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ABSTRACT 

We are developing a stochastic inverse algorithm to 
jointly analyze multiple geophysical and hydrological 
datasets for a geothermal prospect. The purpose is to 
improve prospect evaluation and estimate the 
likelihood of useful temperature and fluid flow fields 
at depth. We combine Bayesian inference with a 
Markov Chain Monte Carlo (MCMC) global search 
to conduct a staged inversion of the different data 
sets. The results consist of a detailed description of 
the uncertainty in the solution as well as a suite of 
alternative geothermal reservoir models. The method 
is highly flexible and capable of accommodating 
multiple and diverse datasets. 

INTRODUCTION 

The primary objective of geothermal exploration is to 
find and characterize a commercial source of 
geothermal energy. Favorable geothermal prospects 
require three main elements: heat, water, and 
hydraulic permeability. As all three elements are 
difficult to resolve in the subsurface, geothermal 
exploration usually employs multiple geophysical, 
geological, hydrological, and geochemical methods 
to capture the most complete characterization of a 
geothermal system possible. Ideally, a complete 
model will include contributions from, and, in the 
end, be consistent with all data sources. 
 
A principal goal in characterizing a geothermal 
prospect is to produce a quantitative predictive 
capability to describe the temperature and fluid flow 
distributions in the subsurface prior to any significant 
drilling. This paper outlines a joint inversion 
methodology to utilize multiple geophysical, thermal, 

and hydrological data sets in the construction of such 
a model. Recognizing the inherent uncertainties in 
structural, parametric, and other characteristics of 
subsurface systems, the approach uses stochastic 
representations of important variables or structural 
features within a generalized Markov Chain Monte 
Carlo (MCMC) inversion process. Success in 
implementing joint inversion with geophysics and 
hydrology may allow inclusion of geochemical or 
tracer studies in the future. In some ways, it is similar 
to the approach taken by Jardani and Revil (2009). 
 
The MCMC inversion process will yield a suite of 
plausible results rather than one single answer. This 
algorithm possesses several advantages: it is flexible, 
searches the global solution space defined by the 
stochastic variable distributions, and provides robust 
uncertainty estimates. The results are expressed as a 
range of models along with an associated probability 
density function. This aids in providing a quantitative 
evaluation of the prospect. 
 
This paper describes our approach and initial results 
from our implementation to a simplified example 
problem, both of which are still in development. Our 
current focus is to evaluate algorithm performance 
and parametric sensitivities. A significant question is 
whether this type of inversion, which requires 
thousands of runs, is feasible for reasonably complex 
models.  The example problem is based on a prospect 
located in the western Salton trough in California, 
adjacent to Superstition Mountain, (Figure 1) and 
currently under investigation by the Navy geothermal 
program (e.g. Bjornstad et al., 2006; Tiedeman et al., 
2011) We chose this site largely because geological 
and geophysical data were readily available. 
 



 
Figure 1: Perspective view (to NW) of region 

showing the Salton Sea in center. Green is 
basement and the other colors represent 
sedimentary or volcanics. Red lines are 
faults. Arrow marks prospect. 

 
Within the example problem, we are seeking to 
match vertical temperature profiles observed in a set 
of three exploration “NAFEC” wells (Figure 2) while 
simultaneously reproduce measured electrical 
resistivity distribution. An initial 3-D geologic model 
defining structural geometry is used as a starting 
basis for the model. Uncertain material properties 
such as permeability, porosity, and heat capacity are 
allowed to vary in the simulation process, as well as 
certain structural characteristics such as the extent 
and properties of a perceived fault zone. The 
simulation algorithm begins by posing a priori 
statistical distributions for these uncertain properties 
and structural characteristics. A staged MCMC 
approach is then initiated, first to develop a space of 
plausible solutions drawn from these distributions 
and, second, to narrow the space to a subset that is 
found consistent with temperature and resistivity 
data. 
 
