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Comprehensive Algorithmic Resilience for
Numeric Applications

ABSTRACT
As High-Performance Computing (HPC) systems become
larger and more complex and the feature sizes of their elec-
tronic components grow smaller, the systems become in-
creasingly vulnerable to soft faults. Since such faults may
cause application crashes or may silently corrupt applica-
tion results it is necessary to develop techniques to protect
applications from such errors at a low cost in performance
and power. Despite extensive work on general-purpose re-
silience techniques, they are cost effective for protecting only
certain system components, such as memories. To provide
comprehensive protection for the computations of HPC ap-
plications it is necessary to develop algorithmic resilience
mechanisms that use the properties of algorithms to provide
cost-effective protection.

Algorithmic resilience can be very complex to deploy in
applications because a comprehensive resilience strategy must
address all the types of errors that an application may expe-
rience. This includes corruptions to numerical data as well
as control information and data structures. Full protection
requires the combination of multiple techniques including al-
gorithmic error detection, crash detection, replication of key
control information as well as support for restart when errors
are detected. Further, it is necessary to configure the prop-
erties of the resilience mechanisms to make sure that they
are cost-effectively meeting the user’s accuracy and confi-
dence targets. This paper shows how all these issues can
be resolved comprehensively in the context of three numeric
applications.

1. INTRODUCTION
The increasing size and complexity of HPC systems is

making them increasingly vulnerable to soft faults. Soft
faults are transient corruptions of circuit state caused by
physical phenomena such as strikes by neutrons or alpha par-
ticles [1, 18] or thermal electrical noise [15]. They can affect
the state of processor latches and registers and may cause
the application to crash or worse, to silently return incorrect
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results [4]. As the feature sizes of electronic circuits shrink,
technology scaling will make soft errors a larger problem [17]
due to the fact that each circuit element will hold less charge
and can thus be disrupted more easily. These phenomena
make it imperative to develop techniques to make HPC sys-
tems resilient to soft faults.

Resilience is a problem that must be addressed at all lev-
els. While materials science and circuit design techniques
can be used to improve resilience, they come at a cost in
reduced power efficiency and performance that can become
prohibitive if processors need to be sufficiently reliable to
build a large HPC system. Techniques such as error cor-
recting codes have been very effective at making memories
and caches resilient to soft faults [16]. However, they are
more expensive for protecting core-internal state such as
latches and are significantly less effective for checking the
correctness of computations. Traditional approaches like
cross-core or node replication [7, 13] are expensive in their
use of computing resources and power and their long error
detection latencies require processor state to be frequently
checkpointed. Processor designs that incorporate instruc-
tion replication [21] offer fine-grained error detection and
rollback but require more power as well as novel hardware
features that are not likely to be included in the commodity
processors used in HPC systems for cost reduction reasons.

The limitations of automated resilience techniques has
motivated the need for algorithmic techniques that can de-
tect and tolerate errors by taking advantage of application-
specific properties and invariants [3, 24, 11]. Although these
techniques can be very efficient, most research work on such
techniques has primarily focused on how their algorithmic
invariants can be leveraged to enable accurate error detec-
tion. While this goal is important, it ignores the full com-
plexity of the problem since it focuses on only a subset of
the errors and does not consider combinations of different
resilience techniques to efficiently and effectively address all
the different types of faults. In reality a comprehensive solu-
tion must incorporate a range of additional techniques such
the replication of key variables, detection of memory viola-
tions and localized rollback on detected errors, as well as
techniques to configure these various resilience methods to
achieve the best performance given the user’s accuracy and
confidence targets.

This paper presents a comprehensive algorithmic resilience
approach that considers all of the above issues. We demon-
strate it on different types of numerical applications: the Al-
ternating Direction Method of Multipliers (ADDR) for Lasso
problems [2], the Hattrick gravitational simulation [20] and



the Digital Room Correction (DRC) acoustic correction ap-
plication [22]. We show how these three applications can be
comprehensively protected from soft faults by adding three
different resilience mechanisms to the routines where they
spend the most time: algorithmic error checks, replication of
critical data structures and checkpoint-restart of individual
routines. We demonstrate via fault injection experiments
that although none of these techniques can individually pro-
tect applications from soft faults, their combination is highly
effective. Further, we demonstrate how these techniques can
be configured to offer the right level of protection at any
given fault rate or input type. More specifically, these con-
figurations can be used to produce a wide range of overheads
and result accuracy levels and to tune the probabilistic con-
fidence level that the given overhead or accuracy target will
be met.

