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Abstract.

In our previous work [1] we have shown that critical manifolds of the q-state Potts

model can be studied by means of a graph polynomial PB(q, v), henceforth referred

to as the critical polynomial. This polynomial may be defined on any periodic two-

dimensional lattice. It depends on a finite subgraph B, called the basis, and the manner

in which B is tiled to construct the lattice. The real roots v = eK − 1 of PB(q, v)

either give the exact critical points for the lattice, or provide approximations that, in

principle, can be made arbitrarily accurate by increasing the size of B in an appropriate

way. In earlier work, PB(q, v) was defined by a contraction-deletion identity, similar

to that satisfied by the Tutte polynomial. Here, we give a probabilistic definition of

PB(q, v), which facilitates its computation, using the transfer matrix, on much larger

B than was previously possible.

We present results for the critical polynomial on the (4, 82), kagome, and (3, 122)

lattices for bases of up to respectively 96, 162, and 243 edges, compared to the limit of

36 edges with contraction-deletion. We discuss in detail the role of the symmetries and

the embedding of B. The critical temperatures vc obtained for ferromagnetic (v > 0)

Potts models are at least as precise as the best available results from Monte Carlo

simulations or series expansions. For instance, with q = 3 we obtain vc(4, 82) =

3.742 489 (4), vc(kagome) = 1.876 459 7 (2), and vc(3, 122) = 5.033 078 49 (4), the

precision being comparable or superior to the best simulation results. More generally,

we trace the critical manifolds in the real (q, v) plane and discuss the intricate structure

of the phase diagram in the antiferromagnetic (v < 0) region.

1. Introduction

The q-state Potts model [2] is one of the most well-studied models of statistical

physics [3, 4]. Given a connected graph G = (V, E) with vertex set V and edge set

E, its partition function Z is most conveniently expressed in the Fortuin-Kasteleyn

representation [5]

Z =
∑

A⊆E

v|A|qk(A) , (1)
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where |A| denotes the number of edges in the subset A, and k(A) is the number of

connected components in the induced graph GA = (V, A). The temperature parameter

v is related to the reduced interaction energy K between adjacent q-component spins

through v = eK − 1. In the representation (1), both q and v can formally be allowed to

take arbitrary real values.

In two dimensions, the Potts model can in general only be exactly solved along

certain curves in the (q, v) plane, and for a very few regular lattices G. This includes

the square [6] and triangular lattices [7], and its dual hexagonal lattice. The solution on

the triangular lattice can be extended by decoration [8, 9, 10] and to the closely related

bowtie lattices [11, 12, 13]. The critical manifold—which is the set of points in (q, v)

space at which the model stands at a phase transition—is obviously of special interest.

Remarkably, in the solvable cases [6, 7, 14], the loci of exact solvability coincide precisely

with the critical manifold. Moreover, the critical manifolds are given by simple algebraic

curves:

(v2 − q)(v2 + 4v + q) = 0 , (square lattice) (2)

v3 + 3v2 − q = 0 , (triangular lattice) (3)

v3 − 3qv − q2 = 0 . (hexagonal lattice) (4)

The critical manifolds on other Archimedean lattices—such as the (4, 82), kagome

and (3, 122) lattices—are long-standing unsolved problems of lattice statistics. Recently,

we introduced [1] a graph polynomial PB(q, v)—henceforth referred to as the critical

polynomial—as a step towards solving such problems. This polynomial may be defined

on any periodic two-dimensional lattice G. It depends on a finite subgraph B, called the

basis, and the way in which the basis is tiled to form G. It turns out that in the exactly

solvable cases, PB(q, v) factorises for any choice of B, shedding a small factor which is

precisely given by Eqs. (2)–(4). In the unsolved cases, PB(q, v) does not factorise, except

for a few fortuitous choices of B, but the real roots vc of PB(q, v) provide approximations

to the critical temperature that become more accurate with appropriately increasing size

of B.

The definition of PB(q, v) made in [1] was through a contraction-deletion identity,

similar to that satisfied by (1), and enabled the practical computation of PB(q, v) for

bases of size up to 36 edges (see also [15] and [16]). For the kagome lattice it was found

that the smallest possible 6-edge basis reproduced a well-known, but now refuted [17],

conjecture by Wu [18]. From comparisons with high-precision numerical simulations,

it was found that results for vc in the ferromagnetic regime (v > 0) improved by two

orders of magnitude when going from the 6-edge to the 36-edge basis.

The purpose of this paper is threefold. First, we extend the field of investigations

to include also the (4, 82) and (3, 122) lattices. Second, and more importantly, we

provide an alternative probabilistic definition of PB(q, v), which allows for much more

efficient computations, by using the transfer matrix, than was previously possible

with contraction-deletion. The alternative definition permits us to obtain the critical

polynomial on the (4, 82), kagome, and (3, 122) lattices for bases of up to respectively
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96, 162, and 243 edges. The improvement over [1] is such that the precision on vc in

the ferromagnetic regime is comparable or superior to that of the best available results

using alternative methods, be it exact transfer matrix diagonalisations, Monte Carlo

simulations or series expansions. For instance, with q = 3 we obtain

vc(4, 8
2) = 3.742 489 (4) , (5)

vc(kagome) = 1.876 459 7 (2) , (6)

vc(3, 122) = 5.033 078 49 (4) , (7)

where the number in parentheses indicates the error bar on the last quoted digit.

The third purpose is to use the critical polynomials to trace the (very accurate

approximations to the) critical manifolds in the real (q, v) plane. This in particular

reveals a very intricate structure of the phase diagrams in the antiferromagnetic (v < 0)

region.

The layout of the paper is as follows. In section 2, after recalling the contraction-

deletion definition [1] of the critical polynomial PB(q, v), we present the alternative

probabilistic definition and give some details on the bases B to be considered. The

latter definition opens the possibility of computing PB(q, v) from a transfer matrix

construction, which is described in section 3. The results for the (4, 82), kagome and

(3, 122) lattices are presented in section 4, where we also provide numerical values of

the critical points vc in the ferromagnetic regime. The phase diagrams in the real (q, v)

plane are discussed in section 5. Finally, section 6 is dedicated to a discussion and

further perspectives.

2. The critical polynomial

We illustrate the contraction-deletion definition [1] of PB(q, v) by means of a specific

example. First recall that the partition function (1) with general edge-dependent weights

{v} satisfies the contraction-deletion identity [19]

ZG(q, {v}) = veZG/e(q, {v}) + ZG\e(q, {v}) , (8)

where e ∈ E is any edge in G. Here G/e denotes the graph obtained from G by

contracting e to a point and identifying the vertices at its end points (if they are

different), and G \ e denotes the graph obtained from G by deleting e.

Now let G be the square lattice, and choose the 4-edge basis B with couplings

{v1, v2, v3, v4} shown in Figure 1b. We choose the checkerboard embedding of B in G

shown in Figure 1a. The contraction-deletion definition [1] amounts to assuming that

the critical polynomial PB(q, v) satisfies the same identity as (8) for any edge e ∈ B.

Performing the deletion-contraction of the edge with weight v4 we thus obtain

PB(q, {v1, v2, v3, v4}) = v4PBtri(q, {v1, v2, v3}) + PBhex(q, {v1, v2, v3}) . (9)

In the first (contracted) term the embedded basis now spans the triangular lattice, so

we can insert the known exact result

PBtri(q, {v1, v2, v3}) = v1v2v3 + v1v2 + v2v3 + v3v1 − q , (10)
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Figure 1. a) The square lattice with the checkerboard couplings shown in b).

that generalises (3). In the second (deleted) term we recover the hexagonal lattice, for

which the exact result generalising (4) reads

PBhex(q, {v1, v2, v3}) = v1v2v3 − q(v1 + v2 + v3) − q2 . (11)

Inserting (10)–(11) into (9) we arrive at the desired critical polynomial

PB(q, {v1, v2, v3, v4}) = v1v2v3v4 + v2v3v4 + v1v3v4 + v1v2v4 + v1v2v3

− q(v1 + v2 + v3 + v4) − q2 . (12)

Note that the expression PB(q, {v1, v2, v3, v4}) = 0 coincides with a result derived by

Wu [18] using a different method (and a homogeneity assumption).

Critical polynomials PB(q, v) defined in this way are unique, that is, they are a

property only of the basis B and the way in which B is embedded in the infinite lattice

G. In particular, PB(q, v) is independent of the order in which edges are contracted-

deleted [15].