Specifically. in the first stage of the MCMC process 
(Figure 3), a 3-D hydrothermal flow model is used to 
predict equilibrium (steady state) temperature and 
fluid flow fields for specific model configurations 
drawn from the uncertain parameter distributions, 
which are then compared to the measured 
temperature profiles. Next, in the second stage, 
electrical resistivity distributions from the better 
matched of these configurations are calculated using 
output from the first stage and compared to the 
resistivity observations.  Results are presented as a 
ranked set of all sampled models along with inferred 
probability distributions. Additional geophysical 
constraints such as gravity or magneto-telluric 
observations will be added in the future.  

 
 
Figure 2: Geologic map of prospect showing 

surface geology and geophysical 
measurements with temperature profiles 
of the three test wells. From Tiedeman et 
al.,2011. Thermal profiles of the three  
wells.  

 

METHOD 

Our inversion algorithm applies Bayesian inference 
implemented with an efficient Monte Carlo-Markov 
Chain (MCMC) global search approach to carry out a 
staged inversion of the different data sets, based on 
the method proposed by Mosegaard and Tarantola, 
(1995). This stochastic inversion selects alternative 
models that are consistent with available data and 
ranks them according to the probability that the 
models represent reality. Joint inversion is 
accomplished by cascading computational stages, one 
for each data set.  In order for a particular geologic 
and hydrothermal model to be included in the 
posterior distribution, it must be accepted by all of 
the stages.  Therefore, the models in the posterior 
distribution are consistent with all of the data. The 
procedure is guaranteed to converge to this unique, 
invariant limiting distribution from any starting trial 
model, provided that there are sufficient steps (trials) 
in the Markov chain. 
 
The basic MCMC procedure for this problem is 
illustrated in Figure 3. An initial geologic model that 
includes a hydrothermal system is created and a set of 
initial model parameters is proposed. In our test case , 
the basic geologic model was based on analyses of 
previous work near Superstition Mountain (e.g., 
Dutcher et al., 1972; Loeltz, et al., 1975; Bjornstad et 
al., 2006; Tiedeman et al., 2011, Tompson et al, 
2008). The initial hydrologic model parameters 
include permeability and boundary pressures and 
temperatures. For each set of proposed parameters, 
the desired variables (in this case, temperature 
profiles at three exploration wells) are calculated and 
compared to the observed data during the inversion. 
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Figure 3: Schematic diagram of the two-stage 

inversion method. An initial geologic 
model with hydrologic and thermal 
constraints is selected. In stage one, it is 
run until equilibrium using NUFT and 
temperature is compared with 
observations. In stage two, assuming 
stage one acceptance, the expected 
resistivity of the model is calculated and 
then compared with the data. The final 
output is a ranked set of models and 
associated probabilities. 

 
The likelihood that the proposed model reproduces 
the true geothermal system properties is calculated 
from the fit of the calculated data to the actual 
observations, assuming an estimate of the data error.  
If the likelihood is acceptable, then that geologic 
model is included in the posterior distribution, and a 
new trial model is proposed. The decision to 
accept/reject is probabilistic (Metropolis et. al., 
1953). The proposed mode is always accepted when 
its likelihood (L(x+1)) is better than the that of the 
previous model (L(x)). Alternatively, when L(x+1) < 
L(x), the probability of acceptance is L(x+1)/L(x). 
The second condition is included to allow the search 
to avoid local minima. Otherwise the model is 
rejected and the process is repeated with a new 
proposal. This cycle is repeated until the posterior 
distribution converges to a stable solution, which 
typically requires thousands of iterations. 
 
In the sequence of Monte Carlo replicates, each new 
simulation is drawn from statistical distributions of 
the uncertain parameters or variables.  For example, 

the permeability is defined by individual log normal 
distributions in each geologic unit and is correlated 
with porosity. The bulk thermal conductivity of the 
formation as a whole is controlled by the intrinsic 
thermal conductivities of the rock and water and by 
the saturated porosity. The bulk electrical resistivity 
of the formation  is a function of its temperature and 
the intrinsic resistivity of rock and groundwater, the 
latter of which is heavily influenced by its salinity. 
Although fluid resistivity is held fixed in the present 
implementation, it may become a powerful constraint 
in future steps owing to significant salinity contrasts 
in the basin groundwater (Tompson et al., 2008).  
 
