
Cluster Comput
DOI 10.1007/s10586-013-0309-0

DI-MMAP—a scalable memory-map runtime for out-of-core
data-intensive applications

Brian Van Essen · Henry Hsieh · Sasha Ames ·
Roger Pearce · Maya Gokhale

Received: 23 January 2013 / Accepted: 2 September 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract We present DI-MMAP, a high-performance run-
time that memory-maps large external data sets into an
application’s address space and shows significantly bet-
ter performance than the Linux mmap system call. Our
implementation is particularly effective when used with
high performance locally attached Flash arrays on highly
concurrent, latency-tolerant data-intensive HPC applica-
tions. We describe the kernel module and show perfor-
mance results on a benchmark test suite, a new bioinformat-
ics metagenomic classification application, and on a level-
asynchronous Breadth-First Search (BFS) graph traversal al-
gorithm. Using DI-MMAP, the metagenomics classification
application performs up to 4× better than standard Linux
mmap. A fully external memory configuration of BFS ex-
ecutes up to 7.44× faster than traditional mmap. Finally,

B. Van Essen (B) · H. Hsieh · S. Ames · R. Pearce · M. Gokhale
Center for Applied Scientific Computing, Lawrence Livermore
National Laboratory, Livermore, CA 94550, USA
e-mail: vanessen1@llnl.gov

H. Hsieh
e-mail: hsieh7@llnl.gov

S. Ames
e-mail: ames4@llnl.gov

R. Pearce
e-mail: pearce7@llnl.gov

M. Gokhale
e-mail: gokhale2@llnl.gov

H. Hsieh
Department of Computer Science, University of California,
Los Angeles, USA

R. Pearce
Department of Computer Science and Engineering,
Texas A&M University, Texas, USA

we demonstrate that DI-MMAP shows scalable out-of-core
performance for BFS traversal in main memory constrained
scenarios. Such scalable memory constrained performance
would allow a system with a fixed amount of memory to
solve a larger problem as well as provide memory QoS guar-
antees for systems running multiple data-intensive applica-
tions.

Keywords Data-intensive · Memory-map runtime ·
Memory architecture · NVRAM

1 Introduction

Data-intensive applications form an increasingly important
segment of high performance computing workloads. These
applications process large external data sets and often re-
quire very large working sets that exceed main memory ca-
pacity, presenting new challenges for operating systems and
runtimes. In this work, we target a data-intensive node ar-
chitecture with direct I/O-bus-attached Non-Volatile RAM,
such as Flash arrays today, and STT-RAM, PCM, or mem-
ristor in the future. These persistent memory technologies
provide new opportunities for extending the memory hier-
archy by supporting highly concurrent read and write oper-
ations that can be exploited by throughput driven (latency
tolerant) algorithms such as parallel graph traversal [1].

In this work, we advocate a memory-mapping approach
that maps low latency, random access storage into an ap-
plication’s address space, allowing the application to be
oblivious to transitions from dynamic to persistent mem-
ory when accessing out-of-core data. However, we, along
with many others, have observed that the memory-map run-
time in Linux is not suited for memory-mapped out-of-core
applications [2] and cannot efficiently support this model.

mailto:vanessen1@llnl.gov
mailto:hsieh7@llnl.gov
mailto:ames4@llnl.gov
mailto:pearce7@llnl.gov
mailto:gokhale2@llnl.gov


Cluster Comput

In Linux, even with highly optimized massively concurrent
algorithms and high bandwidth low latency storage, appli-
cations designed to interact with very large working sets in
main memory incur significant performance loss if they read
and write data structures that are memory-mapped from ex-
ternal storage.

For this reason, most out-of-core algorithms use ex-
plicit I/O to load and store data between external store and
application-managed data buffers. Optimizing an applica-
tion for out-of-core execution is an exercise in carefully
choreographing data movement, requiring explicit data re-
quests through direct I/O and manual buffering [3]. For cer-
tain classes of out-of-core algorithms with repetitive access
patterns, Mills et al. [4] have developed a framework that
provides dynamic memory adaptation.

The idea of memory-mapping data from storage into
main memory is appealing for its simplicity. Access to the
memory-mapped region of the application’s address space
will transparently trigger a check in the Linux page cache,
and if necessary read the page of data from the memory-
mapped file into the page cache. Furthermore, that unique
page is shared by all processes which access the data. Addi-
tionally, memory-mapping paves a path for scalable out-of-
core computation because buffering and data movement are
implicitly handled by the operating system’s runtime rather
than the application. One complementary example of this
approach is the NVMalloc project by Wang et al. [5], which
utilizes the memory-map interface to aggregate distributed
SSD storage.

In prior work [2], we demonstrated that the standard
memory-map runtime in Linux will rapidly lose perfor-
mance as concurrency increases and as memory within the
system becomes constrained. This behavior stems from sev-
eral standard design decisions that are optimized for shared
libraries rather than data-intensive workloads: (a) evicted
pages are individually flushed from the page-table and trans-
lation look-aside buffer (TLB), (b) the page eviction algo-
rithm avoids evicting memory-mapped pages, and (c) the
Least Recently Faulted algorithm keeps only a single bit
to track page activity. Therefore, we have developed a
new high-performance runtime that can seamlessly integrate
NVRAM into the memory hierarchy using the memory-map
abstraction. Our new module, a data-intensive memory-map
runtime (DI-MMAP) addresses the performance gap in the
standard Linux memory-map implementation.

This paper demonstrates the effectiveness of DI-MMAP
for data-intensive applications. We demonstrate that DI-
MMAP can consistently achieve significant performance
improvement over standard Linux mmap on our test suite,
including an unstructured read/write access pattern, micro-
benchmarks that demonstrate searching several types of data
structure, a bioinformatics application that searches a large
(hundreds of GB) “in-memory” metagenomics database,

and a level-asynchronous BFS algorithm. Our memory-
map runtime delivers up to 4× the performance of stan-
dard Linux mmap on the bioinformatics application and ap-
proaches the peak performance of raw, direct I/O on a ran-
dom I/O benchmark. Furthermore, executing a fully exter-
nal memory BFS algorithm on DI-MMAP is 7.44× faster
than with Linux mmap. Finally, DI-MMAP shows scalable
out-of-core performance for BFS traversal in main memory
constrained scenarios (e.g. 50 % less memory with only a
23 % slowdown), allowing a system with a fixed amount of
memory to solve a larger problem. Alternatevely, it would
provide memory QoS guarantees for systems running mul-
tiple data-intensive applications.

2 The DI-MMAP runtime

The data-intensive memory-map runtime (DI-MMAP) is a
high performance runtime that provides custom memory-
map fault handling and page buffering that is independent
of the Linux page cache. It is a loadable Linux character de-
vice driver and it works outside of the standard Linux page
caching system. It was first introduced in [6] and is derived
from the PerMA simulator outlined in [2], sharing a com-
mon core codebase. Source code is available at [7]. It has
been developed and tested for the 2.6.32 kernels in RHEL6.