In the particular case considered above, (12) actually provides the exact critical

manifold of the square lattice with checkerboard couplings [13]. However, as mentioned

in the Introduction and discussed in details in [1], in general we only recover an

approximation to the critical manifold, that converges to the true critical manifold

upon letting the size of B go to infinity (at finite aspect ratio). How close one can get to

vc is thus limited by one’s ability to actually compute the polynomial on large B. In [1],

a computer program was used to perform the contraction-deletion algorithm on various

bases for the kagome lattice. However, this algorithm is exponential in the number of

edges in B, and the upper limit of feasibility was 36 edges.

Below, we present an alternative definition of PB(q, v) in terms of probabilities of

events on B. This permits use of a transfer matrix approach, a much more efficient

algorithm that is, roughly speaking, exponential only in the number of vertices across

a horizontal cross-section of B. By these means, we will be able to compute critical

polynomial on the (4, 82), kagome, and (3, 122) lattices for bases of up to respectively

96, 162, and 243 edges. These three lattices are shown in Figure 2. We note that in

parts of sections 2–3 we will present material that has been discussed for q = 1 in our
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Figure 2. a) the kagome lattice; b) the (4, 82) lattice; c) the (3, 122) lattice.

previous work on percolation [20]. Many of these concepts are identical or only slightly

modified in the Potts generalization, but for the sake of completeness we explain these

in full below, reproducing some passages verbatim from [20].

2.1. Alternative definition

According to (1), the probability of any event on the finite graph B is proportional

to a sum of terms of the type
(
∏

i∈A vi

)

qk(A), where A are some subsets of the edges

in B describing which edges need to be present in order to realise the event. We are

here interested in the probabilistic, geometrical interpretation of the critical polynomials

PB(q, v) in terms of such events. But to discuss this, we will first need some definitions.

The infinite lattice G is partitioned into identical subgraphs B, and we assume that

each is in the same edge-state. We are interested in the global connectivity properties of

the system. If, given any two copies of the basis, B1 and B2, separated by an arbitrary

distance, it is possible to travel from B1 to B2 along an open path, then we say that

there is an infinite two-dimensional (2D) cluster in the system. We denote the weight

of this event W (2D; B). On the other hand, if it is not possible to connect any non-

neighbouring B1 and B2, then there are no infinite clusters in the system, a situation

whose weight we write as W (0D; B). The third possibility is that some arbitrarily

separated B1 and B2 are connected, but not all, indicating the presence of infinite

one-dimensional (1D) paths (or filaments), and we denote the corresponding weight

W (1D; B).

We have found that all the (inhomogeneous) critical polynomials PB(q, {v}) that we

have computed using the contraction-deletion definition1 can be rewritten very simply

as

PB(q, {v}) = W (2D; B) − q W (0D; B) . (13)

Despite its apparent simplicity, eq. (13) is the main result of this paper.

1 Examples include, but are not limited to, all the cases discussed in [1].
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To make completely clear the meaning of (13) we need to discuss two important

points.

First, one may wish to think of the quantities W (2D; B) and W (0D; B) appearing

on the left-hand side of (13) as describing the probabilities of the events defined above.

However, since the critical manifold is found from PB(q, {v}) = 0, normalisation issues

are not important. It is thus more convenient to define the W with a normalisation that

reflects that of the partition function (1).

Second, we have to be precise about how the powers of q are computed. In

Figures 3–4 we show several examples of embedded bases B. Recall that G is obtained

by tiling the two-dimensional space with copies of B. The vertices at the tile boundaries

are shared among two different copies of B; we call those shared vertices the terminals

of B. The embedding can be visualised by pairing the terminals two by two (shown as

matching shapes in Figures 3–4). This means that in the embedding a given terminal

of one copy of the basis B1 is identified with the matching terminal of another copy of

the basis B2. In other words, B1 and B2 are glued along matching terminals. Let now

A be a subset of edges of B describing a certain event, which we classify as 2D, 1D or

0D as above. The weight in the corresponding W of the event described by A is defined

as
(

∏

i∈A

vi

)

qk(A)−1 , (14)

where k(A) is the number of connected components induced by A in the (generally

non-planar) graph obtained from B by identifying the matching terminals as in the

definition of the embedding. Note also that since k(A) ≥ 1, we have chosen the power

of q appearing in (14) as k(A) − 1 rather than k(A). With this convention we avoid

having an overall factor of q in (13).

With the definitions (13)–(14) the critical polynomial coincides with that defined

in [1]. That the probabilistic and contraction-deletion definitions produce the same

polynomial can be seen as follows. First, we note that the probabilities W (2D) and

W (0D) separately satisfy the contraction-deletion identity. This is because these

quantities are just restricted partition functions and will therefore satisfy the same

contraction-deletion property as does the full partition function. In the definition made

in [1], contraction-deletion was used as a recurrence to reduce any basis to a number of

three-terminal cases, for which the exact solvability criterion for 3-uniform hypergraphs

was inserted as an initial condition. That latter criterion reads [21] qA − C = 0,

where A and (resp. C) denotes the weight of all three vertices surrounding a hyper-

edge being unconnected (resp. connected). It is easy to see that Eqs. (13)–(14) precisely

reproduce this initial condition. Since the recurrence relation (i.e., contraction-deletion)

is also identical for the two definitions, it follows that they produce the same critical

polynomial for any choice of the basis B.

To see the definitions (13)–(14) at work, we consider again the 4-edge checkerboard
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Figure 3. 3 × 3 square bases for the kagome lattice with: a) straight embedding, b)

a twisted embedding.

example of Figure 1. We have

W (2D; B) = v1v2v3v4 + v2v3v4 + v1v3v4 + v1v2v4 + v1v2v3 , (15)

W (1D; B) = v1v2 + v1v3 + v1v4 + v2v3 + v2v4 + v3v4 , (16)

W (0D; B) = v1 + v2 + v3 + v4 + q . (17)

Inserting this in (13) indeed reproduces (12).

Finally we note that for the the special case of percolation, the probabilistic

definition of PB(q, v) has already appeared in [20]. The results reported here reduce

to those of [20] upon setting q = 1 and vi = pi

1−pi
, where pi is the probability of edge i

being open.

2.2. Bases and embeddings

As mentioned above, one advantage of the redefinition (13) is that we may now use

a transfer matrix to compute the critical polynomials on much larger bases than was

possible using contraction-deletion. Below we give the details of this approach (section 3)

and report the results for various lattices (section 4).

But first we discuss more carefully the bases that we have considered. We are

mainly interested in families of bases whose size can be modulated by varying one or

more integer parameters. This will in particular allow us to study the size dependence

of the resulting pc.

2.2.1. Square bases An example of a square basis B is shown in Figure 3. We recall

that the embedding is visualised by pairing the terminals two by two (shown as matching

shapes in Figure 3). The embedded basis in Figure 3a is the immediate generalisation

of the checkerboard example shown in Figure 1, and we refer to this as the straight

embedding.

A variation of the straight embedding is to shift cyclically the vertices along one

of the sides of the square before gluing them to those of the opposing side; we call this
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Figure 4. Hexagonal bases for the kagome lattice with a) n = 1, and b) n = 2.

a twisted embedding. By reflection symmetry, shifting cyclically k steps to the right or

to the left produces identical results. There are thus in general 1 + ⌊n/2⌋ inequivalent

twists, corresponding to k = 0, 1, . . . , ⌊n/2⌋. In practice we have found that for some—

but not all—lattices the cases (n, k) = (2, 0) and (n, k) = (2, 1) produce the same critical

polynomial. But in general the twisting does change the critical polynomial, as we shall

see below.

A square basis B of size n × n has n terminals on each of the four sides of the

square. The number of vertices and edges in B are both proportional to n2. In the

vertex count, each terminal counts for 1/2 only, since it is shared among two copies of

the basis. Thus, the square basis for the kagome lattice shown in Figure 3 has 6n2 edges

and 3n2 vertices.

One can obviously generalise this construction to rectangular bases of size n × m.

For n = m one recovers a square basis. For n 6= m the twists along the n and m

directions are no longer equivalent.

2.2.2. Hexagonal bases When the lattice L has a 3-fold rotational symmetry, one can

define as well a hexagonal embedding. Examples of this are shown in Figure 4. Each of

the six sides of the hexagon now supports n terminals. Note that it is not possible to

twist the hexagonal bases, since only the straight embedding produces a valid tiling of

two-dimensional space.

An advantage of hexagonal bases over the square bases is that they have a lower

ratio of terminals to edges. For example, on the kagome lattice one has now 6n terminals,

9n2 vertices and 18n2 edges. This is useful because the number of terminals is the

limiting factor in the transfer matrix computation while the accuracy of the critical

point estimates increases with the number of edges.

