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We discuss a model for the evolution of the turbulent mixing width 

)(th  after a shock or a reshock passes through the interface between two 

fluids of densities A  and B  inducing a velocity jump v . In this model 

the initial growth rate is independent of the surface finish or initial mix 

width 0h , but its duration *t  is directly proportional to it: 

tAhth v2)( 0    for *0 tt  , and   *)*)(/*(1*)( tthhhth    for 

*tt  . Here A  is the Atwood number )/()( ABAB   ,   and   are 

dimensionless,  A –dependent parameters measured in past Rayleigh-

Taylor experiments, and   is a new dimensionless parameter we 

introduce via )v/(* 0  ht . The mix width h  and its derivative h  

remain continuous at *tt   since *v2* 0 tAhh    and v2*  Ah  . 

We evaluate 6~  at 7.0A  from air/SF6 experiments and propose that 

the transition at *tt   signals isotropication of turbulence. The model 

makes several predictions for shock- as well as  reshock-induced mix, 

such as a Kolmogorov 3/5k  spectrum for the turbulent energy at late 

times *tt   . We show that it is consistent with past experiments on 

reshocks, and call for the construction of a “National Shock-Tube 

Facility” to further study turbulence generated by the Richtmyer-Meshkov 

instability. 

Key words: Turbulent mix, shocks, reshocks, Rayleigh-Taylor, 

Richtmyer-Meshkov, National Shock-Tube Facility. 
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I. Introduction 

Hydrodynamic instabilities at fluid interfaces have been known for a long time. For 

example, it is well-known that in a gravitational filed g


 one cannot support a heavy fluid 

above by a lighter fluid below – the fluids interpenetrate and mix. The linear regime of 

the instability where the amplitude )(t  of a simusoidal perturbation remains much 

smaller than the wavelength   was studied by Lord Rayleigh [1] and G. I. Taylor [2], 

hence the instability is known as Rayleigh-Taylor (RT). Somewhat later a shock-induced 

instability, Richtmyer-Meshkov or RM, was the focus of an analytic study by Richtmyer 

[3] and experimental study by Meshkov [4], who found that perturbations grow when a 

shock passes from a light fluid to a heavy fluid or vice versa. RT and RM instabilities               

have been extensively studied in recent years because they impact inertial confinement 

fusion capsules [5] as well as astrophysical phenomena such as supernova explosions [6]. 

The scales are vastly different, from millimeters to millions of kilometers, and therefore 

analytic studies or models expressing how the instabilities evolve are highly useful. 

Single-scale perturbations grow fast in the linear regime and then slow down, but 

continue to grow, in the nonlinear regime where   . Exact analytic expressions are 

practically nonexistent in this regime and a model must be used. A most useful nonlinear 

model, though not a panacea, is Layzer’s model [7]. Originally proposed for RT, it was 

applied to RM more recently [8]. These were limited to a single fluid, hence 1A , where 

A  is the Atwood number defined by )/()( ABAB   , B  ( A ) being the density of 

the heavy (light) fluid. The model was extended to arbitrary A  by Goncharov [9]. 

Although there are limitations to this model, we have applied it to cases where the 

acceleration is time-dependent [10]. 
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When the initial perturbations are not single-scale, as in practically all real-life 

applications, turbulence is observed at the interface between the two fluids and a mix 

width, denoted by h , evolves and grows with time. Needless to say, there are no exact 

solutions for this case either. The turbulence was described in the pioneering work of 

Youngs [11] and Read [12] using advanced numerical simulation techniques [11] and 

experiments driven by rockets and hence known as “rocket-rig experiments” [12]. The 

mix width of the light fluid into the heavier fluid is denoted by bh , with b  standing for 

“bubble”, while the mix width of the heavier fluid into the lighter fluid is denoted by sh , 

with s  for “spike”, terminology derived from the single-scale nonlinear amplitudes b  

and s . Of course the total mix width is sbsb hhh  . 

It was found both numerically and experimentally [11,12] that bh  obeys a simple law 

when the acceleration g


 is constant: 

        2Agth bb               (1) 

with 07.0b . Youngs also performed simulations, all in 2D, for shock-induced mix 

but did not propose an expression equivalent to Eq. (1) for the RM case. His numerical 

evaluation of b  was close to the experimental value. Since then multiple calculations 

have been performed of which we mention only the “Alpha-Group Collaboration” with 

3D codes [13]. 

On the experimental side several research groups have confirmed Eq. (1) with 

07.003.0 b : In chronological order Snider and Andrews [14], Dimonte and 

Schneider [15], Edwards et al. [16], Ramaprabhu and Andrews [17], and Olson and 

Jacobs [18]. No experimental correlation between initial conditions and late-time 
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turbulent behavior has been reported, although such theories exist (e.g. Refs. [19, 20]). 