The key features of the runtime are:

• a fixed size page buffer organized into multiple page man-
agement queues

• minimal dynamic memory allocation
• a simple FIFO buffer replacement policy
• tracking and sampling of page faults
• preferential caching for frequently accessed pages
• bulk TLB eviction

The combination of these features allows DI-MMAP to
provide exceptional performance at high levels of concur-
rency compared to standard mmap, as shown in Sect. 6. The
DI-MMAP device driver is loaded into a running Linux ker-
nel. As it is loaded, the device driver allocates a fixed amount
of main memory for page buffering. Using static page al-
location versus dynamic page allocation improves perfor-
mance by approximately 4 %, see Sect. 6.2. Once the device
driver is active, it provides two mechanisms for interaction,
a direct mapped method for block devices and a DI-MMAP
file system. For the direct mapped interface, it creates a con-
trol interface file in the /dev filesystem. The control file
is then used to create additional pseudo-files in the /dev
filesystem that link (i.e. redirect) to block devices in the sys-
tem. When a pseudo-file is accessed all requests are redi-
rected to the linked block device.

The DI-MMAP file system provides a file system overlay
for an existing directory in the standard Linux file system.



Cluster Comput

Fig. 1 DI-MMAP page buffer

When the di-mmap-fs is loaded it is supplied with an ex-
isting (backing) directory within the Linux file hierarchy and
it will create a virtual file at the new mount point for every
file in the backing directory. Similarly to the direct mapped
interface, when a file within a di-mmap-fs mount point is
accessed, all requests are redirected to the underlying file in
the backing directory.

DI-MMAP uses a simple FIFO buffering system with
preferential storage of frequently accessed pages (i.e. a hot
page FIFO). Figure 1 shows a logical diagram of the DI-
MMAP buffer and its page management queues. The buffer
contains enough pages to fill all of the queues plus one spare
page. When a page fault occurs, the page location table is
checked to see if another process (or thread) has already
faulted the page into the buffer. If the page is in the buffer,
the page is added to the page table of the faulting process
and the fault is completed. Otherwise, a free page is allo-
cated from a pool of empty pages. Data is then read from
the block device into the fresh page, and the page is queued
into the series of FIFOs.

In the steady state, a page fault will displace the oldest
page in the primary FIFO. If the displaced page has been
faulted more frequently than the buffer’s average it will be
placed into the hot page FIFO, otherwise it will be placed
into the eviction queue. When a newly displaced page is in-
serted into the hot page FIFO, it will displace an older hot
page, which is then placed in the eviction queue. Once a
page is in the eviction queue, it will eventually be flushed
to storage if dirty, cleaned and returned to the free page list.
The buffer page location table is implemented as a hash ta-
ble with chaining. To maintain a long term fault history, the
buffer page location table maintains a fault count per hash
bucket, which is used as the starting fault count for each new
page that maps to that bucket. Similarly to a bloom filter or
branch history table, this provides an approximate history
that is based on the ratio of number of unique pages to num-
ber of buckets.

The value of tracking page faults and using a hot
page FIFO to store active pages is quantified in Fig. 13,
Sect. 6.5.2, for a BFS graph traversal. These results high-
light the overhead and inefficiency for many data-intensive

applications of the Linux mmap policy of evicting the Least
Recently Faulted (LRF) page. In particular, while a Least
Recently Used (LRU) policy is generally good for data with
temporal locality, the Linux page cache lacks a mechanism
to track page accesses or the history of page faults and
fault frequency. Therefore the eviction algorithm is limited
to evicting the least recently faulted page, regardless of its
actual use, and is unable to provide more comprehensive
policies for frequently accessed pages.

Another important aspect to maintaining performance is
to properly manage TLB occupancy and eviction. Examples
of the performance loss that can occur due to excessive TLB
thrash have been noted by other research projects, such as
Wu et al.’s [8] work on storage class memory. To address
these problems, DI-MMAP removes pages from the page
table of every process (it was mapped in to) as they are
scheduled for eviction, but the translation look-aside buffers
(TLBs) are flushed in bulk (only when the eviction queue
is full). Figure 5 in Sect. 6.2 illustrates the value of a bulk
flush versus individual TLB page invalidation. Another opti-
mization is page recovery, which is based on the well known
technique of using victim buffers with caches [9]. The evic-
tion queue provides the functionality of a victim buffer as
well as a sampling window for tracking page fault activity
to identify hot pages. When a page fault occurs for a page
that is in the eviction queue, it is not flushed out. Instead,
it is put into the primary FIFO, and the page’s fault counter
is incremented to indicate that it has some temporal local-
ity (thus it might be a hot page). When a page is finally re-
moved from the buffer and placed in the free page list, the
page’s fault counter is used to update the buffer page loca-
tion table bucket’s fault counter. If the page’s fault counter is
higher than the bucket’s fault counter then the bucket’s fault
counter is set to equal the page’s. If the page’s and bucket’s
fault counter are equal, the bucket’s counter is decremented
(min. of one), i.e. decaying the fault counter.

Another feature of the DI-MMAP kernel module is that
it can be loaded multiple times. This allows for multiple in-
stances of the runtime, each of which provides an indepen-
dent buffer. The impact of multiple buffers on applications
is the subject of future research.

3 Related work

Providing more control, and application specific-control,
over memory page management is not a new idea. Previ-
ously, there were several research efforts focused on the vir-
tual memory management system in the Mach 3.0 micro-
kernel that have yet to be revisited for modern HPC operat-
ing systems. They studied the effects of different page evic-
tion policies, application-specific pools of pages, and even
application defined replacement policies.



Cluster Comput

The HiPEC project by Lee et al. [10] developed a small
programming language that was used to create application-
specific replacement policies for the virtual memory run-
time. They show that for a particular phase of an applica-
tion with nested loops, switching from a traditional least-
recently-used (LRU) page replacement policy to a most-
recently-used (MRU) policy can speedup the loop execution
by ∼2× by reducing page faults.

The work of Park et al. [11] used the flexibility of
the Mach micro-kernel to directly develop multiple mem-
ory management policies for memory-mapped data. Park
demonstrated again that a performance gain of ∼2× was
achievable with a replacement policy that matched an ap-
plication’s I/O patterns. Furthermore, they also provided an
example of how to customize a replacement policy for the
access patterns of a specific data structure. Finally, they
demonstrated that with the right memory management pol-
icy, it is possible to get scalable out-of-core execution.

Qureshi et al. [12] studied the impact of alternate in-
sertion policies for a CPU’s cache. They found that sev-
eral alternate line insertion policies provided excellent per-
formance for cyclic access patterns. Specifically, by mark-
ing new cache lines as least recently used (LRU) rather
than most recently used (MRU), large cyclic access patterns
would not trash the cache’s entire contents and would actu-
ally achieve modest cache reuse.