Another advantage is that the hexagonal basis is designed to respect the 3-fold
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rotational symmetry of the lattice. Thus, for lattices having this symmetry—such as

the kagome and (3, 122) lattices—we expect the hexagonal basis to yield better accuracy

than the square basis for a given number of edges. We shall come back to this point in

section 4.

Note that one can extend this construction to generalised hexagonal bases with

2(n1 + n2 + n3) terminals, where each pair of opposing sides of the hexagon supports

ni terminals (i = 1, 2, 3). The special case with one of the ni = 0 reproduces the

rectangular bases.

3. Transfer matrix

The weights W (2D; B) and W (0D; B) entering the definition (13) of the critical

polynomial can be computed from a transfer matrix construction along the lines of

Ref. [22]. First notice that each state of the edges within the basis B induces a set

partition among the terminals; each part (or block) in the partition consists of a subset

of terminals that are mutually connected through paths of open edges. The key idea is

to first compute the weights of all possible partitions. One next groups the partitions

according to their 2D, 1D or 0D nature in order to evaluate (13).

With N terminals, the number of partitions respecting planarity is given by the

Catalan number

CN =
1

N + 1

(

2N

N

)

. (18)

For example, the C3 = 5 planar partitions of the set {1, 2, 3} are denoted

(1)(2)(3) , (12)(3) , (13)(2) , (1)(23) , (123) , (19)

where the elements belonging to the same part are grouped inside parentheses.

The dimension of the transfer matrix is thus CN , and both time and memory

requirements are proportional to this number.2 Asymptotically we have CN ∼ 4N for

N ≫ 1. Taking as an example the kagome lattice with the n× n square basis, the time

complexity of the transfer matrix method is then ∼ 44n = 28n. This can be compared

to the contraction-deletion method, whose number of recursive calls is ∼ 26n2

.

3.1. Square bases

Our transfer matrix construction is most easily explained on a specific example. So

consider the kagome lattice with the n × n square basis; the case n = 3 is shown in

Figure 5.

The transfer matrix T constructs the lattice from the bottom to the top, while

keeping track of the Boltzmann weight of each partition of the terminals. The bottom

terminals are denoted 1, 2, . . . , 2n and the top terminals 1′, 2′, . . . , 2n′. At the beginning

2 We assume here the use of standard sparse matrix factorisation techniques [23].
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1

2

3 4

5

6

1′

2′

3′ 4′

5′

6′

Bi =

i i + 1

i′ i′ + 1

Figure 5. Transfer matrix construction for the kagome lattice on an n × n square

basis, here with n = 3. The operator Bi adds six edges to the lattice.

of the process the top and bottom are identified, so the initial state |i〉 on which T acts

is the partition (1 1′)(2 2′) · · · (2n 2n′) with weight 1.

We now define two kinds of operators acting on a partition [24]:

• The join operator Ji amalgamates the parts to which the top terminals i′ and i′ +1

belong. In particular, on partitions in which those two terminals already belong to

the same part, Ji acts as the identity operator I. Note that if some parts contain

both bottom and top terminals, the action of Ji can also affect the connections

among the bottom terminals.

• The detach operator Di detaches the top terminal i′ from its part and transforms

it into a singleton in the partition. But if that terminal was already a singleton, Di

acts as q I. The reason for the factor of q is that a detached singleton amounts to a

connected component being “seen for the last time”, and Di should then apply the

corresponding weight appearing in (14).

From these two basic operators and the identity operator I we now define an operator

Hi = I + vJi (20)

that adds a horizontal edge to the lattice. The word “horizontal” refers to a drawing of

the lattice where the top terminals i′ and i′ + 1 are horizontally aligned; otherwise the

edge would be better described as “diagonal”. Note that Hi attaches a weight 1 (resp.

v) to a closed (resp. open) horizontal edge, as required. Similarly we define

Vi = vI + Di (21)

that adds a vertical edge between i′ and i′′, where i′ (resp. i′′) denotes the corresponding

top terminal before (resp. after) the action of Vi. To simplify the notation, it is

convenient to assume that following the action of Vi we relabel i′′ as i′. The word

“vertical” refers to a drawing of the lattice where i′ and i′′ are vertically aligned.
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The fundamental building block of the lattice shown on the right of Figure 5 is then

constructed by the composite operator

Bi = HiViHiDi+1HiViHi , Kagome lattice (22)

where the operators here and elsewhere should be understood as acting in order from

right to left. The whole lattice B is finally obtained by adding successive rows (for

clarity shown in alternating hues on the left of Figure 5) of Bi. The transfer matrix then

reads3

T =
n−1
∏

y=1

y
∏

x=1

Bn−y−1+2x ×
n
∏

y=1

n−y
∏

x=0

By+2x (23)

and the final state

|f〉 = T|i〉 (24)

contains all possible partitions among the 4n terminals along with their respective

Boltzmann weights.

The final state |f〉 contains all the information necessary to extract PB(q, v), and the

remainder of section 3 explains how this is done. But first we describe how to modify the

transfer matrix formalism just described to accommodate other lattices (section 3.1.1)

and hexagonal bases (section 3.2). Then, in section 3.3, we show how to determine

which of the states in |f〉 contribute to the weights W (2D; B) and W (0D; B) appearing

in (13).

Finally, each contributing state needs to be counted with the correct weight (14).

The powers of v are unproblematic and have been explicitly accounted for in (20)–(21).

The contributions to qk(A)−1 originating from connected components not containing any

terminal of B have been accounted for in the above definition of Di. It remains to

explain how to count the connected components containing at least one terminal; this

is the subject of section 3.4.

3.1.1. Other lattices The extension of the transfer matrix formalism to the other

lattices considered in this paper is very simple: it suffices to change the definition

of the operator Bi, while leaving the remainder of the construction unchanged.4

The square basis for the (4, 82) lattice is shown in Figure 6. Its fundamental building

block now has the expression

Bi = HiViVi+1HiViVi+1 , (4, 82) lattice. (25)

As a last example, consider the (3, 122) lattice with the square basis depicted in

Figure 7. We find in this case

Bi = HiViHiViDi+1HiViHiViVi+1 , (3, 122) lattice. (26)

3 To avoid any ambiguity about the ordering of operators we write out the rightmost double product

in (23): B1B3B5 · · ·B2n−1 × · · · × Bn−1Bn+1 × Bn. This should be compared with Figure 5, and we

recall that the rightmost factor acts first.
4 In practice, when implementing this algorithm on a computer, this implies that only a few lines of

code have to be modified to change the lattice.
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1

2

3 4

5

6

1′

2′

3′ 4′

5′

6′

Bi =

i i + 1

i′ i′ + 1

Figure 6. Transfer matrix construction for the (4, 82) lattice on an n×n square basis,

here with n = 3. The operator Bi adds six edges to the lattice.

1

2

3 4

5

6

1′

2′

3′ 4′

5′

6′

Bi =

i i + 1

i′ i′ + 1

Figure 7. Transfer matrix construction for the (3, 122) lattice on an n × n square

basis, here with n = 3. The operator Bi adds nine edges to the lattice.
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Bi =

i i + 1

i′ i′ + 1

Li = i

i + 1

i′ + 1

Ri = i + 1

i

i′

Figure 8. Kagome lattice on a hexagonal basis of size n, here with n = 3. The

operator Bi adds six edges to the lattice, while the left and right boundary operators,

Li and Ri, each add three.

3.2. Hexagonal bases

Because of their 3-fold rotational symmetry, it is also interesting to study the kagome

and (3, 122) lattice with a hexagonal basis. We now describe how to adapt the transfer

matrix construction to this case.

Consider as an example the kagome lattice with the hexagonal basis of size n; the

case n = 3 is shown in Figure 8. There are now 6n terminals. Those on the two

bottom sides (resp. the two top sides) of the hexagon are labelled 1, 2, . . . , 2n (resp.

1′, 2′, . . . , 2n′), just as in the case of the square basis. We describe below how the

remaining terminals on the left and right sides of the hexagon are to be handled. The

transfer matrix T still constructs the lattice from the bottom to the top.