The paper is organized as follows. Section 2 discusses
the problem of soft errors and presents the fault injection
model we use to simulate them in our experiments. The
applications to which we apply our resilience methodology
are described in Section 3. Section 4 summarizes the major
routines of these applications and describes how these re-
silience techniques are applied to them. Further, it experi-
mentally evaluates the resilience techniques, describing their
overheads and the accuracy levels of the protected routines
at a wide range of possible error rates. The effectiveness
of our methodology for protecting the full applications is
evaluated in Section 5.

2. SOFT FAULTS
Cosmic rays or alpha particles hitting the computer cir-

cuits and accumulating a sufficient amount of energy may
invert the device logic states from ”0” to ”1” or from ”1” to
”0” [25, 1]. These inversions are termed as soft errors or
soft faults. The shrinking processor and memory feature
size and the lower threshold voltage coming with relentless
manufacturing technology scaling make modern high perfor-
mance computers are highly vulnerable to soft errors which
propagate as the program is being executed. Prior studies
have demonstrated that soft errors occurring in all the im-
portant bits that are required for Architecturally Correct
Execution (ACE) [19] eventually change the program out-
come, i.e., manifest errors to the application. The ACE bits
include critical information to keep the program logic such as
the program counter register for a committed instruction. In
the past decades, soft errors have brought significant losses
on commercial servers and high performance computers such
as the recall of Sun servers due to memory errors [1] or the
cache corruptions in the ASCI Q system [18].

We use a fault injection infrastructure [5] that simulates
the architecture-level effects of soft faults. It works by com-
piling application into the Low Level Virtual Machine (LLVM)
typed bytecode [14]. This bytecode is transformed to allow
a bit flip in each instruction’s output with some probability
P . The time between injections is thus exponentially dis-
tributed with period 1

P
. Our fault injector is a high-level

approximation of the physical corruptions caused by soft
errors that strikes a balance between model accuracy and
cost, as do related approaches [10, 19]. Alternative mod-
els, such as injection into gate-level processor models [6] or
neutron beam irradiation [12] are possible but their signif-
icantly higher cost makes them impractical for conducting
large-scale fault injection campaigns such as the ones re-

ported in this paper.

3. TARGET APPLICATIONS
We evaluate our resilience methodology by applying it to

the following three applications. Since they spend most of
their execution time in library routines, we focus our re-
silience efforts on protecting these routines, which are de-
scribed in Section 4.1.1.

3.1 Alternating Direction Method of Multipli-
ers (ADDR)

The ADDR method solves under-unconstrained linear prob-
lems Ax = b for x (A has fewer rows than columns) while
minimizing the function f(x). This is an iterative algorithm
uses 64-bit precision and that spends most of its time in
the following linear algebra operations, matrix-matrix mul-
tiplication, matrix-vector multiplication, rank-k update and
Cholesky factorization, using the implementations of these
routines from the GNU Scientific Library [8]. We focus on
a specific application that uses the ADDR method to solve
Lasso problems, which are defined as minimizing the func-
tion 1

2
||Ax− b| |22+λ∗||x| |1. It is parallelized using MPI and

our experiments focus on 4-processors runs of ADDR which
computes linear systems of size {800, 1200, ..., 3600} × 500
(800 to 3600 measurements with 500 variables each) and in
the experiments below are denoted S800, S1200, ..., S3600.
The values in A and b are generated by sampling a normal
distribution with a mean of 0. According to our experi-
ments, the running time of this solver is not dependent on
the kind of distribution the inputs are sampled from.

3.2 DRC: Digital Room Correction
DRC is a sequential program generates filters for HiFi au-

dio systems to compensate for the reflection of sounds in
a room, using impulse response measurements of the au-
dio equipment and considering the positions of the listeners.
The inputs are stored in Pulse Code Modulation (PCM)
format, which is an array of 32-bit floating point numbers
representing the samples at each sampling time step and
the computations are performed using 32-bit precision. Al-
though the algorithm is divided into many phases the most
computationally intensive step consists of the GSL’s imple-
mentation of the Fast Fourier Transform and a DRC-internal
implementation of Finite Impulse Response filter generation.
This program accepts user-controllable configurations to de-
cide the width and number of iterations of FFT transforms
it uses to perform various passes on the input file, such as
windowing, deconvolution, pre- and post-filtering. The in-
put used in this paper is an audio file of size 768 kilobytes,
which is sampled at the rate of 30Khz, 40Khz, ..., 90Khz.