The stochastic inversion framework is written in 
Python and incorporates various complied forward 
codes for each modeled step of the process. We have 
adapted hydrothermal fluid flow and DC resistivity 
models into the current version of the framework and 
will add others as the project matures. Fluid and heat 
flow are simulated using NUFT (Nonisothermal, 
Unsaturated Flow and Transport), a 3-D multi-phase 
hydrothermal flow and transport model based upon 
an integrated finite difference discretization (Nitao, 
1998, 2000). Electrical resistivity is simulated using 
Multibh, a 3-D finite difference forward modeling 
code that predicts electrical resistance for arbitrary 
electrode configurations and electrical resistivity 
models (LaBrecque et al., 1999). We recognize that 
DC resistivity is not commonly used in geothermal 
exploration but the code was available and we are 
essentially using it as a placeholder in the inversion 
framework for a magnetotelluirc (MT) code whose 
development is in progress.  
 
The flexibility of the algorithm makes adding 
additional models or codes straightforward, although 
use of different grid or meshing schemes in the 
underlying suite of models can add complications.  
 

PROVISIONAL MODEL & INITIAL RESULTS 

Figure 4 shows an initial bounded domain that has 
been used for the preliminary applications of the 
hydrothermal flow and electrical resistivity models. 
The domain is parallel with the NW/SW orientation 
of Superstition Mountain and primary Superstition 
Mountain fault directions and has been made to 
extend approximately 6.5 km to the northeast and to a 
depth of 3.2 km.. The 1.5 km width was chosen to 
accommodate the earliest calibration and inversion 
testing exercises and will be expanded later to 
support larger areas. 
 
The domain has been chosen to incorporate the three 
“NAFEC” wells that were drilled to depths between 
600 and 1000 m (~2000 to 3500 ft). NAFEC-3 lies 
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close to the mountain in a zone of perceived, cross-
oriented faulting. NAFEC-1 lies furthest from the 
mountain, away from any perceived faulting, while 
NAFEC-2 lies in between, in both respects. 
Geophysical, lithological, and temperature logs were 
obtained in each borehole (e.g., Figure 5), although 
no water level or water sampling data were taken. 
The temperature profiles obtained in each well 
(Figure 2) differed significantly, suggesting 
geothermal circulation underlying a shallow zone of 
conduction-only heat flow in NAFEC-3, conduction-
only heat flow in NAFEC-1, and a mixture of the two 
scenarios in NAFEC-2. Maximum measured 
temperatures in the wells ranged from 77° to 121°C 
(171° to 250°F). 
 
 
 

 
Figure 4: Areal projection of the bounded modeling 

domain used in the application of the 
hydrothermal flow and resistivity models.  

 
 
 
 
 
 

 
Figure 5: Lithology and thermal log of NAFEC-3 

well. Profile suggests a shallow (< 400 ft; 
120 m) conduction profile overlying 
buoyancy drive flow at depth and 
consistent with water table depth. 

 
 
 
Hydrogeologic Conceptualization 
A structural and lithologic conceptual model was 
constructed based on available data (Figures 1, 2, 5). 
The faults and features shown in Figures 1 and 4, 
along with observations of temperature profiles in the 
three wells and hydrothermally altered rock near the 
surface, have led to a hypothesis of fault-facilitated 
flow at depth. The preliminary model domain (Figure 
6) has adopted several simplifying assumptions in 
terms of the representation of the geologic model and 
the physical processes considered. These include: 
 
• An approximate representation of the faulted 

(granitic) basement and Imperial (sandstone), 
Borrego / Palm Springs (sandstone and delta 
sediments), Brawley (sandy sediments) and Post 
Brawley (lacustrine sediments and clay) 
formations across the model cross section; 