All of these previous research projects have demonstrated
that customized memory management and paging policies
can dramatically improve a system’s performance. They
demonstrated that scalable performance is possible as ap-
plications shift from in-memory to out-of-core computa-
tions. The proliferation of data-intensive applications and
high performance NVRAM storage provides compeling mo-
tivation to revist these ideas in modern HPC operating sys-
tems.

4 Data-intensive computing applications

We focus on high performance computing data-intensive ap-
plications that

• analyze hundreds of GiB to TiB size data sets
• have algorithmic data structures whose sizes often don’t

fit in main memory
• may display irregular random memory access behavior
• can exploit massive thread level concurrency

Our goal is to enable parallel algorithms tuned for mem-
ory locality to interact with large data sets as if in mem-
ory by mapping data structures to files stored in locally at-
tached enterprise grade Flash arrays. To better assess the
performance of DI-MMAP on scientific and data analy-
sis problems, we study two realistic data-intensive appli-
cations: metagenomics classification for pathogen detection

and breath-first search (BFS) graph traversal. Each applica-
tion is described in greater detail below.

4.1 Livermore Metagenomics Analysis Toolkit (LMAT)

Metagenomics involves the sequencing of heterogenous ge-
netic fragments taken from the environment, in which the
fragments (also called “reads”) may be derived from many
organisms. This area is extremely beneficial for numerous
applications in bioinformatics, e.g. to discover toxic organ-
isms in a biological sample. Sequencing technologies are
increasing their rate of output; thus, there is a pressing
need for accelerating sequence classification algorithms to
keep pace with the sequencer improvement rate. The Liv-
ermore Metagenomics Analysis Toolkit (LMAT) [13] is a
new bioinformatics application developed at LLNL to iden-
tify pathogens in samples containing an unknown variety
of biological material. The LMAT classification application
queries a database of genetic markers called k-mers, which
are length k contiguous sequences of DNA bases that ap-
pear in a genome. LMAT is highly data-intensive: the input
consists of millions of reads of length 50–100 bases, and the
constituent k-mers of those reads must be searched in the
k-mer database. The reads are independent, and thus can be
analyzed in parallel without requiring synchronization. The
k-mer database is stored as a single large file in order to best
classify the k-mers in a read according to their position in
the taxonomy of all known genomes.

We place the large (hundreds of GiB) k-mer database in
Flash storage and memory-map the database file to access
the k-mers and associated taxonomy classification informa-
tion. Memory-mapping the database file eliminates the need
to explicitly load it into main memory, a drawback of previ-
ous approaches. Additionally, Flash storage gives a lower-
cost alternative to large-memory machines, but the chal-
lenge is to use caching techniques that reduce the perfor-
mance penalty incurred by using Flash instead of DRAM.
The access patterns to the datasets are extremely random.
Thus, performance optimizations for rotating media—with
sequential access preferred—do not apply well to this work-
load.

The metagenomic database contains k-mer markers re-
ferring to genomes from within a reference database (set of
collected genomes) along with additional data associating
the k-mer with a genome and the genome’s position in the
taxonomy tree of organisms. To facilitate indexing, k-mers
are encoded as 64-bit integers [14]. Each integer serves as
the key to the k-mer index. The integer keys map to point-
ers, which in turn refer to the associated values: binary data
storing lists of 32-bit taxonomy identifiers and 16-bit count
fields (for use within classification) for the organisms con-
taining the k-mer marker within the reference database. The
length of these lists spans from a few to (rarely) thousands of



Cluster Comput

Fig. 2 Structure of the
two-level index. A k-mer shown
in ascii form is encoded as an
integer. Its binary representation
is split to show use within the
levels of the index

taxonomy identifiers, where each taxonomy identifier indi-
cates a parent of the k-mer in the taxonomy tree. The k-mer
lookups are performed concurrently using OpenMP thread-
ing.

We use two forms of index data structures for mapping
k-mers to their constituent organisms. The first uses a gnu
hash map with the k-mer as key, and pointers to the associ-
ated genomes and taxonomy information as value. A lookup
retrieves the associated data (taxonomic information), which
ranges from hundreds to thousands of bytes.

The second type of index is a “two-level” index. The first
level maps the high-order bits of an integer-encoded k-mer
to a pointer into a second level of lists, each of which is
sorted. The second level uses the remaining low-order bits to
find a pointer to the taxonomy information. These second-
level lists fit within a single page of memory and are quickly
binary searched during a k-mer lookup operation. The value
storage is the same as used with gnu hash. Figure 2 illus-
trates the structure of the index, where n is the length of
the first-level array (corresponding to the number of high-
order bits selected), and m is the length of the second-level
array of lists. Note that m is equal to the total number of
k-mers in the database. This data structure is specific for in-
teger keys and is tuned for k-mer data. It is not suitable for
general purpose key-value storage that typically performs a
hash-function calculation on variable-length strings of ascii
characters.

The structure of both the gnu hash and two-level index
generally cause the overall memory access patterns within
the data structure to be randomly distributed. However, the
layout of the two-level approach introduces some spatial
locality between independent lookups in two ways. First,
the upper level of the two-level index is a smaller struc-
ture than the gnu hash table. By virtue of a smaller size,
we expect fewer capacity misses and greater reuse of cache
pages than the gnu hash table. Second, the gnu hash uses
linked-list chaining to resolve hash collisions. These chains

span multiple pages of memory. In contrast, the second level
lists usually fit on a single page of memory (in exceptional
cases, some lists span the boundaries of multiple consecu-
tive pages), thus enabling highly localized access.

LMAT uses k-mer lookup as a frequent kernel operation.
The application processes input files containing reads from
the metagenomic samples, where each sample is a list of
reads of 50 to 100 characters each. Once the application has
queried the index using the extracted k-mers, it uses those
results—the presence of particular taxonomic identifiers—
to assign a label identifying an organism or higher taxo-
nomic entity to each read. Input data is trivial to partition for
processing in parallel; thus, many classification procedures
are run concurrently using OpenMP threads.

4.2 HavoqGT: BFS graph analysis

Large graph analysis is one of the driving examples of data-
intensive problems. Traversing the graph typically produces
an unstructured sequence of memory references that have
very little temporal or spatial locatily. Additionally, graph
traversal has a low computation to communication ratio, as
the bulk of the work is to access vertexes and edges. The
Highly Asynchronous VisitOr Queue Graph Toolkit (Havo-
qGT) is being developed at LLNL, and implements a paral-
lel, level-asynchronous, Breadth-First Search traversal well
suited to large (e.g. 231 nodes) scale-free graphs. Our al-
gorithm uses the vistor abstraction in which a small func-
tion is applied to each graph vertex. The function reads and
writes priority queues associated with the graph vertexes and
edges. The algorithm is asynchronous: each visitor function
is applied independently, and it is not necessary to synchro-
nize at the end of each level of the graph [1].