3.3 Hattrick
Hattrick is a sequential application simulates the motion

of bodies under the effects of gravity using 64-bit precision.
It is designed to help discover extra-solar planets by inferring
their existence from Transit Timing Variations, where the
difference between the times when a planet passes in front
of its host star is used to infer the existence and properties
of other planets in the system. This program spends most of
its execution time in the GSL solver for Ordinary Differen-
tial Equations to solve the system’s equations of motion. A
given input is described using three parameters: P=number



of planets, T=amount of time to simulate, and A=the accu-
racy target. In our experiments we considered the following
four inputs: P2T2090A15, P2T3090A15, P2T4090A15 and
P3T2090A11, where an A15 and A11 denote accuracy tar-
gets of 1e− 15 and 1e− 11, respectively.

4. RESILIENCE TECHNIQUES
In this paper we consider a comprehensive resilience strat-

egy that combines various types of error detection and recov-
ery. Error detection techniques are discussed in Section 4.1,
with Section 4.1.1 focusing on algorithmic techniques to de-
tect errors in the numeric portions of application state, while
Section 4.1.2 focuses on protection of data structures. Sec-
tion 4.2 then considers recovery techniques based on both
checkpoint-restart, which offers lower-overhead but higher-
latency recovery, as well as replication of key pointers, which
reduces performance but enables fast recovery. Finally, Sec-
tion 4.3 presents an experimental evaluation of the perfor-
mance and accuracy properties of the resilient versions of
the major routines used by our target applications, under a
wide range of inputs and error injection rates.

4.1 Error Detection
4.1.1 Algorithmic Detection

Each algorithm used by the above application was en-
hanced with an algorithm-specific checker that validated its
results by exploiting some algorithmic identity. Each checker
computes some aggregate property of the algorithm’s results
using two different algorithms to produce vectors v and v′.
If their relative difference by more than some threshold τ ,
the checker declares that an error has occurred. The relative

difference is computed as
||v−v′||

max(||v||,||v′||) . Each error detec-

tion causes the routine’s execution to be restarted using the
rollback mechanism described in Section 4.2.

Matrix-matrix multiplication (MMM).
The operation A ·B is checked using a matrix vector mul-

tiplication (MVM), via the identity: (A ·B) · x = A · (B · x),
where x is an error-checking vector. Since we set the check
vector x to be all 1s this is equivalent to both sides comput-
ing the sums of the columns of matrix A · B using a single
MVM on the left and two MVMs on the right. Most errors in
the computation of A ·B will affect the sums of its columns
and will thus be detected. This check is efficient because
the checker is asymptotically faster than MMM, with MVM
taking O(n2) time and MMM O(n3) time.

Matrix-vector multiplication (MVM).
The MVM algorithm Ax = b is checked using a similar

identity (xTA)x = xT (Ax) = xT b. We again set x to be
the vector of 1’s, making the product xTA equivalent to
sum of the columns of matrix A. Although the computation
of xTA involves additions rather than multiplications, the
complexity of computing xTA is O(n2), the same as the
original MVM operation. However, for applications such
as ADDR where the MVM is applied to same matrix many
times with different vectors, the column sums can be reused,
amortizing the cost of this computation. Our experimental
evaluation below thus focuses on the overhead of the xT (Ax)
computation, which has O(n) complexity.

Symmetric Rank-K update (SYRK).
The SYRK update is a special case of matrix-matrix mul-

tiplication B = αA · AT + βB, where an n × k matrix A is
multiplied by itself to produce an n × n matrix with rank
k, which is incremented into the n×n matrix B. Its results
are checked using the same algorithm as MMM by checking
the identity Bx = αA · (ATx) + βBx, where x is the vector
of all 1’s. This check runs in time O(n2), as compared to
the O(n3) cost of SYRK.