An experiment with a large variation of initial conditions found remarkably fast recovery 

of the buoyancy-driven RT mixing width indicating very weak, if any, correlation (Kraft 

and Andrews, Ref. [21]). 

The first experimental report of the RT mixing width on the spike side, sh , was made 

by Dimonte and Schneider [22] with a result similar to Eq. (1) with b  replaced by 

bs   . At low Atwood numbers bs    as expected [14, 17], and s  increases slowly 

with A  reaching b4  at 1A [22]. 

Turning to RM or shock-driven mix, we proposed [23] a formula based on treating 

the shock as an instantaneous acceleration which induces a jump velocity v  at the 

interface: Replace Eq. (1) by Agdthd bb 2/ 22  , replace )(v tg  , where )(t  is the 

Dirac delta function, and integrate twice assuming 0)0()0(  hh   to obtain 

 tAh bb v2   .            (2) 

Like RT mix, RM mix according to Eq. (2) is independent of initial conditions, 

although this will be modified in a rather strange way in Sec. III below. Comparisons 

with shock tube experiments will be presented in Sec. II. The extension of Eq. (2) and its 

implications will be presented in Sec. III. Conclusions and a call for a new type of 

experiments will be given in Sec. IV. 

 

II. RM experiments and modeling 

The first comparison of Eq. (2) with experiments was presented by Vetter and 

Sturtevant [24]. A large shock tube is needed to isolate the mix width from the boundary 

layer. Low/high density gases air/SF6 are separated initially by a thin membrane 
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supported by two wire plates. When the shock passes from the air into the SF6 the mixing 

width depends on the relative orientation of the supporting plates and how the membrane 

is shredded. The shock bounces off the endwall of the shock tube and returns to reshock 

the interface. The growth after reshock was found to agree with Eq. (2) and was 

independent of how much mixing was generated by the first shock. Unlike RT 

experiments where bh  and sh  can be measured separately, RM experiments cannot 

distinguish them and measure only the sum sb hh  . Since sh  was not known at the time, 

Vetter and Sturtevant assumed 07.0 bs   and, from Eq. (2), 

  tAtAhh sbsb v28.0v)(2   ,            (3) 

a result that agreed well with post-reshock mixing widths [24]. 

Subsequent experiments by Erez et al. [25], using strong or weak membranes, 

confirmed that post-reshock growth was independent of pre-reshock conditions. Those 

conditions depended on whether a weak or a strong membrane was used to initially 

separate the gases, but they did not affect the post-reshock growth rate [25]. 

These and other experiments, in particular those of Leinov et al. [26], are discussed in 

Ref. [27]. Leinov et al. found Eq. (3) to be in good agreement with three different types 

of reshock experiments once the more modern, increased value of s  was used. For 

air/SF6 one has 72.0A  for which bs  8.1  (see Ref. [22]). Combined with 

06.0b , the coefficient in Eq. (3) reads 0.34, compared with 38.0  experimentally 

(see Fig. 19 in Leinov et al. [26]). 

On the computational side, large direct numerical simulations of turbulence after 

reshock have been reported and they also support Eqs. (2) and (3) – See Refs. [28] and 

[29]. We should point out, however, that most of the experiments as well as the 



 

 

6 

simulations have been on the air/SF6 system and therefore we cannot ascertain the 

general validity of these equations. We mention one alternative model, that of 

Lombardini et al. [30], and it has received even less testing by other researchers. 

 

III. Extension of the model 

From the discussion in the previous section we see that practically all RM turbulent 

mix measurements have concentrated on the reshock. The reason, we believe, is that 

these are “cleaner”, highly reproducible experiments, free of membrane effects. In 

contrast, first-shock mixing widths depend on the membrane which is both obvious (there 

is no mix if the membrane survives the shock) and demonstrated experimentally [24, 25]. 

One can imagine, however, ideal experiments which have no membrane, of the type 

conducted by Jacobs and collaborators [31, 32] on single-scale perturbations, but now 

starting with multimode perturbations which lead to turbulent mix. The question then 

becomes: How does the first-shock-mixing-width evolve with time? 