Our goal in evaluating the BFS algorithm was to measure
performance under several memory partitioning scenarios.
The algorithm has two classes of data structures: algorith-
mic data structures used during search, such as the visitor



Cluster Comput

queues, and the graph itself. To enable us to experiment with
various partitions of in-memory vs. out-of-core alloctions
using the same BFS executable, we manually partitioned
the Breadth-First Search algorithmic data structures and the
graph data structures into independent memory regions. This
partitioning enabled the data structures to be backed by
independent memory-mapped files, and allowed us to run
the algorithm fully in-memory, semi-externally (partially in-
memory, meaning that the algorithmic data structures are al-
located in memory and the graph data is allocated to stor-
age), and fully externally, all using exactly the same binary.
The partitioning alternatives were exercised by placing the
files in a combination of tmpfs and NVRAM Flash stor-
age.

In the semi-external configuration the entire graph is
mapped to Flash and is read-only. The access pattern to the
graph is unstructured. In a fully external configuration the
algorithmic data structures, which are read/write data struc-
tures, are also on Flash. The algorithmic data represents the
minority of the total data, but the majority of the total mem-
ory accesses. Additionally, roughly one third of the algo-
rithmic data exhibits temporal locality, while the remaining
two thirds have access patterns that are mostly unstructured.
These varied usage patterns allowed us to evaluate the utility
of the buffer management algorithms, especially the interac-
tion between hot page FIFO and eviction queue.

This method of partitioning the BFS data structures also
made it possible to evaluate performance of DI-MMAP
in memory constrained environments by offloading what
would traditionally be heap allocated data structures to per-
sistent storage.

5 Experimental methodology

The DI-MMAP runtime is designed to provide high perfor-
mance on highly-concurrent, data-intensive workloads. To
test DI-MMAP we use four types of benchmarks: a syn-
thetic random I/O workload, a set of three microbench-
marks, a metagenomics classification application, and a
level-asynchronous, breadth-first search graph traversal.
The synthetic random I/O workload was chosen because
it is a good approximation for the unstructured access pat-
terns found in many data-intensive applications. The micro-
benchmarks are three commonly used data traversal and
search algorithms. Finally, both the LMAT classifier and
HavoqGT BFS traversal are highly data-intensive applica-
tions.

There are two common approaches to testing DI-MMAP.
In both approaches data was loaded onto one or more PCIe-
attached Flash storage card(s). In the first approach, the DI-
MMAP runtime creates pseudo-devices that linked to the
raw Flash cards. Each benchmark then memory-maps the

DI-MMAP pseudo-device(s), enabling all page faults for
the mapped address range to be serviced and buffered by
the DI-MMAP runtime. The second approach mounts the
Flash cards in the Linux file system with DI-MMAP creat-
ing a second mount point that is backed by the Flash de-
vice’s mount point. In the DI-MMAP mount point a file for
each file in the backing store is created, which will redirect
accesses to the underlying file on the backing device. Both
approaches provide similar levels of performance, with each
providing a unique method for accessing Flash storage: ei-
ther a bag of bits, or a traditional file system. These results
are then compared to the existing Linux memory-map run-
time and to direct (unbuffered) I/O as appropriate.

5.1 LRIOT

The Livermore Random I/O Testbench (LRIOT) is a syn-
thetic benchmark that is designed to test I/O to high-
performance storage devices. We have developed LRIOT
to augment the industry standard FIO benchmark for test-
ing high data rate memory-mapped I/O with different pro-
cess/thread combinations. LRIOT can generate tests that
combine multiple processes and multiple threads per process
to simulate the highly concurrent access patterns of latency
tolerant data-intensive applications. Furthermore LRIOT
can generate uniform random I/O patterns that mimic the
unstructured access patterns of algorithms such as breadth-
first search graph analysis [2]. LRIOT can also do standard
and direct I/O in addition to memory-mapped I/O, and thus
provides a common testing framework. Finally, the LRIOT
benchmark has been validated against the FIO benchmark
and provides comparable results for direct I/O.

5.2 Micro-benchmarks

To complement the LRIOT experiments, we tested three
micro-benchmarks that reproduce memory access patterns
common to data-intensive applications. The micro-bench-
marks are: binary search on a sorted vector, lookup on a or-
dered map structure that is implemented as a red-black tree,
and lookup on an unordered map structure implemented as
a hash map. The micro-benchmarks use the C++ STL and
Boost library implementations of these algorithms.

5.3 LMAT

We perform two types of experiments to evaluate DI-MMAP
using the metagenomic database. First, we report the per-
formance of a raw k-mer lookup benchmark. Second, we
report the performance of the LMAT application. The k-
mer lookup test application reports timings of many sin-
gle lookups, while the LMAT application times input pro-
cessing, k-mer lookups, sample classification and output. In



Cluster Comput

these scenarios, we compare the performance when using
standard Linux mmap to map a file and DI-MMAP. We con-
figure DI-MMAP to use 16 GiB of main memory for its page
buffer.

Our database of reference genomes contains information
from roughly 26,000 organisms from five categories of mi-
croorganisms: viruses, bacteria, archaea, fungi and protists.
The database was indexed with a k-mer length of 18 for
these experiments, which results in an index set with ap-
proximately 7 billion k-mers. We present experimental re-
sults that include performance of both the gnu hash index
and the two-level indexing scheme. The gnu hash database
uses roughly 635 GiB of Flash storage and the two-level in-
dex database uses 293 GiB. Specifically for the two-level
approach, and a k-mer length of 18, the first level index uses
1 GiB and the second level uses 56 GiB for the 7 billion
k-mers. The remaining storage is used for the taxonomic in-
formational data associated with each k-mer. We present re-
sults from these two different indexing schemes in separate
figures as the focus of these experiments is to compare the
performance of DI-MMAP with Linux mmap.

For the raw k-mer lookup benchmark experiment, we use
the following input sets: first a synthetic metagenome de-
rived from a human gut sample (HC1) and second, three
real-world collections of metagenomic samples labeled
SRX, DRR, ERR. Using the HC1 input set, we consider
a selection of increasing thread counts. Our results from this
input set only uses the raw k-mer lookup benchmark, but for
both types of indexing.

Using the three real-world metagenomic samples, we in-
clude results for both the gnu hash indexing and two-level
indexing with both the k-mer lookup benchmark and LMAT
application experiments, four experiments in total. In con-
trast to the sweep of thread counts used with HC1 experi-
ments, we tested the real metagenomic sample input sets us-
ing only two thread counts: 16 and 160. These are selected
as they are the approximate peak values for Linux mmap and
DI-MMAP respectively.