Cholesky Decomposition (CD).
In this decomposition matrix A is decomposed into L ·LT

where L is a lower-triangular matrix with a positive diago-
nal. This routine is checked just like MMM by checking the
identity Ax = L · (LTx), which is cheaper than the O(n3)
complexity of the deterministic CD algorithm. The GSL im-
plements an iterative algorithm that runs faster than O(n3)
time but as shown in the experiments below, it is signifi-
cantly slower than our checker.

Fast Fourier Transform (FFT).
The FFT algorithm decomposes a function into a sum of

sine waves of different frequencies: f(x) =
∑N−1
n=0 xne

−i2πkn/N

for some constant k. We check the results of FFT by us-
ing Parseval’s theorem, which states that

∑N−1
n=0 |x[n]|2 =

1
N

∑N−1
k=0 |X[k]|2, where x is the original function and X is

its transform. Intuitively it means that the energy of the
original function is preserved by the transform. GSL im-
plements optimized radix 2, 3, 4, 5, 6 and 7 subtransform
routines as well as a general radix-N FFT routine. The sub-
transforms are optimized and consume O(nlog(n)) time and
the general one consumes O(n2) time. Therefore, GSL has a
scheduling algorithm that factorizes the length of the input
FFT, running the subtransforms whenever possible, using
the fallback general radix-N routine only for the remaining
factors. The theorem applies to FFT of any radix and pro-
vides an O(n) time check for the O(nlog(n)) or O(n2) FFT
algorithms.

Finite Impulse Response Filter Generation (FIR).
The FIR filter generation algorithm used in DRC gener-

ates a series of samples over the function sinc(x) = sin(x)
x

and modulates it with a Blackman window. This function
has the property that

∫∞
−∞ sinc(x)dx = 1. The Blackman

window - modulated output of this routine preserves this
same property for most of the time, making it possible to
check the output by computing the sum and comparing it
to 1. Computing the sum requires O(n) additions, as com-
pared to the O(n) trigonometric function evaluations of the
non-iterative FIR generation algorithm.

Runge-Kutta PDE Solver (RK).
RK is a 4-th order Runge-Kutta method for solving Or-

dinary Differential Equations of the form dy
dx

= f(y, x). It
advances the variable x by steps of size h and uses estimates
of the derivative dy

dx
at each point x to find the value of y

at the next point x+ h. The implementation of RK in GSL
uses adaptive step-size control where it simultaneously per-
forms the RK method with two step sizes h and h

2
(more

precise). If the difference between the results obtained with
the two step sizes are larger than a threshold τ , the algo-
rithm switches to the smaller step size to maintain accuracy
and resumes. If it is smaller than τ

2
, the algorithm switches

to a larger step size. Because soft errors will usually cause
significant differences between the two computations, the
adaptive step size control algorithm is naturally fault toler-



ant. It will react to such errors by rolling back, temporarily
increasing its step size and then reverting to the original step
size when it observes that this is safe. As such, we utilize
this algorithm to protect the computations within individ-
ual RK steps from soft errors. However, computations in
user-provided function derivative functions are not checked
since their invariants are notknown.

4.1.2 Memory Fault Detection
Detecting errors in application data structures requires

checkers dedicated for this purpose. Depending on the algo-
rithm’s properties different error detectors are appropriate.
In our work we considered the use of access protection hard-
ware and replication of key data.

Since modern systems use 64-bit addressing the range of
values that can be assumed by a given pointer is much larger
than the amount of memory that can ever be assigned to an
application. This means that there is a very high probability
that the corruption of a given pointer will cause it to point
to an unallocated address. Once this address is accessed the
resulting violation will be detected by the memory protec-
tion hardware and communicated to the application via a
Segmentation Fault or Bus Error signal. This mechanism is
cheap but suffers from a long delay between an error and its
detection.

An alternative mechanism is to replicate key application
variables and to compare the values of the replicas on each
access to the variable. While more expensive, this approach
is effective if the number of key variables is small and the
cost of rolling back computation is high.

The low cost of hardware memory protection mechanisms
means that they are deployed in protecting all our routines.
In contrast, replication is only used to protect the RK rou-
tine because it is more sensitive to soft errors than the oth-
ers and the low detection latency provided by replication
ensures that any state corruptions are quickly corrected and
have little impact on execution time. This is important for
resilience as well as performance since slowdowns due to fre-
quent rollbacks increase the total number of errors the ap-
plication is exposed to.