The expression for the building block Bi now needs some modification, since the

orientation of the bow tie motif with respect to the transfer direction (invariably

upwards) has been changed. One easy option would be to handle the centre of the

bow tie as an extra point—we would then label the three points i, i+1 and i+2)—and

use the expression Bi = Di+1Hi+1HiVi+2ViHi+1Hi. It is however more efficient to avoid

introducing the centre point into the partition (and keep the usual labelling i, i + 1 as

shown on the right of Figure 8). The expression for Bi can then be found by computing

the final state (24) for the 1 × 1 square basis and rotating the labels (we denote here

j = i + 1):

Bi = (v6 + 6v5 + 9v4)(iji′j′) + (2v4 + 6v3 + qv2)(ii′)(jj′)

+ (v4 + 3v3)[(i)(ji′j′) + (j)(ii′j′) + (i′)(ijj′) + (j′)(iji′)]

+ (v3 + 5v2 + qv)[(ii′)(j)(j′) + (i)(i′)(jj′)] + (4v + q)(i)(j)(i′)(j′)

+ v2 [(i)(j)(i′j′) + (ij)(i′)(j′) + (i)(i′j)(j′) + (i′)(ij′)(j)] . (27)

where a bracketed operator, for example (ii′)(jj′), creates a bow-tie between i and j with
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the indicated partition of its four bounding vertices. On the boundary of the hexagon

we need the further operators

Li = HiVi+1Hi , (28)

Ri = HiViHi . (29)

The transfer matrix that builds the whole hexagon then reads

T =

n−1
∏

y=1

y
∏

x=1

Bn−y−1+2x

×
n
∏

y=1

(

n
∏

x=1

B2x−1 × L0

n−1
∏

x=1

B2x × R2n

)

×
n
∏

y=1

n−y
∏

x=0

By+2x . (30)

Regarding the handling of the boundary points, a small remark is in order. In

(30) these have been denoted simply 0 (on the left) and 2n + 1 (on the right). In

the initial state |i〉, both 0 and 2n + 1 are singletons. After each factor in the middle

product over y the two boundary labels have to be stored, so that in the final state

(24) the partitions indeed involve all 6n terminals. To avoid introducing a cumbersome

notation, we understand implicitly that this storing is performed when expanding the

product (30).

3.2.1. Other lattices The (3, 122) lattice can be handled similarly by rotating Bi shown

in the right part of Figure 7 through angle π/2 clockwise. The left (resp. right) boundary

operator Li (resp. Ri) then consists of the four rightmost (resp. five leftmost) edges in

the rotated Bi. Explicitly we find

Bi = (v9 + 6v8 + 9v7)(iji′j′) + (v7 + 3v6) [(iji′)(j′) + (iji′)(j)]

+ (v8 + 7v7 + (12 + q)v6 + 3qv5) [(i)(ji′j′) + (i′)(ijj′)]

+ (v8 + 8v7 + (15 + 2q)v6 + 7qv5 + q2v4)(ii′)(jj′)

+ (3v6 + (11 + q)v5 + 6qv4 + q2v3)(ii′)(j)(j′) (31)

+ (3v7 + (27 + q)v6 + (56 + 21q)v5 + (63q + 7q2)v4

+ (33q2 + q3)v3 + 9q3v2 + q4v)(i)(i′)(jj′)

+ (v6 + 4v5 + qv4) [(i)(j)(i′j′) + (ij)(i′)(j′) + (i)(i′j)(j′) + (i′)(ij′)(j)]

+ (8v5 + (40 + 5q)v4 + (48q + q2)v3 + 27q2v2 + 8q3v + q4)(i)(j)(i′)(j′)

along with

Li = (v4 + 3v3)(ijj′) + (v3 + 4v2 + qv)(i)(jj′)

+ v2 [(ij)(j′) + (ij′)(j)] + (3v + q)(i)(j)(j′) (32)

and

Ri = (v5 + 3v4)(ii′j) + (v4 + 4v3 + qv2) [(ij)(i′) + (i)(i′j)]

+ v3(ii′)(j) + (v3 + 8v2 + 5qv + q2)(i)(j)(i′) . (33)

With these expressions for Bi, Li and Ri, the transfer matrix is still given by (30).
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3.3. Distinguishing 2D, 1D and 0D partitions

We now explain how each partition entering the final state (24) can be assigned the

correct homotopy (0D, 1D or 2D) in order to make possible the application of the

main result (13). The definition of homotopy that we have given in section 2.1 is not

very practical, because it refers to the connectivity properties between two arbitrarily

separated copies of the basis, B1 and B2. The purpose of this section is to provide an

operational determination of the homotopy using just intrinsic properties of B.

Each partition of the set of N terminals can be represented as a planar hypergraph

on N vertices, where each part of size k > 1 in the partition corresponds to a hyperedge

of degree d = k − 1 in the hypergraph. Because of the planarity we can obtain yet

another representation as an ordinary graph on 2N vertices with precisely N ordinary

(d = 1) edges. We now detail this construction, which is completely analogous to a

well-known [25] equivalence for the partition function of the Potts model defined on a

planar graph G that can be represented, on the one hand, in terms of Fortuin-Kasteleyn

clusters [5] on G and, on the other hand, as a loop model on the medial graph M(G).

The hypergraph can be drawn inside the frame (the outer boundary of the shaded

areas in Figures 5 and 8) on which the N terminals live. Here we give a few examples:

Now place a pair of points slightly shifted on either side of each of the N terminals.

Draw N edges between these 2N points by “turning around” the hyperedges and isolated

vertices of the hypergraph. We shall refer to this as the surrounding graph. For each of

the above examples this produces:

The embedding of B is defined by identifying points on opposing sides of the frame

(to produce the twisted embeddings we further shift the points on one of the sides

cyclically before imposing the identification). Let ℓ be the number of loops in the

surrounding graph. The partition is of the 1D type if and only if one or more of these

loops is non-homotopic to a point. To determine whether this is the case it suffices to

“follow” each loop until one comes back to the starting point, and determine whether
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the total signed displacement in the x and y directions is non-zero.5 Using this method

one sees that the middle partition in the above three examples is of the 1D type.

If all loops on the surrounding graph have trivial homotopy, one can use the Euler

relation to determine whether the partition is of the 0D or 2D type. Namely, let E be the

sum of all degrees of the hyperedges in the hypergraph; let C (resp. V ) be the number

of connected components (resp. vertices) in the hypergraph after the identification of

opposing sides. Then the combination

χ = E + 2C − V − ℓ (34)

equals 0 (resp. 2) if the partition is of the 0D (resp. 2D) type.

For instance, for the leftmost example we have E = 3 + 1 + 1 = 5, C = 1, V = 6,

and ℓ = 1, whence χ = 0. And for the rightmost example one finds E = 5 + 1 = 6,

C = 2, V = 6, and ℓ = 2, whence χ = 2.

3.4. Number of connected components containing a terminal

To finish the computation of the factor qk(A)−1 in (14), it remains to count the number

of connected components (minus one) containing at least one terminal. The terminals

are nothing but the points in the partition describing the final state (24). But before

counting we need to identify the matching terminals, as shown in Figures 3–4.

The algebraic formulation of this counting procedure is simple. Let the number of

terminals be 2N , with N = 2n (resp. N = 3n) for the square (resp. hexagonal) bases.

Matching terminals are labelled {ik, jk}, for k = 1, 2, . . . , N . The operator J identifying

all matching pairs of terminals is then expressed in terms of join operators Jij as

J =
N
∏

k=1

Jik,jk
. (35)

To multiply the weights by the correct power of q we finally apply

D = q−1
N
∏

k=1

DikDjk
. (36)

More precisely, let |f〉2D denote the terms in the final state (24) whose partitions

are of 2D topology. Then

DJ|f〉2D = W (2D; B) (i1)(i2) · · · (iN )(j1)(j2) · · · (jN) , (37)

i.e., one of the weights needed in (13) times the all-singleton state. We similarly obtain

W (0D; B) from |f〉0D.

Let us illustrate this procedure by a small example. The final state |f〉 corresponding

to the 1 × 1 square basis for the kagome lattice can be read directly off the right-hand

side of (27). The unique partition having 2D topology is (iji′j′). The partitions having

0D topology are (ii′)(j)(j′), (i)(i′)(jj′), (i)(j)(i′)(j′), (i)(j)(i′j′) and (ij)(i′)(j′). The

5 For the straight embedding one can more simply determine whether the signed winding number with

respect to any of the two periodic directions is non-zero.
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corresponding terms in the sum (27) then define |f〉2D and |f〉0D. Applying the operator

DJ as above, we infer that

W (2D; B) = v6 + 6v5 + 9v4 , (38)

W (0D; B) = 2 × (v3 + 5v2 + qv) + (4v + q) × q + 2 × v2 . (39)

According to (13) the critical polynomial is then

PB(q, v) = v6 + 6v5 + 9v4 − 2qv3 − 12qv2 − 6q2v − q3 . (40)

The expression PB(q, v) = 0 is precisely the approximation to the kagome-lattice critical

manifold found by Wu [18].