5.4 HavoqGT: BFS graph analysis

As noted in Sect. 4.2 the implementation of HavoqGT BFS
used in these experiments partitioned all of the data struc-
tures that would normally be heap allocated into individ-
ual memory regions. This allowed each of the individually
memory-mapped files to be stored in memory via tmpfs or
in Flash storage. The partitioning created five files for the
following data structures: a priority queue, BFS progress
data, manual cache of vertices, vertex data, and edge data.
The data set that was used for these experiments was gener-
ated by the R-MAT [15] graph generator, which produces
realistic and challenging experiments and is used by the
Graph500 [16] benchmark. We used the generator to create

a scale-free graph with 231 vertexes, with an average out-
degree of 16. The graph instance is labeled RMAT 31 in
subsequent figures. The data size for this graph is 146 GiB
of vertex and edge data, and requires 24 GiB of BFS al-
gorithmic data that is split evenly among the three algo-
rithmic data structures. When executing the application in
a semi-external configuration the 24 GiB of BFS algorith-
mic data is in memory (using tmpfs), 16 GiB is allocated
for DI-MMAP’s page cache, and only 16 GiB remains free
for Linux mmap’s page cache. For the fully-external con-
figuration a total of 40 GiB is allocated to DI-MMAP’s page
cache, and only 40 GiB remains free for Linux’s page cache,
for the combination of algorithmic and graph data structures.

6 Results

The following experiments are designed to compare the per-
formance of DI-MMAP relative to the existing implementa-
tion of mmap in Linux for data-intensive workloads: highly
concurrent and when there is insufficient main memory to
hold the entire data set. In addition to showing the perfor-
mance using DI-MMAP, these experiments demonstrate that
the efficiency of DI-MMAP can enable an application to ex-
ecute with less page cache than standard mmap without sig-
nificant loss in performance. This scalability in performance
sets the stage for allowing an application to shift part of its
algorithmic data out of main memory, thus allowing data-
intensive applications to tackle even larger problems. These
tests are conducted on a variety of synthetic benchmarks,
microbenchmarks, and two data-intensive applications to il-
lustrate the flexibility of the DI-MMAP runtime.

One of the optimizations that we have previously ex-
perimented with for Linux mmap is to use the MADV_
DONTNEED flag for the madvise system call to help al-
leviate memory pressure. We have demonstrated the effec-
tiveness of the MADV_DONTNEED flag before in both BFS
[1] and random I/O workloads [2]. To achieve the maxi-
mum benefit from the madvise system call the data access
pattern has to be unstructured, read-only, and the applica-
tion needs an additional thread of control that can periodi-
cally issue the system call. It should also be noted that the
MADV_DONTNEED flag cannot be safely used for memory-
mapped writable data structures, as the system is not re-
quired to write out dirty pages of data. For these experiments
we have made comparisons of the efficacy of madvise in
the context of the HavoqGT BFS traversal which was archi-
tected to meet these requirements.

6.1 LRIOT: uniform random I/O distribution

The first experiment compares the performance of DI-
MMAP, standard mmap, and direct I/O. LRIOT generated



Cluster Comput

Fig. 3 Read-only random I/O benchmark with uniform distribution

Fig. 4 Write-only random I/O benchmark with uniform distribution

a random sequence of 6.4 million read operations to a raw
128 GiB region that was striped across three 80 GiB SLC
NAND Flash Fusion-io ioDrive PCIe 1.1 × 4 in a RAID 0
configuration. The input read sequence is constructed so that
it is repeatable, has one address per page, and is unique per
process. Therefore each test will fetch 6.4 million unique
pages, about 24 GiB of data. The data transfer size for all
I/O (direct and memory-mapped) was 4 KB pages. The host
system was a 16 core AMD 8356 2.3 GHz Opteron system
with 64 GiB of DRAM and running RHEL 6 2.6.32.

Figure 3 shows the number of I/O per second (IOPs) that
LRIOT achieved for the different I/O methods as concur-
rency increased. Note that each test used one process and
the x-axis shows the number of concurrent threads. There
are 5 specific test configurations shown here. The first line
is for direct I/O and is typically the upper bound on achiev-
able performance for a set of devices. The second and third
lines are for the standard Linux memory-map handler when
there is sufficient memory to hold all pages that are accessed
in memory, i.e. mmap buffering is unconstrained, and when

Fig. 5 Impact of DI-MMAP optimizations with read-only random I/O
benchmark

the page cache is constrained to hold only 8 GiB of pages.
Finally, curves four and five are for DI-MMAP with a fixed
buffer size of 4 GiB and 1 GiB, respectively. Figure 3 shows
that the performance of DI-MMAP is very close to the per-
formance of direct I/O and mmap when unconstrained, even
with a very small buffer size of 1 GiB. Furthermore, Fig. 3
shows that standard Linux mmap performs well when mem-
ory is unconstrained, but performance drops significantly
when system memory is constrained and the requested data
exceeds the capacity of main memory. Overall, we see that
DI-MMAP is able to deliver near peak performance with
limited buffering resources, with only a 13 % loss in IOPs
compared to direct I/O at 128 threads.

Figure 4 shows the number of IOPs that LRIOT is able
to achieve with a similar write-only working set. As with
the read-only working set, DI-MMAP offers a bit more than
double the performance of Linux memory-map when it is
constrained and similar performance to the unconstrained
Linux mmap. The performance of memory-mapped I/O can-
not match direct I/O, since the memory-map operation of an
unmapped page requires a read-modify-write sequence. Our
results do show that DI-MMAP performs comparably to a
direct I/O test that explicitly executes a read-modify-write.

6.2 Testing the impact of DI-MMAP optimizations

Section 2 describes the DI-MMAP runtime and specifically
highlights several optimizations that provide a performance
advantage over the standard Linux mmap. Figure 5 show the
impact of several of DI-MMAP’s optimizations, specifically
dynamic memory allocation, and bulk cleanup of the TLB.
Similar to the previous figures, Fig. 5 plots performance in
terms of IOPs versus parallelism (# of threads). The first line
in Fig. 5 shows the raw performance of DI-MMAP, with all
optimizations, and is the same result as the third line from
Fig. 3. This result illustrates the peak performance for the
DI-MMAP runtime for these experiments.



Cluster Comput

Fig. 6 Micro-benchmarks: Binary Search on Sorted Vector, Lookup on an Ordered Map, and Lookup on an Unordered Map, respectively. Note
that the data sets were constructed to be approximately the same size, and thus have different numbers of elements

The second line illustrates the cost of using DI-MMAP to
access a file on an ext2 filesystem. For this and subsequent
tests, the 128 GiB file is striped across all three Fusion-io
cards in the RAID0 array. Figure 5 shows that at 256 threads,
the cost of accessing data on di-mmap-fs versus a raw
device is a loss of 2.6 % in IOPs. The third line uses both
di-mmap-fs to access the file and allocates a new page of
data on each page fault. The Linux O/S is highly tuned for
dynamic allocation of whole (raw) pages and the overhead
for dynamic page allocation (vs. static allocation) was only
3.8 % slower than DI-MMAP on the file system. Finally, the
fourth line shows the performance of LRIOT reading a file
in di-mmap-fs and without using the bulk TLB flush that
is enabled by the victim queue. Instead, for each page that
is evicted from the buffer, that specific entry is individually
flushed from all TLBs. The number of IOPS achieved for
DI-MMAP without bulk TLB flush is 0.756× the IOPS of
LRIOT and di-mmap-fs, a loss of 24.4 % in performance.