4.2 Recovery via Checkpoint-Restart and
Replication

When errors are detected we employ a recovery method
based on checkpoint-restart, where routine state is recorded
at key locations and whenever an algorithmic or memory
error is detected we roll back to that point in its execution.
Rollbacks are implemented via the sigsetjmp/siglongjmp
[9] routines. sigsetjmp records the application’s execution
state (registers and stack pointer) at the time of the check-
point. On the detection of an error siglongjmp returns
the application to the same execution point, unrolling any
function calls between the checkpoint and the error detec-
tion. This method is useful for rolling back to checkpoints
recorded in the same function or in a caller function. When
execution returns to the sigsetjmp call the checkpointed
portions of the routine’s state are recovered and execution
repeats.

Checkpoint data is protected using two different mech-
anisms: Pointers and scalars are replicated such that the
checkpoint contains two copies of each. Arrays of floating
point numbers are protected via a block-checksum-based er-
ror correcting approach. By treating the input array as a

matrix and comparing row sums and column sums of the
submatrices of that matrix, it detects the existence of errors
and fixes them. This algorithm takes an array of numbers
as input, divides it into blocks of N × N numbers and for
each block it computes and stores the row and column sums,
which are used for recovery.

The structure of each routine determines how checkpoint-
ing is deployed. All routines except RK are monolithic code
blocks that take a relatively large amount of data as input,
operate on it and then return. In contrast, RK takes in
very little input and operates as a long sequence of steps,
each of which involves a call to a user-provided derivative
routine. As such, we checkpoint the state of non-RK rou-
tines immediately after the call to the routine and include in
this checkpoint the routine’s arguments and contents of the
floating point input buffers. The one exception is the FIR
routine, which takes no input and thus requires only the
processor’s state to be checkpointed. Because RK’s check-
points are very small and it is more sensitive to errors, it is
checkpointed periodically during its execution with a fixed
number of steps between checkpoints. As our experiments
in 4.3.2 show, the choice of the RK checkpoint period signifi-
cantly affects its efficiency with longer periods suffering from
more overhead due to rollbacks and short period spending
more time checkpointing.

4.3 Evaluation of Subroutine Resilience

4.3.1 Linear Algebra and Integer Routines
This section evaluates the routines MMM, MVM, SYRK,

CD, FFT and FIR.

Overheads.
We evaluate the costs of the above algorithmic error check-

ers by measuring their costs and effectiveness when running
at different error rates on different types of inputs. Figure 1
measures the overheads of employing the algorithmic error
detectors when no errors are injected, reporting the average
of 100 runs. The linear algebra routines were executed on
n×n square matrices where n varies from 100 to 1000. FFT
ran on inputs vectors with 128K to 16M entries and FIR on
window widths of 1M to 8M. RK ran on an integral with
intervals [0, t1] where t1 ∈ {10, 15, 20, 25, 30, 50, 75, 100}. Its
ODE system is a second-order nonlinear Van der Pol os-
cillator equation. Our experiments show that the cost of
algorithmic error detection is low (< 10%) for small and
drops with increasing input sizes.

Figure 2 shows in the bars the overhead of all resilience
techniques with no fault injection, separating into overheads
due to algorithmic error detection, the checkpointing of rou-
tine inputs as well as checkpointing processor state. The
data shows that checkpointing the input of routines con-
sumes more time than algorithmic error detection and that
the cost of checkpointing processor state is negligible. In
all cases, these overheads decrease as the input set size in-
creases.

Output Accuracy.
We now evaluate the effectiveness of our algorithmic de-

tectors when errors are injected. In each case when an error
is detected by our algorithmic detectors the routine’s exe-
cution would restart from the beginning upto five restarts.
Figures 3 show the fraction of entries in the outputs of each



Figure 1: Overhead of resilience techniques when
errors are not injected

Figure 2: Overhead of resilience techniques. Results
when no errors are injected are shown.

routine (y-axis) that have an error of a given magnitude
(x-axis) as error magnitudes span from 1e-14 to 1e-4. This
figure is a focused view on few representative cases (each
routine run on a single input size and error injection rate)
across different resilience configurations: no error detection
as well as three error detection thresholds. As the error
magnitude increases the fraction of output entries with er-