4. Results

Using the transfer matrix approach we have computed the critical polynomials PB(q, v)

for the kagome, (4, 82) and (3, 122) lattices; see Figure 2. With the n × n square bases,

the computations were possible for n ≤ 4, both with straight and twisted embeddings.

This is a considerable improvement over the contraction-deletion method, where the

2× 3 rectangular basis (with 36 edges for the kagome lattice) was the furthest we could

go [1]. With the hexagonal bases, the transfer matrix computations were possible for

n ≤ 2. For selected integer values of q, the case n = 3 was within reach as well, albeit

with large parallel computations; the n = 3 results for percolation (q = 1) have been

reported in [20].

The critical polynomials that we have obtained are very large. To be precise, let |V |
(resp. |E|) denote the number of vertices (resp. edges) in the basis, with the convention

that a pair of matching terminals counts as a single vertex. Then PB(q, v) is a polynomial

of degree |V | in the q variable, and of degree |E| in the v variable, with very large integer

coefficients (more than 100 digits in some cases). Obviously it is out of the question to

make these polynomials appear in print. However, all the polynomials are collected in

the text file JS12.m which is available in electronic form as supplementary material to

this paper.6 The printed version contains only selected values of the roots vc, rounded

to 15 digit numerical precision, and plots of the curves PB(q, v) = 0 in the real (q, v)

plane (see section 5).

In this section we analyse the approximations to the critical temperatures, vc,

obtained by solving PB(q, v) = 0 in the ferromagnetic regime (v > 0) for selected

integer values of q of practical interest, namely q = 2, 3, 4. The corresponding results

for q = 1 have already appeared in [20]. Then, in section 5, we extend the discussion to

the full phase diagram in the real (q, v) plane.

6 This file can be processed by Mathematica or—maybe after minor changes of formatting—by any

symbolic computer algebra program of the reader’s liking.
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n twist vc for q = 3 vc for q = 4

1 0 1.876 269 208 345 761 2.155 842 236 513 638

2 0 1.876 439 754 302 881 2.156 207 452 990 795

1 1.876 439 754 302 881 2.156 207 452 990 795

3 0 1.876 456 916 196 415 2.156 247 598 338 124

1 1.876 456 775 276 423 2.156 247 104 437 170

4 0 1.876 458 994 003 462 2.156 252 880 154 217

1 1.876 458 930 268 948 2.156 252 686 506 350

2 1.876 458 896 874 446 2.156 252 553 917 008

Final 1.876 459 0 (5) 2.156 253 (1)

Numerics Ref. [1] 1.876 459 (2) 2.156 252 (2)

Ref. [27] 1.876 458 (3) 2.156 20 (5)

Table 1. Predictions for the critical temperature vc of the Potts model on the kagome

lattice, obtained from the n × n square bases with various twists. Extrapolation to

n → ∞ leads to the final results quoted. For comparison we show two sets of recent

numerical results [1, 27].

4.1. Kagome lattice

For the kagome lattice, we considered two families of bases: square (see section 2.2.1)

and hexagonal (see section 2.2.2).

4.1.1. Square bases The n × n square bases with straight and twisted embeddings are

shown in Figure 3. They contain |V | = 3n2 vertices and |E| = 6n2 edges. We have

obtained the critical polynomials for n ≤ 4 and twist k ≤ ⌊n/2⌋.
For q = 2 all those polynomials factorise, shedding the small factor

v4 + 4v2 − 8v − 8 . (41)

This factorisation is expected [1], since the Ising model is exactly solvable. The unique

positive root of (41) reads

vc =

√

3 + 2
√

3 − 1 = 1.542 459 756 · · · , (42)

in agreement with the exact solution [26].

The positive roots of PB(q, v) for q = 3 and q = 4 are given in Table 1. Note that the

results for (n, k) = (2, 0) and (2, 1) are identical for this lattice; but otherwise the critical

polynomial does depend on k. Based on the results for finite n we suggest the final values

shown in the bottom of Table 1. They are compatible with the results for the largest

(n = 4) basis for any k, and the indicative error bar has been obtained by comparing the

variation of the results for various twists, and by a crude analysis7 of the the finite-size

7 Unfortunately the number of data points is too small to allow the application of really efficient

extrapolation methods, such as the Bulirsch-Stoer algorithm.
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n vc for q = 3 vc for q = 4

1 1.876 456 753 812 346 2.156 240 076 964 790

2 1.876 458 831 984 027 2.156 252 155 471 646

3 1.876 459 465 279 159 2.156 254 172 414 827

Final 1.876 459 7 (2) 2.156 254 5 (3)

Table 2. Predictions for vc on the kagome lattice, using the hexagonal bases of size

n.

effects in n with zero twist. Our final values agree with—and are marginally more precise

than—two sets of recent numerical results, obtained respectively from the crossings of

effective critical exponents [27] and from the maximum of the effective central charge

[1].

4.1.2. Hexagonal bases The hexagonal bases of size n are shown in Figure 4. They

contain |V | = 9n2 vertices and |E| = 18n2 edges. As discussed in section 2.2.2, these

bases better respect the rotational symmetry of the lattice, and hence we expect the

results to be more precise than those with the square bases for a given number of edges.

We have obtained the full critical polynomials PB(q, v) for n ≤ 2. For n = 3 we have

also obtained polynomials8 PB(q0, v) in the v variable for the integer values q0 = 3 and

4 (see also [20] for the case q0 = 1).

For q = 2 the polynomials again yield the exact result, since they invariably contain

the factor (41). Results for q = 3 and q = 4 are given in Table 2.

It should be noticed that the n = 2 results with a hexagonal basis (72 edges) have

a precision comparable to that of the n = 4 results with a square basis (96 edges). This

presumably indicates that the hexagonal-basis results converge at a faster rate than the

square-basis results, since they respect better the rotational symmetry of the kagome

lattice.

4.2. (4, 82) lattice

We computed the critical polynomials for the n × n square bases on the (4, 82) lattice

(see Figure 9). They contain |V | = 4n2 vertices and |E| = 6n2 edges. As this graph

does not have the kagome lattice’s hexagonal symmetry, there are no corresponding

hexagonal bases.

Results for n ≤ 4 are given in Table 3, with the twists k ≤ ⌊n/2⌋ defined identically

to the kagome case. Note that the cases (n, k) = (2, 0) and (2, 1) now produce different

8 For n = 3, the basis has 18 terminals and a very large calculation is necessary. This was done in

parallel on Lawrence Livermore National Laboratory’s Cab supercomputer, utilizing 2046 processors,

each 2.6 GHz, for about 30 hours. In brief, the parallelism is achieved by distributing the state

vector over the processors. The challenge is then ensuring that data is communicated properly upon

application of the B, L and R operators.



Critical polynomials 20

Figure 9. The 3 × 3 square basis, with unspecified embedding, for the (4, 82) lattice.

n twist pc

1 0 3.742 119 707 930 615 4.367 630 831 288 119

2 0 3.742 406 812 389 425 4.368 211 338 019 044

1 3.742 464 337 713 004 4.368 322 400 865 888

3 0 3.742 474 558 548 594 4.368 344 356 164 380

1 3.742 485 404 327 335 4.368 364 878 291 854

4 0 3.742 488 803 421 387 4.368 371 674 728 465

1 3.742 491 065 678 059 4.368 375 885 780 634

2 3.742 492 580 864 574 4.368 378 693 163 071

Final 3.742 489 (4) 4.368 372 (7)

Table 3. Predictions for vc on the (4, 82) lattice, using the n × n square bases with

various twists. Extrapolation to n → ∞ leads to the final results quoted.

results. Unfortunately we are not aware of any numerical results with which to compare

our results.

For q = 2 all the polynomials factorise, shedding the small factor

v4 − 6v2 − 8v − 4 , (43)

whose unique positive root

vc =
1 +

√

5 + 4
√

2√
2

= 3.015 445 388 · · · (44)

provides the exact critical point of the Ising model on the (4, 82) lattice [28].

4.3. (3, 122) lattice

The (3, 122) lattice bears more than a passing resemblance to the kagome lattice.

Employing the analogous n × n square bases and twists, we find the results in Table 4.

Note that these bases contain |V | = 6n2 vertices and |E| = 9n2 edges.