6.3 Micro-benchmarks

The three micro-benchmarks were all performed on an 8
core AMD 2378 2.4 GHz Opteron system with 16 GiB of
DRAM and two 200 GiB SLC NAND Flash Virident ta-
chIOn Drive PCIe 1.1 × 8. The database size for the vector
and maps ranged from ∼112 GiB to ∼135 GiB and each
micro-benchmark issued 220 queries. For each of the graphs
in Fig. 6 performance is measured in lookups per second and
the x-axis is the number of concurrent threads. In each fig-
ure, line one is the performance of Linux mmap with uncon-
strained memory, lines two and three are the performance
of Linux mmap with 8 and 4 GiB of available buffering (re-
spectively), and line four is the performance of DI-MMAP
with 4 GiB of available buffering. These figures show that
the performance of DI-MMAP significantly exceeds the per-
formance of Linux mmap when each is constrained to an
equal amount of buffering, and in some cases the perfor-
mance with DI-MMAP is able to approach the performance
of mmap with no memory constraints.

6.4 Raw k-mer lookup and LMAT classification

The LMAT experiments were performed on a 4 socket, 40
core, Intel E7 4850 2 GHz system, with 1 TiB of DRAM,
running Linux kernel 2.6.32–279.5.2 (RHEL 6). For storage
we use a software RAID over two Fusion-io 1.2 TB ioDrive2
cards, formatted with block sizes of 4 KiB, and the system
was constrained to have 16 GiB DRAM available for DI-
MMAP’s or mmap’s page cache.

Figure 7(a) shows the performance of the raw k-mer
lookup benchmark using the synthetic (HC1) input set with
gnu hash indexing. The x-axis denotes increasing numbers
of threads used for each trial and the y-axis shows k-mers per
second. When using 8 threads, k-mer lookup performs better
using DI-MMAP than standard mmapwith a file system, and
the performance gap increases with additional concurrency.
While performance decreases with increasing threads using
standard mmap, the opposite is true for use of DI-MMAP.
Notably, the performance with standard mmap peaks at 16
threads and then degrades. The peak performance for DI-
MMAP with 240 threads is 4.92× better than the peak per-
formance for standard mmap with 16 threads.

Figure 7(b) is similar to Fig. 7(a), but shows raw k-
mer lookup for the two-level index with mmap and DI-
MMAP. Again, we measure peak performance for mmap at
16 threads, in this case at 60,600 k-mers per second. In con-
trast, our peak measurement for DI-MMAP is at 244,000
k-mers per second, roughly 4× faster. Note that the peak
performance for both DI-MMAP and mmap is significantly
higher than when using the gnu hash table. In summary,
Figs. 7(a) and 7(b) show that DI-MMAP performs well with
two very different types of data structures: gnu hash and a
two-level index. Additionally, the figures show that perfor-
mance scalability (with threads) follows a similar pattern for
both mmap and DI-MMAP using either index structures.

The following two Figs. 8, and 9 show performance of the
two applications and two indexing data structures using real
metagenomes. A difference between the plots in Figs. 8(a)–
9(a) and 8(b)–9(b) is that the y-axis on the latter pair denotes



Cluster Comput

Fig. 7 Performance of raw kmer lookup using k-mer identifiers extracted from the HC1 input set and using gnu hash indexing and two-level
indexing

Fig. 8 Performance of raw k-mer lookup and LMAT classification application using three metagenomic input sets and gnu hash indexing

Fig. 9 Performance of raw k-mer lookup and LMAT classification application using three metagenomic input sets and two-level indexing

bases per second (from the input) files rather than k-mers per
second. This metric is necessary to normalize performance
among differing input sets, where the length of each read
(a line of bases taken from the sequencer) may vary. These
observations fit with those measured for the synthetic work-
load.

We observe that the performance differences between DI-
MMAP and mmap are greater for the raw k-mer lookup
benchmark than for LMAT classification. Several factors in-
fluence differences in performance between the two appli-
cations. The classification algorithm uses considerably more
system memory for processing over the raw lookup, whose
usage is negligible besides caching of the k-mer index and
associated data. Additionally, the classification algorithm

spends considerable more CPU time in the actual classifica-
tion phase of processing rather than the k-mer lookup phase.

We observe differences among the different input sets
for several reasons. First, each has a different percentage
of redundant k-mers. Increased redundancy improves per-
formance, since more k-mers hit in the buffer cache. For
instance, the SRX input data set produces a much greater
cache hit rate than the other two sets. Thus, that data set con-
sistently shows a higher throughput in all four experiments.

Second, for the classification comparisons, the diversity
of the metagenome (number of organisms represented) im-
pacts its performance. We observe that DRR performs rela-
tively better than ERR when comparing k-mer lookup per-
formance with LMAT classification performance (Fig. 9).



Cluster Comput

We attribute this difference to the greater diversity in the
ERR input set, which increases classification time but does
not impact lookup time. However, DRR is also faster than
ERR for raw k-mer lookup and we attribute that to greater
redundancy in the DRR input set. Considering the measure-
ments of the these data sets using gnu hash indexing, we
observe DRR performing better than ERR for LMAT classi-
fication in Fig. 8(b). This result we expect given the differ-
ence in diversity. However, our measurements in Fig. 8(a)
show DRR performing worse, and this result we attribute to
the inconsistent nature of gnu hash indexing: the k-mers in
the DRR set favor chaining, which forces additional lookup
time. Nonetheless, neither of these properties of the input
sets have a considerable impact on the relative performance
differences observed between mmap and DI-MMAP.

We observe a range of peak performance speedup factors
for DI-MMAP vs mmap: from the gnu hash experiments, the
greatest of 4× for the SRX input set and smallest of 2.7× for
the ERR input set; from the two-level index experiments, the
greatest of 3.8× for the SRX input set and smallest of 3.3×
for the DRR input set.

In addition to comparing DI-MMAP with Linux mmap,
we can observe better performance of the two-level index
vs. gnu hash index through the pairs of figures: 7(a) vs. 7(b)
and 8 vs. 9. The performance speedup factors differ by input
data set and range from 2.3× to 6× depending on the input
set. These speedups we attribute to both the improved local-
ity and smaller overall size of the two-level index. Specif-
ically, given the 16 GiB buffer and this database, 5.6 % of
the two-level hash index can fit in buffer memory, while only
2.5 % for the gnu hash.

6.5 HavoqGT: BFS graph analysis

The HavoqGT BFS graph traversal experiments were ex-
ecuted in three distinct configurations: in-memory, semi-
external, and fully-external. The host system was a 32 core
AMD 6128 2.0 GHz Opteron system with 512 GiB of
DRAM, with two SLC NAND Flash Virident tachIOn Drive
PCIe 1.1 × 8 cards (one 200 GiB and one 300 GiB ca-
pacity), running RHEL 6 2.6.32. The Virident cards were
placed in a RAID 0 configuration and then split into 4 par-
titions. The performance for each of these experiments is
measured in Traversed Edges Per Second (TEPS), and is
plotted against the number of concurrent threads. Each con-
figuration is tested with one thread per core, and with 8×
thread oversubscription at 256 threads.