Figure 3: Error magnitude histogram showing the
effectiveness of the error detector

Routine Threshold 1 Threshold 2 Threshold 3

CD 1e-06 1e-07 1e-08
FFT 1e-06 1e-09 1e-14
FIR 1e-06 1e-09 1e-14
MM 1e-06 1e-07 1e-08
MV 1e-06 1e-07 1e-08
SYRK 1e-06 1e-07 1e-08

Figure 4: Error magnitude histogram of the entire
configuration space



rors of that magnitude drops. Importantly, the fraction of
erroneous entries is reduced at all magnitudes as a result of
error detection and restart. Further, this reduction is more
significant as the detection threshold shrinks since smaller
magnitude errors are detected.

Figure 4 shows the same information but for all exper-
imental configurations: (i) input sizes as above (ii) error
injection rates of 1e-7 to 1e-10. The graph is a grid, with
results for different routines listed vertically and different
resilience configurations (no detection and the different de-
tection thresholds shown in the table at the bottom) listed
horizontally. The graph for each routine and resilience con-
figuration presents the curves from Figure 3 as a heatmap.
The y-axis shows different routine input sizes and error in-
jection rates, sorted according to the average number of er-
ror injections per non-fault injected run, in decreasing order
from top to bottom. The x-axis shows the different error
magnitudes and the shade of each point is the fraction of
the routine’s entries that have a given error magnitude, with
darker shades indicating more such entries (each shade cor-
responds to a fraction that is some power of 10). Thus, each
row of Figure 4 represents the same information as each
curve in Figure 3, with the shades of the squares represent-
ing the same information as the height of the line’s points.

The data shows that in general as the error detection
threshold drops there are fewer entries that have an error of
a given magnitude. However, there are exceptions where the
fraction of erroneous entries rises as the detection threshold
shrinks (e.g. MMM and FT between NoFT and Threshold
1). This is caused by the fact that we restart each routine on
an error detection, which can causes the routine’s execution
to be exposed to additional error injections. As the thresh-
old is further tightened the amount of error in the output
shrinks, indicating that error detection is ultimately effec-
tive if it is configured to be sufficiently accurate. Another
phenomenon that is observed is that as the number of errors
injected in a given run decreases the degree of error in rou-
tine outputs also generally decreases. However, this is not a
fully consistent phenomenon, with some configurations that
have more error injections being less vulnerable than oth-
ers with a higher number of injections because the former
had a higher injection rate but the latter a larger input size.
This indicates that while the number of injected errors is
strongly correlated with overall application vulnerability to
errors, other properties such as input size also play a role.

4.3.2 Runge-Kutta
The difference between RK routine and others motivates

special discussion of its resilience properties. Since RK’s
adaptive step size mechanism is already effective at toler-
ating many numerical errors we used it as the error de-
tector for this routine without adjusting its tolerance pa-
rameters. The configurable portions of the RK resilience
method are thus the choice of checkpointing and/or repli-
cation strategy. Configurations Ckpt and NoChkpt denote
whether checkpointing was used and configurations Re and
NoRe denote whether replication was used. We consider
checkpointing periods equal to 1, 102, 103, 104 and 105 calls
to the RK stepping function. Further, we consider the fol-
lowing replication configurations: (i) “No replication”, (ii)
‘Medium replication”, where routine pointers are replicated
but the replicas of each pointer are compared at a single
code location where it is used, and (iii) “Maximum replica-

tion”, where the comparison is performed on every pointer
use.

Overheads.

Figure 5: Overhead of resilience techniques for RK
when errors are injected

Figure 5 shows the RK’s overhead when between 0 and 10
errors per run are injected.Although the NoRe_NoCkpt con-
figuration has the lowest overhead when only a few errors
are injected (low error rate or small execution times), as the
number of errors per run increases this configuration quickly
becomes extremely slow because an error is detected in al-
most every run. Since each such detection requires a restart
of the routine, at higher error rates this causes RK to restart
many times before it completes. In contrast, while the other
configurations have a higher overhead for a few errors per
run, their execution time scales much better with increas-
ing error rates, making them significantly more practical.
In particular, the overheads of the configurations with more
replication and checkpointing scale better as the number of
errors per run increase. By varying the checkpointing inter-
val and the degree to which various RK pointers are repli-
cated it is possible to achieve a wide range of design points
that provide the best performance at various error rates.