Our final results can be compared with the recent numerical results of [27], obtained

from the crossings of effective critical exponents. It transpires that the error bar on the

result for vc(q = 4) reported in [27] is underestimated by at least a factor of five, i.e.,
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n twist vc for q = 3 vc for q = 4

1 0 5.033 022 514 872 745 5.857 394 827 983 648

2 0 5.033 072 313 070 887 5.857 498 027 767 977

1 5.033 072 313 070 887 5.857 498 027 767 977

3 0 5.033 077 636 920 826 5.857 509 929 206 085

1 5.033 077 582 117 669 5.857 509 766 966 587

4 0 5.033 078 299 711 932 5.857 511 525 138 037

1 5.033 078 277 586 327 5.857 511 464 406 024

2 5.033 078 264 247 232 5.857 511 420 811 147

Final 5.033 078 3 (2) 5.857 511 5 (5)

Numerics Ref. [27] 5.033 077 (3) 5.857 497 (3)

Table 4. Predictions for vc on the (3, 122) lattice, using the n × n square bases

with various twists. Extrapolation to n → ∞ leads to the final results quoted. For

comparison we show also some recent numerical results [27].

it should have read something like 5.857 497 (15). It follows that both for q = 3 and

q = 4, the accuracy of our final result improves on that of [27] by more than an order

of magnitude.

It should be stressed that loss of precision and problems estimating proper error bars

are very common in studies of the q = 4 state Potts model. This is due to the presence of

a marginally irrelevant scaling operator in the conformal field theory that describes the

continuum limit, which has the effect of introducing logarithmic corrections to scaling.

It is remarkable that the method of critical polynomials appears to be insensitive to

such logarithmic corrections, yielding results that are of comparable precision for q = 3

and q = 4.

Just as in previous cases, we find for q = 2 that all the polynomials factorise,

shedding now the small factor

v4 − 2v3 − 6v2 − 8v − 8 . (45)

Its unique positive root

vc =
1

2

(

1 +
√

3 +

√

2(6 + 5
√

3)

)

= 4.073 446 135 · · · (46)

provides the exact critical point of the Ising model on the (3, 122) lattice [29].

Results with the hexagonal bases are shown in Table 5.9 These bases contain

|V | = 18n2 vertices and |E| = 27n2 edges. Just as for the kagome lattice, we see that

the n = 2 results with a hexagonal basis (108 edges) have a precision comparable to

that of the n = 4 results with a square basis (144 edges).

9 The n = 3 calculations required about 30 hours on 4092 processors, each 2.6 GHz.



Critical polynomials 22

n vc for q = 3 vc for q = 4

1 5.033 076 898 972 026 5.857 506 572 441 733

2 5.033 078 231 476 569 5.857 511 281 996 374

3 5.033 078 451 436 561 5.857 511 917 242 462

Final 5.033 078 49 (4) 5.857 512 00 (8)

Table 5. Predictions for vc on the (3, 122) lattice, using the hexagonal bases of size n.

5. Phase diagrams

Obviously the critical polynomials PB(q, v) contain much more information than the

sporadic critical points reported in section 4. We shall now see how the roots of PB(q, v)

in the real (q, v) plane yield detailed information about the whole critical manifold of

the Potts model on the relevant lattice. The behaviour in the antiferromagnetic region

v < 0 turns out to be particularly rich. We limit the investigation to the half-plane

q ≥ 0. Results for the kagome lattice, using bases smaller than those reported here,

have already appeared in [1].

5.1. Square lattice

The square lattice is the only lattice for which the critical manifold of the Potts model is

analytically understood in the entire real (q, v) plane. It thus constitutes an interesting

benchmark case, where we can confront the solutions of PB(q, v) = 0 with known results

about the phase diagram. Therefore we review some pertinent facts about the square-

lattice Potts model before discussing the three lattices—viz., the (4, 82), kagome and

(3, 122) lattices—for which no exact solutions are available.

The square-lattice Potts model is exactly solvable on the self-dual curve v2 − q = 0

[6] as well as on the antiferromagnetic manifold v2 + 4v + q = 0 [14]. The exact

solvability manifests itself in the fact [1] that, for any choice of the basis, PB(q, v)

contains the factors (v2 − q)(v2 + 4v + q). These curves are also known to be loci of

phase transitions, i.e., they are contained in the critical manifold. The phase transitions

are second order for 0 ≤ q ≤ 4 and first order for q > 4 [6]. In the second-order regime,

the critical exponent corresponding to a perturbation in the temperature variable v

is known by a variety of techniques [6, 14, 30, 31]. In particular, the temperature

perturbation is irrelevant (in the renormalisation group sense) along the critical curve

v = −√
q. It follows that, for any fixed 0 ≤ q ≤ 4, all the points satisfying

−2−√
4 − q < v < −2+

√
4 − v will flow to the fixed point v = −√

q. In other words, the

physics inside the region bounded by the two mutually dual antiferromagnetic transition

curves is temperature independent. This region is known as the Berker-Kadanoff phase

[30].

Another important fact is that the Potts model on any lattice possesses a quantum

group symmetry [32]. This symmetry implies massive cancellations among transfer
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matrix eigenvalues (or between representations of the Virasoro algebra in the continuum

limit) whenever q is equal to a so-called Beraha number

Bk = (2 cos(π/k))2 , with k = 2, 3, 4, . . . . (47)

The cancellations for q = Bk make it possible to reformulate the Potts model as an

RSOS height model [33] with strictly local Boltzmann weights, i.e., to dispose of the

non-locality that is inherent to the factor qk(A) appearing in the generic (i.e., valid for

any real value of q) formulation (1). In general, such cancellations are relevant only for

the “fine structure” of the model, but in the Berker-Kadanoff phase they impact the

dominant term in the partition function, making possible further phase transitions. The

independence on v implies that the effect on the phase diagram is the formation of a

vertical ray in the (q, v) plane, with q = Bk.

The issue of dominance depends on the choice of boundary conditions, which

therefore determines which Bk are the loci of phase transitions. In [34] it was argued from

results of conformal field theory—and checked numerically—that with cyclic boundary

conditions (free in one lattice direction and periodic in the other) partition function

zeros condense along vertical rays with k ∈ 2N. The corresponding result for toroidal

boundary conditions [35] (periodic in both lattice directions) is that vertical rays occur

only for k = 4 and k = 6. It is not completely clear how the results of [34, 35] would be

reflected by the roots of the critical polynomial PB(q, v). Because of the identification of

opposite terminals in the embeddings of the basis B that we have used, it might be that

the case of toroidal boundary conditions [35] is most relevant in the present context. In

any case, we certainly expect the Beraha numbers (47) to play an important role in the

Berker-Kadanoff phase [30].

To get a better idea about what to expect for other lattices, we show in Fig. 10 the

manifolds PB(q, v) = 0 for the square-lattice Potts model with n × n square bases of

size n ≤ 4. The critical polynomials are obtained within the transfer matrix formalism

of section 3 by using the building block

Bi = HiViVi+1Hi . (48)

The small factors (2), appearing in each of the PB(q, v), produce the selfdual critical

curves v2 − q = 0 (denoted A and B) and the dual pair of antiferromagnetic transition

curves v2 + 4v + q = 0 (denoted C and D). The remaining large factor in PB(q, v),

of degree |E| − 4 in the v variable, produces dual pairs of curves inside the C and

D curves, in the form of “bubbles” to the left of the point (q, v) = (4,−2), denoted

G. Each bubble intersects the self-dual transition curve v = −√
q (denoted B) in two

points. The corresponding q values, q
(1)
c and q

(2)
c , are given in Table 6. It appears that

they converge very fast to B4 = 2 and B6 = 3 upon increasing n. Figure 10 provides

convincing evidence that in the limit n → ∞ each of these two points will be part of a

vertical ray (E and F) extending between the antiferromagnetic curves (C and D).

While this is in line with the general expectations outlined above, the possible

connexion between PB(q, v) and the studies [34, 35] of partition function zeros remains

rather indirect. In particular, it remains an open question at this stage whether yet



Critical polynomials 24

0 1 2 3 4
q

-4

-3

-2

-1

0

1

2

v
n=1S (4 edges)
n=2S (16 edges)
n=3S (36 edges)
n=4S (64 edges)

G

O

A

B

C

E F

D

Figure 10. Roots of PB(q, v) for the Potts model on the square lattice, using n × n

square bases. The bases are labelled nS in the figure legend (S stands for “square”).

The letters appearing in the figure are explained in the main text.

larger bases might lead to the formation of vertical rays at other Beraha numbers than

B4 and B6.

