often less than the theoretical value. There are
two geneses for this: residual contributions from lower
scaling operations (which drags the scaling down at the
cost of prefactor) and better GEMM efficiency for larger
matrix sizes (which makes GEMM appear to scale better
than cubic as the matrix size increases). However, the
relative scaling relationships between all integral tech-
nologies is retained.

From this point forward, it is useful to consider general
and w-separable potentials separately.

For all cases of N and D in general local potentials,
X-THC is markedly more efficient than conventional. In
all such cases, X-THC crosses over conventional (often
at very small Mµ for D > 1), and is several orders of
magnitude faster for the largest cases shown with D > 1.
This is strong evidence for the immediate application of
X-THC to problems involving general potentials, with
possibly magnficent tractability gains realizable.

For w-separable cases, X-THC always exhibits lower
asymptotic scaling than conventional, and provides
crossovers and sometimes significant speedups for D = 1
and D = 2. However, the narrower asymptotic sepa-
ration between conventional and X-THC (βConv−Sep −

βTHC−Sep = N−1 vs. βConv−Gen−βTHC−Gen = ND−1)
exposes the prefactor of X-THC, particularly for larger
D. This prefactor has two geneses: the formal FMA
prefactor due to successive substitution of primary ba-
sis indices for larger quadrature indices and the lower
efficiency of X-THC DGEMM operations compared to
conventional DGEMM operations. For a 3-body, 3-
dimensional w-separable potential, the crossover seems
likely to occur just outside of the memory-limited prob-
lem size explicitly shown in Figure 3. In fact, the pre-
dicted crossover point for this case is Mµ = 10.3. The
2-body, 3-dimensional w-separable potential is somewhat
more sinister: a “jump” in the timings curve caused by
some hardware boundary causes the expected crossover
point to increase to a practically unreachable value of
Mµ = 1789.

The inability of X-THC to provide a practical crossover
for the 2-body, 3-dimensional w-separable potential is an
indication that this technique is not a panacea. How-
ever, we point out that the utilization of a w-separable
potential throughout the literature seems to stem from
the lack of an X-THC representation for a general poten-
tial: the approximation of the potential as w-separable
was required to provide a tractable numerical numerical
recipe. In this light, X-THC treatment of general poten-
tials provides a practical alternative pathway that avoids
approximation of the potential as w-separable. For all of
the cases studied here, the general X-THC curve is within
roughly an order of magnitude of the conventional sep-
arable curve (in some cases even faster!). Moreover, X-
THC does provide some gains in w-separable potentials,
particularly for larger N . On more formal grounds, the
demonstrated lossless asymptotic reduction of a general-
ized pairing term in any local potential fromO(M2ND

µ ) to
O(MND+1

µ ) is a useful result in and of itself, considering
that simply storing the pairing tensor requires O(MND

µ ).
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ists for N > 2, indeed, it is required for THC to func-

tion. However, it is very difficult to write down (as you

would needN generalizations of the bra- or ket-like objects

[ii�| and |jj�]). A possible generalization is [ii�| . . . [nn�
|V̂ ,

which makes sense physically, but just plain looks awk-

ward. This is in contrast to the physicists’ notation,

which is trivial to write as a compound rank-2 object

�i . . . n|V̂ |i� . . . n�
�, but perhaps harder to visualize.

[3] Note that there is some ambiguity here, as some round-

off error is intrinsic to the w-separable conventional refer-

ence itself. A particularly marked source of roundoff error

is the Moshinski relations for the potentials. Since both

the w-separable and general conventional pairing routines
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share the same underlying Moshinski relations, superior

agreement between these two conventional methods and

the THC methods does not necessarily imply that one is

more accurate than the other, against a hypothetical ex-

act precision result. In any case, the agreement between

all methods is sufficient that the point is moot.

[4] This is the most numerically susceptible portion of the

procedure, even when using recurrence relations.
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Algorithm 1 Generalized pairing algorithm: conventional integrals, general potential.

1: procedure Pairing Conv Gen(�(i . . . n)1 . . . (i . . . n)D|V̂ |(i� . . . n�
)1 . . . (i

� . . . n�
)D�, κ(i�...n�)1...(i�...n�)D )

2: Allocate ∆(i...n)1...(i...n)D
� Target (Typically Preallocated)

3: ∆(i...n)1...(i...n)D
= �(i . . . n)1 . . . (i . . . n)D|V̂ |(i� . . . n�

)1 . . . (i
� . . . n�

)D�κ(i�...n�)1...(i�...n�)D � GEMV, O(M2ND
µ )

4: return ∆(i...n)1...(i...n)D

5: end procedure

Algorithm 2 Generalized pairing algorithm: X-THC integrals, general potential.

1: procedure Pairing THC Gen(X
Pµ
iµ

, Z(P...W )1...(P...W )D , κ(i�...n�)1...(i�...n�)D )

2: Allocate ∆(i�...n�)1...(i�...n�)D � Target (Typically Preallocated)

3: Allocate T(P...W )1...(P...W )D
� Scratch Array (Typically Preallocated)

4: Allocate U(P...W )1...(P...W )D
� Scratch Array (Typically Preallocated)

5: T(i�...n�)1...(i�...n�)D = κ(i�...n�)1...(i�...n�)D � Deep Copy

6: for all µ ∈ [1, D] do � Start Cyclic Permutation in µ and η
7: for all η ∈ [1, N ] do
8: U(...n�)µ...(P...W )µ−1(P )µ = Xi�µ

PµT(i�)µ(...n�)µ...(P...W )µ−1
� GEMM, O(MND+1

µ )

9: swap(T, U) � Pointer Swap

10: end for
11: end for � End Cyclic Permutation in µ and η
12: T(P...W )1...(P...W )D

∗ = Z(P...W )1...(P...W )D � Hadamard Product, O(MND
µ )

13: for all µ ∈ [1, D] do � Start Cyclic Permutation in µ and η
14: for all η ∈ [1, N ] do
15: U(...W )µ...(i...n)µ−1(i)µ = Xiµ

PµT(P )µ(...W �)µ...(i...n)µ−1
� GEMM, O(MND+1

µ )

16: swap(T, U) � Pointer Swap

17: end for
18: end for � End Cyclic Permutation in µ and η
19: ∆(i...n)1...(i...n)D

= T(i...n)1...(i...n)D
� Deep Copy

20: return ∆(i...n)1...(i...n)D

21: end procedure

Algorithm 3 Generalized pairing algorithm: conventional integrals, w-separable potential.