Output Accuracy.
Figure 6 shows the fraction of errors in RK’s outputs for

various checkpointing and replication configurations, in the
same format and using the same experimental setup as in
Figure 4. It shows that while the use replication reduces
the amount of error in RK’s outputs, increased checkpoint-
ing doesn’t have a significant effect on this accuracy metric.
Figure 7 evaluates the effect of checkpointing on accuracy
from another perspective: the fraction of RK runs where the
root-mean-squared error of the output vector is below 1e-7
(y-axis), relative to the number of error injections per run (x-
axis). It shows that RK configurations with higher level of
resilience and in particular, more frequent checkpoints, are
able to achieve this accuracy target more frequently. This
is primarily because by avoiding frequent rollbacks due to
crashes these techniques reduce the total number of errors
that are injected into the application run, which also reduces
the probability that one such error will be missed by RK’s
algorithmic error detector. As with overhead, the choice of
checkpointing interval and replication degree make it possi-



Figure 6: Error magnitude histogram of the entire
configuration space of RK

Figure 7: Fraction of RK runs that achieve low error
(smaller than 1e-7).

ble to choose a wide range accuracy levels and probabilities
that these targets will be satisfied.

5. EVALUATION OF RESILIENCE METHOD-
OLOGY IN APPLICATIONS

Having evaluated the resilience properties of the individ-
ual application routines and resilience techniques we now
consider our three target applications ADDR, Hattrick and
DRC. Section 5.1 reports on the impact of errors and re-
silience techniques on application performance. Section 5.2
describes the distribution of errors in the results of these
applications. These results are based on a fault injection
campaign that includes a range of fault injection rates, input
sizes and configurations of resilience mechanisms, with 100
application runs for each combination of parameters. This
corresponds to a total of 66,100 fault injection experiments
for ADDR (4-process parallel), 43,200 for DRC (sequential),
102,000 for Hattrick (sequential). Our experiments were per-
formed on compute nodes with two 2.33 GHz dual-core Xeon
E5345 processors with 4GB Ram and RHEL 4 OS.

A given application run may terminate successfully or

crash due to an unrecoverable error. Unrecoverable errors
occur when there is a segmentation fault in code outside our
protected routines or if five rollbacks of a routine have been
observed in a given run since such repeated rollbacks almost
always indicate that the corruption in application state can-
not be repaired. Since we assume that the user needs appli-
cation results regardless of the error rate, if the application
crashes it is restarted from the beginning as many times as
needed for it to complete.

To evaluate the behavior of these applications in a broad
range of error environments we consider several error in-
jection rates. For reference, assuming a typical FIT of 100-
100,000 for individual processing cores (FIT = failure in one
billion hours of operation and this range has been exper-
imentally observed for commodity electronics [16, 23]), an
HPC system with one million cores will experience .1-100
errors per hour, which is equivalent to 3e-11 - 3e-14 errors
per processor cycle on a 1Ghz processor. The range of er-
ror injection rates used used in our experiments were chosen
such that (i) on average one or more errors were injected
in the executions of our target applications and (ii) at least
some application runs completed without crashing. Results
for error rates that induce fewer than one error per run were
extrapolated from our experiments with higher error rates.
This was done by considering only the runs where exactly
one error was injected and trivially scaling the results to
correspond to 1 in every n runs being injected with an error
while remaining n− 1 runs complete with no injection.

5.1 Performance Impact
Our fault injection experiments ran each application con-

figuration to completion, recording whether it completed
and if so, the magnitude of the error. We calculate the exe-
cution time of each configuration, accounting for restarting
the application in cases of unrecoverable failures via the for-
mula tc

1−pf
, where tc is the average completion time of such

runs and pf is the probability of an unrecoverable failure.
Figures 8, 9 and 10 show the expected execution time, rela-
tive to the execution time of the non-fault tolerant version
of the application when no errors are injected. Each figure
shows a separate graph for each input size and along with
the ID of the input shows the application’s execution time
on that input to quantify its vulnerability to errors on the
input. Data for the non-fault tolerant version is shown in
red and the fault tolerant version with the optimal configu-
ration for each input size is shown in blue. For ADDR we
considered error checker thresholds from 1e-4 to 1e-7. For
DRC we considered thresholds from 1e-6 to 3e-8. Finally
with Hattrick we considered the use of one pair of copies for
each pointer occurrence or using a different pair of replicas
for each pointer occurrence, as well as checkpoint periods of
1, 1e3 and 1e5. The graphs from left to right correspond
to different application input sizes. Within each graph the
x-axis corresponds to error injection rates (the real-system
region of 3e-11 to 3e-14 highlighted in grey) using a loga-
rithmic scale, while the y-axis shows the relative execution
time using a linear scale.