The in-memory experiments placed all five algorithmic
and graph data files in memory via a tmpfs mount. For the
semi-external configurations of BFS the graph vertex and
edge data was placed on one partition that was mounted with
an ext2 file system and the algorithmic data files were kept
in tmpfs. Due to limitations in the write performance on

Fig. 10 Comparing HavoqGT semi-external BFS on mmap, di-mmap,
and tmpfs

ext2 file systems and the current lack of support for xfs in
DI-MMAP, the fully external configuration placed the three
algorithmic data structures in each of three partitions of the
software RAID and used the DI-MMAP direct mapped in-
terface. The graph data files remained on the ext2 partition
of the RAID device.

6.5.1 Semi-external BFS execution

Figure 10 shows the performance of the HavoqGT BFS al-
gorithm in a semi-external configuration on Linux mmap
and DI-MMAP versus in-memory execution. The four data
points in Fig. 10 are for mmap, mmap with a helper thread
that issues an madvise system call every 10 seconds us-
ing the MADV_DONTNEED flag, DI-MMAP, and in-memory.
We see that performance with standard mmap is quite
poor; however Fig. 10 demonstrates the effectiveness of the
MADV_DONTNEED flag with the second bar of Fig. 10. By
tuning the madvise helper thread to the application, it is
possible to make standard mmap perform very close to DI-
MMAP. DI-MMAP achieves about half of (0.57×) the in-
memory performance.

Figure 10 shows that the tuned BFS semi-external al-
gorithm with mmap and madvise perform quite well, al-
most as well as DI-MMAP, with sufficient buffering avail-
able. One of the advantages previously demonstrated for DI-
MMAP was the ability to work with less page buffering. Fig-
ure 11 shows the performance of both mmap and DI-MMAP
as the amount of system buffering is reduced from 16 GiB
down to 3 GiB. We see that DI-MMAP performs signifi-
cantly better than Linux mmap when the buffer size is scaled
down.

6.5.2 Fully-external BFS execution

An alternative execution environment for the HavoqGT BFS
algorithm is to place all of the memory-mapped data files
into Flash memory, creating a fully external memory exe-
cution. The key difference of this environment versus the



Cluster Comput

Fig. 11 Impact of reducing system memory on HavoqGT semi-external BFS algorithm. DI-MMAP allocated 75 % of its page cache to the hot
page FIFO (HPF)

Fig. 12 Comparing HavoqGT fully-external BFS on mmap and
di-mmap

semi-external environment is that the three memory-mapped
files of algorithmic data are written as well as read, and that
some of the data access patterns exhibit good temporal local-
ity and are amenable to traditional caching techniques. Note
that the madvise system call is only used on the memory-
mapped (read-only) vertex and edge graph data, not the al-
gorithmic data, and is issued every 10 seconds. Figure 12
shows that the performance of the DI-MMAP is 7.44× bet-
ter than mmap on the fully-external execution of the BFS
algorithm when using 256 threads.

System memory is frequently a limiting factor in the size
of problem that a data-intensive application is able to solve.
Figure 13 shows the performance of the fully external BFS
algorithm on DI-MMAP and mmap as the size of the page
cache is reduced. For DI-MMAP the trade-off in perfor-
mance versus buffer size is more dramatic than for the semi-
external algorithm due to the access pattern of the algorith-
mic data and the need to write out dirty pages of algorithmic
data. When using 75 % of the buffer for a hot page FIFO,
as the buffer size is scaled from 40 GiB down to 20 GiB
the performance is only 1.23× slower when executing with
256 threads. The ability to support such a dramatic reduc-

tion in main memory requirement provides the opportunity
for a system of a fixed size to solve a much larger problem.
When using Linux mmap and the buffer size is scaled from
40 GiB down to 32 GiB the performance is already 1.74×
slower when executing with 256 threads. Note that Linux
mmap was not tested with even less memory, as the perfor-
mance had already dropped off dramatically.

Figure 13 also demonstrates the efficacy of a hot page
buffer. As previously noted in [2] the asymmetric access pat-
terns of the fully external BFS search does benefit from a
hot page buffer that will catch the temporal locality of the
algorithmic data. In Fig. 13 line 1 has 75 % of the buffer al-
located to the hot page buffer, line 2 has 50 %, and line 3 has
no hot page buffer. Using 75 % of the buffer for hot pages,
a 40 GiB buffer, and 256 threads provides a 1.48× improve-
ment in performance over not having a hot page buffer.

7 Conclusions

The goal of the data-intensive memory-map (DI-MMAP)
runtime is to provide scalable, out-of-core performance for
data-intensive applications. We show that the performance
of algorithms using DI-MMAP scales up with increased
concurrency, and does not significantly degrade with smaller
memory footprints. As such, DI-MMAP provides a viable
solution for scalable out-of-core algorithms. DI-MMAP of-
floads the explicit buffering requirements from the applica-
tion to the runtime, allowing the application to access its
external data through a simple load/store interface that hides
much of the complexity of the data movement.

We demonstrate the performance of DI-MMAP over
Linux’s existing memory-map runtime with a simple ran-
dom I/O workload, three micro-benchmarks, a metage-
nomics classification application, and a level-asynchronous
breadth-first search graph traversal. Our results show that



Cluster Comput

Fig. 13 Impact of reducing system memory on HavoqGT fully external BFS algorithm. Additionally, a comparison of DI-MMAP with differing
quantities of the buffer dedicated to the hot page FIFO (HPF)

as the tests increase in complexity the performance of DI-
MMAP can be 4× to 2.7× better than standard Linux mmap
for the metagenomics sample classification application, and
up to 7.44× better for a fully external BFS traversal. Fur-
thermore, the use of DI-MMAP alleviates the need to im-
plement a custom, user-level buffer caching algorithm and
infrastructure to achieve high performance.

Acknowledgements This work was performed under the auspices of
the U.S. Department of Energy by Lawrence Livermore National Labo-
ratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-612114).
Funding partially provided by LDRD 11-ERD-008, LDRD 12-ERD-
033, and the ASCR DAMASC project. The metagenomic classification
algorithm was developed by Jonathan Allen, David Hysom, and Sasha
Ames, all of LLNL. Portions of experiments were performed at the
Livermore Computing facility resources, with special thanks to Dave
Fox and Ramon Newton.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.