5.2. (4, 82) lattice

In the following three subsections we discuss the lattices which are the subject of

this study. We have arranged them in order of increasing complexity of their critical

manifolds. We begin with the (4, 82) lattice, whose phase diagram turns out to be very

similar to that of the square lattice.

The roots of PB(q, v) for square bases of size n ≤ 4 are shown in Figure 11. In

the ferromagnetic region the curves are indistinguishable on the scale of the figure (see

section 4 for details). However, the close-up on the antiferromagnetic region, presented

in Figure 12, reveals considerable finite-size effects. The question naturally arises which

n q
(1)
c q

(2)
c

2 2.032 815 790 358 187 4.000 000 000 000 000

3 2.000 010 742 629 917 3.064 263 890 473 626

4 2.000 000 000 040 606 3.000 370 123 813 456

∞ 2 3

Table 6. Crossings of the “bubbles” in Figure 10 with the critical curve v = −√
q.
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Figure 11. Roots of PB(q, v) for the Potts model on the (4, 82) lattice, using n × n

square bases.

parts of these curves provide reliable information about the critical manifold in the

thermodynamical limit.

Obviously, the pieces such as OAB (the letters refer to Figure 12), where all four

curves are almost coincident, can be expected to form part of the true critical manifold.

In particular we note that all curves go exactly through the point B with coordinates

(q, v) = (0,−4). By duality, and using results of [36], we can therefore deduce that

spanning forests on the dual (union-jack) lattice undergo a phase transition when the

weight of each component tree is wc = −4.

Other parts of the curves, such as the stretched-out bubbles extending from B

to C, only emerge for sufficiently large n (here, for n ≥ 3). This is true as well

for the vertical rays that build up at G, H and I. In analogy with the square-lattice

case, we expect the first two rays (at G and H) to be have q coordinate B4 = 2 and

B6 = 3. There is good evidence for conjecturing that the last ray (at I) is situated

at B8 = 2 +
√

2 = 3.414 213 · · ·. The prong advancing at F seems to close up the

space between the G and H vertical rays. Similarly, the prong advancing at E makes it

plausible that in the n → ∞ limit the “upper curve” OFE will extend to q = 4, turn

around, and join the “lower curve” containing BC.

From these pieces of information we arrive at the following expectations—or

conjectures—for the critical manifold in the continuum limit. The curve OAB and

the ferromagnetic critical curve will remain. Other curves will extend to infinity in

the antiferromagnetic regime, such as the one marked D in Figure 12, and possibly

another emanating from E. The Berker-Kadanoff phase will be bordered by the curve
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Figure 12. Close-up on the antiferromagnetic region of Figure 11.

OFEPCB, where P is a point with q = 4. Inside this phase there will be vertical rays

at q = B4, B6, B8, B10, . . . (the figure provides good evidence for the first three rays at

letters G, H and I). Moreover, by analogy, we conjecture that the square-lattice model

will have the same infinite set of rays (although Figure 10 only provides evidence for

the first two of them).

5.3. Kagome lattice

In the case of the kagome lattice we have more information, since PB(q, v) has been

computed with both square and hexagonal bases.10 On the other hand, the phase

diagram is more complicated. As already pointed out in [1], no basis—however big—is

likely to reveal all aspects of the critical manifold, and the general picture can only be

understood by carefully comparing the results from different bases and embeddings.

The roots of PB(q, v) are shown in Figure 13. The continuation of the ferromagnetic

critical curve goes through OAB, through the point C, and out to infinity. Two other

branches go to infinity in the antiferromagnetic region: one labelled D and another

emanating from G. Notice that the two branches C and D are not visible with the

smaller bases, since the curves join up and turn around at q ≈ 4.

The antiferromagnetic region contains interesting new features, as shown in the

close-up in Figure 14. As before, there are vertical rays developing at q = B4 (labelled

E) and at q = B6 (labelled F). Notice that the latter ray (F) is only revealed by the

n = 2 hexagonal basis; this nicely illustrates the remark made in the first paragraph of

10 The results for square bases with n ≤ 2 have previously appeared in [1].
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Figure 13. Roots of PB(q, v) for the Potts model on the kagome lattice. In the figure

legend, the square bases are labelled nS, while nH denote the hexagonal bases.

this subsection. There also seems to be parity effects in the size n of the square bases.

For instance, although the segment near G is present in both hexagonal bases, and in

the n = 3 square basis, it is absent from the larger n = 4 square basis. The fact that

the n = 3 square and n = 2 hexagonal curves are almost coincident near G makes it

likely that this segment will not move much further upon increasing n. In particular, we

note that this segment is unlikely to become a vertical ray, and therefore presumably is

the rightmost termination of the Berker-Kadanoff phase. If so, there will be only two

vertical rays (at B4 and B6) for this lattice.

The vertical extent of the rays at E and F reveals that the Berker-Kadanoff phase

is not bounded from below by BC, but rather by another curve that emerges from B

with positive slope.

Further magnification, shown in Figure 15, unearths an interesting detail in the

region q ≈ 2. Indeed, there is an “unexpected curve” emanating from (q, v) = (2,−1),

exactly for any n, that goes to the left through a point ≈ (1.94,−1.5) and ends near

(2,−2). On the scale of Figure 13 this produces a very narrow sliver that one would be

likely to dismiss as a finite-size effect. But on the scale of Figure 15 it becomes clear that

the different bases produce almost coincident results for the location of the unexpected

curve. We therefore believe that this unexpected curve is a real effect that will persist

in the thermodynamical limit.

We remark that in the thermodynamical limit the critical manifold should contain

the point (q, v) = (3,−1) exactly. Indeed, one can show [37] that the three-state zero-

temperature antiferromagnet on the kagome lattice is equivalent to the corresponding
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Figure 14. Close-up on the antiferromagnetic region of Figure 13.
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Figure 15. Tiny detail of Figure 13 in the region q ≈ 2.
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Figure 16. a) The hexagonal lattice with doubled edges; b) a star-triangle replacement

that gives the kagome lattice.

four-state model on the triangular lattice. The latter is known to be critical with

central charge c = 2 (see [37] and references therein). Our finite bases locate the

antiferromagnetic transition in the q = 3 model at

vAF
c (q = 3) =











−0.921 400 117 · · · (6-edge basis)

−0.973 665 377 · · · (24-edge basis)

−0.990 228 473 · · · (96-edge basis)

(49)

and it seems likely that this might indeed tend to vAF
c (q = 3) = −1 in the

thermodynamical limit.

Note finally that all curves pass through (q, v) = (0,−3) exactly. Using again [36],

this implies that on the dual (diced) lattice, the problem of spanning forests [36] has a

critical point with a weight per tree wc = −3.

5.3.1. A peculiar critical point Close inspection of Figure 14 reveals that the curves for

any basis—be it square or hexagonal—go through the common point P with coordinates

(q, v) ≈ (3.477,−2.393). This is strong evidence that P might actually be an exact

critical point for the kagome-lattice Potts model. We now show that this is indeed the

case, and we determine the coordinates and universality class of P exactly.

The crux of the argument is to relate the kagome lattice to a decorated hexagonal

lattice, by means of a star-triangle transformation. This is illustrated in Figure 16. The

latter lattice can in turn be transformed into a standard hexagonal lattice, for which

the exact critical curve is given by (4).

Let us denote by Kk and Kdh the couplings between neighbouring Potts spins on

the kagome and decorated hexagonal lattice, respectively. Assume initially q integer;

the argument eventually carries over to non-integer q by analytical continuation. The
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star-triangle transformation then reads
q
∑

σ0=1

eKdh(δσ1,σ0
+δσ2,σ0

+δσ3,σ0
) = AeKk(δσ1,σ2

+δσ2,σ3
+δσ3,σ1

) , (50)

where σ1, σ2, σ3 denote the three exterior spins common to a triangle and its inscribed

star; σ0 is the internal spin of the triangle; and A is a proportionality constant to be

determined. The relation (50) must hold for any choice of the exterior spins. The three

possible cases — 1) σ1 = σ2 = σ3; 2) σ1 = σ2 6= σ3; and 3) all three spins different —

lead to the equations

e3Kdh + (q − 1) = Ae3Kk , (51)

e2Kdh + eKdh + (q − 2) = AeKk , (52)

3eKdh + (q − 3) = A . (53)

Using (53) to eliminate A from Eqs. (51)–(52), and trading the couplings K for the

Fortuin-Kasteleyn variables v = eK − 1 as usual, we arrive at

(vdh + 1)3 + q − 1 = (3(vdh + 1) + q − 3)(vk + 1)3 , (54)