1: procedure Pairing Conv Sep(�i . . . n|V̂ |i� . . . n�
�
w
µ , κ(i�...n�)1...(i�...n�)D )

2: Allocate ∆(i...n)1...(i...n)D
= 0 � Target (Typically Preallocated)

3: Allocate T(i�...n�)1...(i�...n�)D � Scratch Array (Typically Preallocated)

4: Allocate U(i�...n�)1...(i�...n�)D � Scratch Array (Typically Preallocated)

5: for all w ∈ [1, Nw] do
6: Tw

(i�...n�)1...(i�...n�)D
= κ(i�...n�)1...(i�...n�)D � Deep Copy

7: for all µ ∈ [1, D] do � Start Cyclic Permutation in µ
8: Uw

...(i...n)µ−1(i...n)µ
= �i . . . n|V̂ |i� . . . n�

�
w
µT

w
(i�...n�)µ...(i...n)µ−1

� GEMM, O(NwM
ND+N
µ )

9: swap(Tw, Uw
) � Pointer Swap

10: end for � End Cyclic Permutation in µ
11: ∆(i...n)1...(i...n)D

+ = Tw
(i...n)1...(i...n)D

� Contribution from w
12: end for
13: return ∆(i...n)1...(i...n)D

14: end procedure
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Algorithm 4 Generalized pairing algorithm: X-THC integrals, w-separable potential.

1: procedure Pairing THC Sep(X
Pµ
iµ

, Z
(P...W )µ
w , κ(i�...n�)1...(i�...n�)D )

2: Allocate ∆(i�...n�)1...(i�...n�)D � Target (Typically Preallocated)

3: Allocate T(P...W )1...(i...n)D
� Scratch Array (Typically Preallocated)

4: Allocate U(P...W )1...(i...n)D
� Scratch Array (Typically Preallocated)

5: for all w ∈ [1, Nw] do
6: T(i�...n�)1...(i�...n�)D = κ(i�...n�)1...(i�...n�)D � Deep Copy

7: for all µ ∈ [1, D] do � Start Cyclic Permutation in µ
8: for all η ∈ [1, N ] do
9: U(...n�)µ...(i...n)µ−1(P )µ = Xi�µ

PµT(i�)µ(...n�)µ...(i...n)µ−1
� GEMM, O(NwM

ND+1

µ )

10: swap(T, U) � Pointer Swap

11: end for
12: T...(i...n)µ−1(P...W )µ∗ = Z

(P...W )µ
w � SCAL, O(NwM

ND
µ )

13: for all η ∈ [N, 1] do
14: U(n)µ...(i...n)µ−1(P...)µ = Xnµ

WµT...(i...n)µ−1(P...)µ(W )µ � GEMM, O(NwM
ND+1

µ )

15: swap(T, U) � Pointer Swap

16: end for
17: U...(i...n)µ−1(i...n)µ = T(i...n)µ...(i...n)µ−1

� Explicit Transposition

18: swap(T, U) � Pointer Swap

19: end for � End Cyclic Permutation in µ
20: ∆(i...n)1...(i...n)D

+ = T(i...n)1...(i...n)D
� Contribution from w

21: end for
22: return ∆(i...n)1...(i...n)D

23: end procedure
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FIG. 3: Timings for generalized pairing tensor formation vs. problem size for various integral technologies, numbers of bodies

N , and number of dimensions D.
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FIG. 4: Relative maximum residual for generalized pairing tensor formation vs. problem size for various integral technologies,

numbers of bodies N , and number of dimensions D.
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TABLE I: Asymptotic scalings of generalized pairing tensor formation with various integral technologies. Shown are observed

scalings based on power-law fit to timing data and corresponding theoretical scaling (in parentheses).

D N βConv−Sep βTHC−Sep βConv−Gen βTHC−Gen

1 2 4.5 ( 4) 1.9 ( 3) 3.9 ( 4) 1.8 ( 3)

1 3 5.8 ( 6) 3.0 ( 4) 5.5 ( 6) 3.2 ( 4)

2 2 5.3 ( 6) 4.4 ( 5) 7.3 ( 8) 4.6 ( 5)

2 3 8.3 ( 9) 6.1 ( 7) 10.5 (12) 5.5 ( 7)

3 2 7.2 ( 8) 7.0 ( 7) 10.3 (12) 5.8 ( 7)

3 3 8.9 (12) 7.3 (10) 13.7 (18) 7.0 (10)

TABLE II: Predicted THC vs. conventional crossover points for generalized pairing tensor formation based on power-law fit to

timing data.

D N MGen

µ MSep

µ

1 2 1.224E+01 1.172E+01

1 3 3.429E+00 5.170E+00

2 2 2.194E+00 1.657E+01

2 3 2.304E+00 7.928E+00

3 2 2.024E+00 1.789E+03

3 3 1.650E+00 1.035E+01
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