Our prediction [27] is that the mix width following any shock or reshock grows 

according to the same formula, 

 tAhh v20   ,            (4) 

where bhh   or sh , b  or s , bhh 00   or sh0  is the initial ( 0t ) mix width and t  is 

the time after shock or reshock. For the first shock 0h  is very small and can be neglected, 

but of course h  grows and, denoted by h  just before reshock, must be included for the 

reshock. For example, let reshock occur at reshockt  when  hh ; after reshock h  is given 

by )(v2 reshockttAh    in this model. 
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This is the same as the original model [23]. The extension given in [27] predicts that 

Eq. (4) remains valid only until a time *t , after which it is replaced by 

 



 







 *)(

*

*
1* tt

h

h
hh


            (5) 

where *v2* 0 tAhh   , v2*  Ah  , and   ( b  or s ) is a dimensionless parameter 

taken from RT experiments after the acceleration was turned off [22]. In words, the 

model takes th ~  for *tt   and th ~  for *tt  . During the transition from t  to t  the 

mix width h  and its derivative h  remain continuous. 

Fig. 1 taken from Ref. [27] shows )(th  for 3 experiments of Leinov et al. [26]: 

33.1sM  with 80L mm, 20.1sM  with 80L mm, and 20.1sM  with 235L

mm. sM  is the Mach number of the incoming shock in air, and L  is the length of the test 

section containing SF6 which varied from a minimum of 80 mm to a maximum of 235 

mm. Eqs. (4) and (5) have been used to draw the 3 curves in Fig.1 and they are in good 

agreement with the experiments (for details see [27]), which stopped when a third wave 

reached the interface. 

Perhaps the most surprising element of the model is the evaluation of *t , the 

transition time, and its connection to 0h . In Ref. [27] we argued that 

 
v

* 0




h
t             (6) 

where   is a new dimensionless “constant” although it can, a priori, depend on A , sM , 

ratio of sound speeds, or any other dimensionless parameter in the problem. For air/SF6 

and 20.1sM  we evaluated 6  and suggested that it may be truly a “constant” like 
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  or  . In that case Eq. (6) predicts that **
reshockshock tt  , i.e. the mix width begins to 

decay earlier after a shock than after a reshock. This follows because the jump velocities 

v  after shock or reshock are similar within factors ~2 but 0h , the mix width before the 

shock, is much smaller than h , the mix width before reshock, and therefore 

                        **

vv
~

v
0

shock

0
reshock

reshockreshock
shock t

hhh
t 





   .          (7) 

This effect is seen in Fig.1 where the transition from t  to t  behavior occurs ~0.1 ms 

after the shock but much later, ~0.4 ms after reshock in the long ( 235L  mm) test 

section. 

In Ref. [27] we proposed that the transition from t  to t  was the result of the mixing 

width forgetting the direction of the shock, i.e., turbulence becoming isotropic around 

*tt  . Eq. (6) simply says that interfaces with large initial perturbations retain memory 

of the direction of the shock longer than interfaces with small initial perturbations. Since 

reshocks see larger h  than shocks, they decay later, which is the essence of Eq. (7). 

Combining Eq. (6) with the definition *v2* 0 tAhh    we obtain 

 A
h

h 21
*

0

             (8) 

which is independent of v  and is a function of A  only. For air/SF6 72.0A , 

bs  8.1 , hence Ahh b8.221/* 0  5.2  for 06.0b  and 6 , meaning that 

the total mix width begins to decay after it has grown to about 2.5 times its initial value, 

i.e., when  5.2/ 0 hh  for the shock and 5.2/ hh for the reshock as well. In Fig. 1 
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2.6h mm in the long shock tube just before reshock, so the decay begins when h , 

growing linearly with time, reaches ~16 mm after which it switches to a t  growth. 

From Eq. (8) 0/* hh  is an increasing function of A , assuming   is fixed at ~6, and 

therefore )/1(121)/*()/*( 10max0
bsb

Ahhhh    , where s  is the value of spike 

parameter for 1A . An air/water experiment with 1A  (Ref. [33]) reported 

5.2/ bs  , leading to 5.3)/*( 10 Ahh . From Ref. [22], however, 05.0b  and  

4/ bs   near 1A , giving 4)/*( 10 Ahh , meaning that in all cases the transition, 

which appears like a “decay”, must occur before h  reaches at most 4 times its preshock 

or pre-reshock value. Lower Atwood numbers lead to earlier transitions. 

This extended model makes many explicit predictions, but little of it can be said to be 

verified experimentally so far. As we mentioned, Leinov et al. [26] concentrated on the 

reshock. They did, however, present h  values for 6 different L ’s, and these values agree 

with the values predicted by Eq. (5). Another prediction of the model is that after 

transition the turbulence becomes isotropic and hence is expected to have a 3/5k  

spectrum, which is verified by the recent RM experiments of Weber et al. [34]. Before 

the transition, the turbulent energy is predicted have a 1k  spectrum [23]. These two 

regimes are shown schematically in Fig. 2. Needless to say, the transition from the early 

1~ kE  behavior to the late 3/5~ kE  does not occur suddenly at *tt   but only 

gradually as the direction of the shock is forgotten by the turbulence, and indeed the 3/5k  

spectrum was observed in the experiments only at late times [34]. This is one of the few 

cases where the turbulent spectrum is decidedly time-dependent and the model, we 
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believe, provides a reasonable explanation as loss of memory of the direction singled out 

by the shock, and subsequent return to isotropy. 