(vdh + 1)2 + (vdh + 1) + q − 2 = (3(vdh + 1) + q − 3)(vk + 1) . (55)

The decorated hexagonal lattice can be transformed into a standard hexagonal

lattice by applying the series reduction formula [19] to turn the double edges into simple

edges. This reads

vh =
v2
dh

q + 2vdh
. (56)

The resulting hexagonal-lattice Potts model is critical when (4) is satisfied, that is

v3
h − 3qvh − q2 = 0 . (57)

There are two real solutions of the equations (54)–(57). The first one reads

q = 2 , vk = −1 , vh = vdh = −2 . (58)

Indeed all the kagome-lattice critical polynomials have a root at (q, vk) = (2,−1). But

more interestingly, we have the real solution

q = 3.476 950 573 042 399 · · · , vk = −2.392 646 781 702 640 · · · , (59)

explaining the point P. Note that this corresponds to vdh ≈ −1.453 and vh ≈ 3.701,

so the equivalent coupling on the hexagonal lattice is positive. It is well-known from

conformal field theory and exact solutions that the ferromagnetic phase transition on

any lattice with q = (2 cos(πe0))
2 is second order with central charge c = 1− e2

0

1−e0
. The

universality class of the transition at point P is therefore characterised by

c = 0.905 667 155 343 907 · · · . (60)
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Figure 17. Roots of PB(q, v) for the Potts model on the (3, 122) lattice. The square

(resp. hexagonal) bases of size n are labelled nS (resp. nH).
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5.4. (3, 122) lattice

The critical manifold obtained from studying the roots of PB(q, v) on the (3, 122) lattice

is shown in Figure 17. This is considerably more involved than for the other lattices

studied this far. A close-up on the antiferromagnetic region is depicted in Figure 18.

The curve OAB is well-converged as usual. As in the kagome case, there are two

curves originating from B, namely BK and BC, but unlike the kagome case both now

end on the vertical ray CJ at q = B4. Another prong Q, visible only from the largest

basis, might eventually provide further curves going towards C, or beyond.

Note that the point B is at (q, v) = (0,−3) exactly, implying [36] that spanning

forests on the dual (asanoha, or hemp leaf) lattice have a critical fugacity wc = −3 per

component tree.

The lower boundary of the Berker-Kadanoff phase, BC, goes on via CD, where it

encounters another vertical ray P at q = B6, extending between D and I. There are

some horizontally elongated “bubbles” near D, but since their size decreases with n it

is uncertain whether they persist in the thermodynamical limit. Meanwhile, the upper

boundary of the Berker-Kadanoff phase starts out as OJI. The region 3 ≤ q ≤ 4 is

particularly complicated and will be discussed further below.

Like for the kagome lattice, there are interesting details in the region q ≈ 2. This is

shown in magnification in Figure 19. There is again an “unexpected curve” emanating

from point M with coordinates (q, v) = (2,−1), exactly for any n, that goes now to

the right through point L with (q, v) ≈ (2.014,−1.35), for all but the smallest (n = 1

square) basis, and ends at point K with (q, v) = (2,−2), again exactly for any n. Once
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Figure 20. Magnification of the region with 2.8 ≤ q ≤ 4 in Figure 17.

again, the agreement between the largest bases is such that we can believe that this

unexpected curve will subsist in the thermodynamical limit.

The most complicated region is shown enlarged in Figure 20. The boundary

of the Berker-Kadanoff phase might be given by DGHI. Note that the point G is

(q, v) = (4,−2), exactly for all the biggest sizes. Several of the curves contain “wrinkles”

or other signatures close to q = B8 = 3.414 213 · · ·, such as the one labelled H. We take

this as a sign of an emergent vertical ray at B8. In conjunction with the fact that point

G has q = B∞ = 4, this leads us to believe that the thermodynamical limit will in fact

have vertical rays at all B2k with k ≥ 2.

We further remark that many curves pass through (q, v) = (3,−3) exactly. By

duality, this means that the 3-state Potts antiferromagnet on the dual (asanoha) lattice

should undergo a phase transition at zero temperature.

The curve DNG inside the Berker-Kadanoff phase should also be noticed. Finally,

there are several curves going from D towards infinity, such as those marked E and F in

Figure 18.

6. Discussion

In this work, we have given a new definition of the critical polynomial for the q-state

Potts model that we had previously defined by the contraction-deletion identity [1].

This has allowed us to compute these polynomials for various lattices using the transfer

matrix, a method that permits the use of much larger bases, and therefore the calculation

of much higher-degree polynomials, than the contraction-deletion algorithm. Our results
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put beyond doubt the conjecture that critical polynomials, when they do not provide

the exact critical frontier, give excellent approximations that approach the exact answer

in the limit of infinite bases. In the ferromagnetic regime, we were able to locate critical

couplings on the kagome, (4, 82) and (3, 122) lattices for q = 3 and q = 4 with accuracy

rivaling or exceeding that of traditional Monte Carlo or transfer matrix diagonalisation

methods. Moreover, the polynomial estimates for q = 3 are comparable in precision to

those for q = 4, and thus appear not to suffer from the logarithmic corrections to scaling

that plague standard numerical techniques for q = 4.

Critical polynomials also give a clear look at the antiferromagnetic region of the

phase diagram, including the Berker-Kadanoff phase, which had previously been difficult

to observe numerically. For the square lattice, we find predictions that are completely

consistent with theoretical understanding of the BK regime, with vertical rays located

at the Beraha numbers B4 and B6. For the other lattices studied here, on which less is

known about the antiferromagnetic region, we find qualitatively similar behaviour, but

with notable differences. On the kagome lattice, we observed a previously unknown point

in the AF region that the polynomials for every basis placed on the critical curve. Given

this information, we were able to find an argument that established this as an exact

critical point of the kagome Potts model by a transformation from a decorated hexagonal

lattice. This demonstrates the power of the critical polynomial method beyond the

numerical determination of critical points — parameters of potential exact solutions are

prominently displayed in the phase diagram. It seems likely that there remain many

others to be found in this way. Similarly, on the kagome and (3, 122) lattices, we have

found unexpected critical curves within the Berker-Kadanoff phase that are predicted

by a range of bases, indicating that they very likely represent real features of the phase

diagrams. The presence of these curves awaits a theoretical explanation.

Several factors determine the accuracy of the predictions made by the critical

polynomial method. Generally speaking, the best accuracy is obtained in the

ferromagnetic region (v > 0). On the other hand, we have observed for all lattices

studied here that the critical points of the Ising model (q = 2) come out exactly,

even when they are situated in the antiferromagnetic region (v < 0). A similar

phenomenon holds true for q = 0, insofar as all the curves pass exactly through the

origin (q, v) = (0, 0) as well as through another point (0, v), with v = −4 for the square

and (4, 82) lattices, and v = −3 for the kagome and (3, 122) lattices. We have seen

that other exact points may appear as well on certain lattices. The limits q → ∞
can also easily be shown to be exact, in the sense that the critical polynomial provides

the correct asymptotic behaviour as predicted by first-order phase coexistence in the

Fortuin-Kasteleyn expansion [1]. Outside these exact points and limits, the accuracy

obviously depends on the size of the basis, and on the compatibility of its embedding

with the symmetries of the lattice. For example, hexagonal bases fare better than

their square counterparts when the lattice has a 3-fold rotational symmetry. For square

bases the twist also seems to play a role, with the untwisted bases being the most

accurate for the kagome and (3, 122) lattices, and by contrast, the maximally twisted
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bases performing better for the (4, 82) lattice. Finally, as an empirical rule, it appears

that the accuracy deteriorates with increasing distance along the curve from one of the

exact cases. A good example of that point is the comparatively mediocre precision

with which the method accounts for the known (q, v) = (3,−1) critical point of the

kagome-lattice Potts model; see (49).

Because this method is relatively new, the ultimate limit on the size of basis that

can be employed on each lattice is not yet completely clear. Here, we were able

to find polynomials of degree up to 243 using a large parallel calculation. However,

improvements are certainly possible and it will hopefully come to be seen as a worthy

computational challenge to push this limit even further. Aside from optimising

performance, there remains a great deal to be explained about the critical polynomial

method. The fact that it works so well at predicting unsolved critical manifolds is still

quite mysterious. Although one can argue that universality guarantees equation (13)

will give estimates that approach the correct value for infinite B, it is surprising how

accurate the results are for small bases. It is clear that the condition (13) reveals some

larger truth about critical Potts systems, the full mathematical implications of which

are yet to be discovered.
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