• Two 100-m thick planar faulted zones, one (A) 
occupying the entire SW face of the domain at x 
= 0, consistent with the Superstition Mountain 
Faults, and another (B) a hypothesized vertical 
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fault, perpendicular to and extending away from 
(A) to the NE, of uncertain length and height, 
that potentially facilitates hydrothermal flow 
from depth; 

• Specification of a slight downward slope of the 
top of the model from the SW to the NE, 
consistent with the local topography; 

• Specification of saturated conditions throughout 
the entire model depth (for now), which will be 
adjusted later to reflect an apparent water table at 
a depth between 100 and 120 m (~350 and 400 
ft; Dutcher et al., 1972);  

• Specification of fixed temperatures of 27° and 
150°C at the top and bottom of the domain (~80° 
and 300°F respectively); and 

• Specification of hydrostatic pressures at the SW 
and NE ends of the model, leading to a slight, 
imposed hydraulic gradient to the NE. 

 
Within this conceptualization, zones of higher 
permeability occur within certain layers (Fig. 6, light 
blue)  – the more sandy sediments, for example – and 
within the faults (Fig 6). The geometry of the 
hypothesized fault (B) is based on other conjugate 
faults in the immediate region, such as the 
Superstition Hill/Elmore Ranch faults a few km to 
the east. The conceptual model around Superstition 
Mountain is being refined and locally improved from 
an earlier model of the Salton Trough (Tompson et 
al., 2008) constructed using the Earthvision modeling 
platform (www.dgi.com/). 
 
Grid Generation 
Mesh design is a challenge for several reasons. First, 
there are the customary balances between minimizing 
computational effort while maintaining adequate 
spatial resolution, particularly within an MCMC 
simulation framework. Second, different models in 
the MCMC framework need to share data, yet may 
have different meshing requirements. For example, 
although the hydrothermal flow and resistivity 
models share the same core mesh (100-m cubic grid, 
Fig 6), the resistivity mesh must have an extended 
portion reaching into the far field for boundary 
condition specification, making it much larger than 
than the hydrothermal flow model domain.  
 
Within the core modeling mesh (Figure 6), both the 
hydrothermal flow and resistivity models share the 
same 100-m cubic grid. Each grid cell is assigned to a 
particular formation material or unit (such as granite) 
to which model-related properties (e.g., permeability, 
porosity, and heat capacity) are assigned. For some 
units, material properties are drawn from a prior 
probability distribution during each replicate 
simulation in the MCMC process; for others, they are 
held fixed across all MCMC replicates. Note that 

changes in the uncertain geometry of the (B) fault are 
accommodated by re-assigning material “fault” 
properties for the set of cells that comprise the fault 
geometry drawn in each replicate.  
 
At the start of the inversion, an initial (replicate 1) 
model is defined by assigning material properties and 
the (B) fault geometry from the prescribed statistical 
distributions. The hydrothermal flow model is then 
used to calculate a steady state (equilibrium) 
temperature and flow field under fixed temperature 
and pressure boundary conditions described above 
(Figure 7). Computed temperature solutions along the 
“NAFEC” well locations are then compared against 
the measured values using a likelihood test (see 
above). If the flow model is “accepted,” then the 
resistivity model is run subsequently and its results 
are similarly compared against the measured 
resistivity profile. If the flow model is “rejected,” 
then the resistivity model is not run and a new 
(replicate 2) flow model is initiated by resampling the 
parameters from the basic distributions.  Results from 
all accepted models are saved.  
 

 
Figure 6: Diagram showing 3D model. Colored 

units show geological formations and 
features (e.g. fractured fault zone). 