 

IV. Concluding remarks and future work 

In our model [23, 27] the general behavior after the first shock is the same as after the 

second (or third) shock: Linear growth followed by decay. As h  grows from one shock, 

the next one starts with a larger initial mix width h , and a larger h  means only a longer 

period *t  of linear growth. Since the very first shock starts with a small 0h , h  decays 

quickly. The next shock sees a larger mix width and therefore decays later. If there is a 

third or fourth shock they are predicted to decay even later. For a given system the 

Atwood number A  changes little from shock to shock and therefore, for 17.0 A , the 

decay begins after the mix width has reached ~2.5-4 times the value it started with. 

What is somewhat strange in this model is that the early growth rate is independent of 

0h  or h  which control only the duration of this early growth. We show in Fig. 3 two 

cases having the same basic flow: 20.1sM  with 235L mm. The first starts with 

64.00 h mm, the second starts with a 5 times larger 0h . As discussed above, the early 

growth is the same in both cases, but it lasts 5 times longer in the second case, and hence 

reaches a larger h  by reshockt (2.2 ms in Fig. 3). But now it is only 3 times larger. Upon 

reshock, both mixing widths again grow at the same rate, reshockv2 A , but the second 

case lasts 3 times longer than the first which begins to decay at ~2.6 ms, some 0.4 ms 

after the reshock. By 3.2 ms, when a third wave arrives, the first case has grown to  

24~h mm while the second case is still growing linearly with time (It would begin to 
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decay at 3.4 ms, i.e. 4.032.2   ms, but is “interrupted” by the third wave). Note that at 

3.2 ms the second case is only 1.8 times larger than the first. Clearly, initially large ( 5 ) 

differences in 0h  result in smaller ( 8.1 ) differences after a shock and a reshock. 

We have ignored any membrane effect which affects the first shock, and assumed that 

reshockv2 A , the growth rate induced by the reshock is much larger than the preshock h . 

Larger shock tubes are preferable not only to bypass any boundary-layer effect but also 

because at very late times h  is affected by the cross-sectional area HH   of the tube if 

Hh ~  ( HH   was about 26cm26cm in [24] and 8cm8cm in [25, 26]). Another 

consideration is the length L  of the shock tube; clearly, in a longer L  one will see the 

decay not only after shock but after reshock also. 

Such considerations have led us to propose what may be called a “National Shock-

Tube Facility” sketched in Fig. 4. Two drivers, labeled 1 and 2, facing each other and 

firing independently, at a chosen delay, shocks one toward the other passing through 

fluids of densities A  and B . We will not enumerate the many configurations that can 

be obtained by varying fluids A and B, the order and strength of firing each driver, and 

the delay between them. The possibilities are many and quite obvious, and we hope an 

organization in the fluid dynamics community will undertake such a project. 

 

This work was performed under the auspices of the U. S. Department of Energy by 

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 
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Figure Captions 

Fig. 1. Evolution of the total mixing width sb hh  , calculated using Eqs. (4) and (5), for 

three air/SF6 experiments conducted by Leinov et al. [26]. The experiments are listed 

by sM , the Mach number of the shock generated in air, and L , the length of the test 

section containing SF6. The sharp breaks in the curves indicate reshocks. We have 

taken 00 h , 1.0* t ms for the shock and 0.4 ms for the reshock in the long-test-

section experiment. The calculations, like the experiments, stop when a third wave 

arrives at the interface. For more details see Refs. [26, 27]. 

Fig. 2. Schematic illustration of the turbulent energy spectrum at early ( *tt  ) and late    

( *tt  ) times. The spectrum changes at about *~ tt  because the turbulence becomes 

isotropic forgetting the direction singled out by a shock or reshock. 

Fig. 3. The effect of the initial surface finish 0h  on the total mixing width for the long-

test-section experiment of Ref. [26]. The upper curve has a 5  larger surface finish 

than the lower curve. That difference is reduced to a factor of  3 by reshock time, and 

further reduced to a factor of 1.8 at 3.2 ms. 

Fig. 4. A proposed “National Shock Tube Facility” for the study of RM mix: Two drivers 

firing shocks in opposite directions at a set delay-time. The shocks pass through fluids 

A  and B . The initial interface may have a single-scale perturbation (shown) or a 

multimode (more natural) perturbation. 
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