References

1. Pearce, R., Gokhale, M., Amato, N.M.: Multithreaded asyn-
chronous graph traversal for in-memory and semi-external mem-
ory. In: Proceedings of the 2010 ACM/IEEE International Confer-
ence for High Performance Computing, Networking, Storage and
Analysis, Ser. SC’10, pp. 1–11. IEEE Comput. Soc., Washington
(2010)

2. Van Essen, B., Pearce, R., Ames, S., Gokhale, M.: On the role of
NVRAM in data intensive HPC architectures: an evaluation. In:
IEEE International Parallel & Distributed Processing Symposium
(IPDPS), Shanghai, China, pp. 703–714 (2012)

3. Vitter, J.S.: Algorithms and data structures for external memory.
Found. Trends Theor. Comput. Sci. 2(4), 305–474 (2006)

4. Mills, R.T., Stathopoulos, A., Nikolopoulos, D.: Adapting to
memory pressure from within scientific applications on multipro-
grammed COWs. In: Proceedings of the 18th International Parallel
and Distributed Processing Symposium (IPDPS’04) (2004)

5. Wang, C., Vazhkudai, S.S., Ma, X., Meng, F., Kim, Y., Engel-
mann, C.: NVMalloc: exposing an aggregate SSD store as a mem-
ory partition in extreme-scale machines. In: IEEE International
Parallel & Distributed Processing Symposium (IPDPS), pp. 957–
968. IEEE Press, China (2012)

6. Van Essen, B., Hsieh, H., Ames, S., Gokhale, M.: DI-MMAP:
a high performance memory-map runtime for data-intensive ap-
plications. In: International Workshop on Data-Intensive Scalable
Computing Systems (DISCS-2012) (2012)

7. Data-centric Computing Architectures Research Group. https://
computation.llnl.gov/casc/dcca-pub/dcca/Data-centric_
architecture.html

8. Wu, X., Reddy, A.L.N.: Scmfs: a file system for storage class
memory. In: Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analy-
sis, Ser. SC’11, pp. 39:1–39:11. ACM, New York (2011)

9. Jouppi, N.P.: Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers.
In: Proceedings of the 17th Annual International Symposium on
Computer Architecture, pp. 364–373 (1990)

10. Lee, C.-H., Chen, M.C., Chang, R.-C.: HiPEC: high perfor-
mance external virtual memory caching. In: Proceedings of the
1st USENIX Conference on Operating Systems Design and Imple-
mentation, Ser. OSDI’94. USENIX Association, Berkeley (1994)

11. Park, Y., Scott, R., Sechrest, S.: Virtual memory versus file inter-
face for large, memory-intensive scientific applications. In: Proc.
ACM/IEEE Conf. Supercomputing (1996)

12. Qureshi, M.K., Jaleel, A., Patt, Y.N., Steely, S.C., Emer, J.: Adap-
tive insertion policies for high performance caching. In: Proceed-
ings of the 34th Annual International Symposium on Computer
Architecture, Ser. ISCA’07, pp. 381–391. ACM, New York (2007)

13. Ames, S.K., Hysom, D.A., Gardner, S.N., Lloyd, G.S., Gokhale,
M.B., Allen, J.E.: Scalable metagenomic taxonomy classification
using a reference genome database. Bioinformatics (2013)

14. Marcais, G., Kingsford, C.: A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers. Bioinformatics (2011)

15. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive
model for graph mining. In: Fourth SIAM International Confer-
ence on Data Mining (2004)

16. Graph500. www.graph500.org

https://computation.llnl.gov/casc/dcca-pub/dcca/Data-centric_architecture.html
https://computation.llnl.gov/casc/dcca-pub/dcca/Data-centric_architecture.html
https://computation.llnl.gov/casc/dcca-pub/dcca/Data-centric_architecture.html
http://www.graph500.org


Cluster Comput

Brian Van Essen has been a Com-
puter Scientist at Lawrence Liver-
more National Laboratory (LLNL)
since 2010. His research interests
include operating systems and ar-
chitectures for data-intensive high-
performance computing, develop-
ing spatial accelerators for embed-
ded systems, and reconfigurable
computing. Brian earned his Ph.D.
in Computer Science and Engineer-
ing (CSE) from the University of
Washington in Seattle in 2010. He
also holds a M.S. in CSE from the
University of Washington, plus a

M.S. and a B.S. in Electrical and Computer Engineering (ECE) from
Carnegie Mellon University. Prior to his graduate studies, Brian co-
founded two startups in the area of reconfigurable computing.

Henry Hsieh received his master’s
degree in computer science from
UCLA in December 2012 under
the direction of Prof. Yuval Tamir
in the Concurrent Systems Labora-
tory. While pursuing his degree, he
researched high performance com-
puting and heterogeneous multicore
systems. His past job experience in-
cludes internships at Cisco systems,
Moog Incorporated and Lawrence
Livermore National Labs. He is cur-
rently working at Qualcomm to de-
velop the next generation of mobile
GPU’s.

Sasha Ames is a postdoctoral re-
searcher in the Center for Applied
Scientific Computing at the Lawrence
Livermore National Laboratory. He
is part of the team that develops
the LMAT software to provide fast
and accurate metagenomics search.
Sasha received a PhD in Computer
Science from UC Santa Cruz in
2011.

Roger Pearce is a Ph.D. Candi-
date in the Department of Com-
puter Science and Engineering at
Texas A&M University working
with Prof. Nancy Amato in the
Parasol Lab. In 2008, he joined
Lawrence Livermore National Lab-
oratory as a Lawrence Scholar work-
ing with Dr. Maya Gokhale. He re-
ceived a B.S. in Computer Engi-
neering from Texas A&M in 2004.
His research interests center around
parallel and external memory graph
algorithms and data-intensive com-
puting. Before joining LLNL, Roger

worked on sampling based motion planning algorithms for robotics ap-
plications.

Maya Gokhale has been a Com-
puter Scientist at the Lawrence
Livermore National Laboratory
(LLNL) since 2007. Her career
spans research conducted in aca-
demia, industry, and National Labs,
most recently Los Alamos National
Laboratory. Maya received a Ph.D.
in Computer Science from Univer-
sity of Pennsylvania in 1983. Her
current research interests include
data intensive architectures and re-
configurable computing. She is co-
author of more than one hundred
technical publications. Maya is a

member of Phi Beta Kappa, a Distinguished Member of Technical
Staff at LLNL, and a Fellow of the IEEE.


	DI-MMAP-a scalable memory-map runtime for out-of-core data-intensive applications
	Abstract
	Introduction
	The DI-MMAP runtime
	Related work
	Data-intensive computing applications
	Livermore Metagenomics Analysis Toolkit (LMAT)
	HavoqGT: BFS graph analysis

	Experimental methodology
	LRIOT
	Micro-benchmarks
	LMAT
	HavoqGT: BFS graph analysis

	Results
	LRIOT: uniform random I/O distribution
	Testing the impact of DI-MMAP optimizations
	Micro-benchmarks
	Raw k-mer lookup and LMAT classiﬁcation
	HavoqGT: BFS graph analysis
	Semi-external BFS execution
	Fully-external BFS execution


	Conclusions
	Acknowledgements
	References