 
Typically, thousand of replicate runs are required in 
this process in order to obtain a reasonable set of 
models that can be “accepted” from both the flow and 
resistivity perspective, posing a significant 
computational challenge. In the current example, 
approximately 16 hours of CPU time on 10 
processors were utilized to run four different Markov 
chains simultaneously. A main constraint in this 
process is the NUFT model because of its limited 
parallelization. The results in Figure 7 show that the 
hypothetical (B) fault can provide a circulation 
pathway for deeper fluids to migrate into the 
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shallower formation materials and influence the 
temperatures observed in the “NAFEC” wells. 
 

 

 
Figure 7: NUFT predicts the temperature, pressure 

and flow fields for a given realization. The 
figure shows the simulated groundwater 
flow lines for a realization where a fault 
(dark blue) cuts across the granite unit 
(light blue). 

 
Inversion tests 
As an initial test of the inversion code, we 
constructed a synthetic (control) dataset by forward 
modeling on a random realization of the prospect 
model. Figures 8-10 show tests conducted on two 
subsequent realizations of the prospect, different 
from the control case. In one representation the fault 
is contained entirely within the granite and in the 
other the fault extends into the sediments. 
Temperature and resistivity data were calculated for 
both models at the location of the wells (Figure 8). 
These synthetic datasets were then inverted to test the 
inversion algorithm and determine if it resolved the 
original models. Figure 9 shows the top 10% of the 
inversion results (mean values), with both the 
recovered temperature distribution and the possible 
fault geometries, which are displayed as “blurred”. 
Note that the fault encased completely in granite is 
poorly constrained relative to the fault, which 
contacts the sediments. This illustrates the power of 
the technique to demonstrate the range of possible 
models. Comparisons of predicted and “observed” 
data for the nearest of the three wells (marked as red) 
suggesting acceptable inversion behavior on a 
simulated dataset are shown in Figure 10. 
 
Additional MCMC simulations based upon inverting 
the actual observed “NAFEC” data are underway 
using the same model. Initial results suggest that the 
profiles are highly sensitive to the location of the 
hypothetical (B) fault that facilitates the upward 
geothermal circulation.. 
 

 

 
Figure 8: (top) Example showing two synthetic 
models used to test the inversion based on the 
Superstition Mountain prospect. Images represent a 
east-west 2D slice through a 3D model. The left 
panel shows a fault that is fully contained in the 
granitic basement. The right panel shows a fault that 
extends from the granite to the permeable Ti unit 
(sediment). Colored units show geological formations 
and features (e.g. fractured fault zone). (bottom) 
Calculated temperature data for the two models after 
allowing the hydrothermal model to reach 
equilibrium. Boundary conditions are fixed. 
Resistivity is calculated from the temperature, water 
salinity, and lithology. 
 

 

Figure 9: Calculated mean temperature (top) and 
permeability models (bottom) using top 
10% of models with best data fits. Note 
that the fault appears ‘fuzzy’ in the 
results. This reflects the range of possible 
boundaries in the top 10% of the models. 
This inversion used temperature data 
only; the combined inversion with 
resistivity is in progress. 
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Figure 10: Comparisons of predicted (top 10 % of 

models) and “observed” data for the 
nearest of the three wells (marked as red) 
suggesting acceptable inversion behavior 
on a simulated dataset 

 

CONCLUSIONS AND NEXT STEPS 

We have developed an initial version of the inversion 
algorithm and software that works well with synthetic 
data sets. The inversion recovered models that were 
similar to the true synthetic models and yielded error 
estimates. The required computational time, while 
significant, is not impractical. We are currently 
working on analyzing real temperature data using a 
similar model. 
 
In the future, we plan to integrate additional 
geophysical data such as magnetotellurics (MT) and 
gravity. The flexibility of the approach allows the 
potential inclusion of other data types such as 
geochemical signatures and geostatistical-based 
models of geologic structure. While this will increase 
computational time, we are investigating the use of 
reduced-order forward models to reduce 
computational effort. 
 
We envision the potential use of the algorithm as a 
method to generate alternative models and 
corresponding likelihoods to estimate uncertainties 
associated with a prospect. The initial mesh and 
model generation is developed to be compatible with 
commercially available geological modeling 
packages.  
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