Figure 8 shows that the non-fault tolerant ADDR slows
down from 2x to 6x, depending on the input set size, as
a result of the injected faults. The optimal fault tolerance
version the algorithm shows degradation that are around
one half of the non-fault tolerant one, which implies that
our technique improve ADDR’s resilience by 50%. However,



for lower error rates the difference between the two versions
is small as both perform well.

Figure 9 shows that since DRC performs many more in-
teger operations and memory copies than ADDR, it is more
vulnerable to errors that corrupt the values of pointers or
cause loads and stores to target invalid memory locations.
Such errors cause memory segmentation faults, which force
DRC to restart its execution and thus incur a very high over-
head. That is the reason why the performance slowdown of
its non-fault tolerant version is much larger than for ADDR
at high error rates. In contrast, the optimal fault toler-
ant version almost completely eliminates the performance
impact of faults. However, at low error rates the cost of
resilience is sufficiently high that at low error rates the non-
fault tolerant version of DRC performs slightly better.

Figure 10 shows that the significant cost of pointer repli-
cation causes the fault tolerant version of Hattrick to be
consistently slower than the non-fault tolerant one in most
cases. As shown below, the main benefit of resilience mech-
anisms is to improve the accuracy of Hattrick’s results.

Figure 10: Execution time of Hattrick relative to
non-fault tolerant fault-free execution time. Results
for the non-fault tolerant version (red) and the op-
timal fault tolerant version (blue) are shown.

5.2 Result Accuracy
If the probability that a given run completes without an

unrecoverable error is greater than 0 then the application
will eventually complete with some output after some num-
ber of restarts. This section evaluates the distribution of
errors in the resulting outputs. The output of ADDR is the
vector that holds the solution to the linear system. For Hat-
trick it is the vector that holds the state of the n-body sys-
tem at the final application time-step, with 6 numbers per
body Finally, DRC’s output is a Pulse Code Modulation-
formatted file, which is a sequence of numbers. Since the
outputs of each routine can be represented as a vector we
calculate the error in the outputs by comparing the vector
ve returned by each application when errors are injected to
the correct vector vc computed during a fault-free run and

computing the L2 norm of the difference:
√∑

i(vc−ve)2
|vc| .

Figures 11, 12 and 13 show the errors in ADDR, DRC and
Hattrick outputs from a user-centric perspective. They plot
the fraction of application runs for which a numerical error
equal or smaller than 10−8 is achieved. From left to right
each figure shows graphs for different input sizes and from
top to bottom it shows results for different error magnitude

bounds. The x-axis in each graph shows the fault injec-
tion rate while the y-axis shows the fraction of runs where
the error target was satisfied. Both axes are expressed in
logarithmic scale. Each graph shows data for the non-fault
tolerant version of the application (all points connected by
the line) as well as all the fault tolerant versions (optimal
configurations connected by a line).

The data shows that the probability that the non-fault
tolerant version of each one the three application violates
the user-provided error bound is above 10% for Hattrick and
DRC in the region of realistic error rates (3e-11 to 3e-14)
and above 1% for ADDR across all inputs. When resilience
is applied to these applications the probability of violating
the error bound drops to below 1% for ADDR and Hattrick
and below 10% for DRC in the same region. This shows that
the use of all the resilience techniques is critical for ensuring
that application outputs are valid with a high probability
even on very large HPC systems.

Figure 13: Probability of not satisfying the user-
provided error bound for Hattrick. Results for the
non-fault tolerant version (red) and the optimal
fault tolerant version (blue) are shown.

6. SUMMARY
In this paper we show that it is possible to effectively pro-

tect three real scientific applications from a wide range of
faults by properly combining three different fault tolerant
mechanisms: Algorithmic error checks, replication of criti-
cal data structures and checkpoint-restart of individual rou-
tines. We demonstrate that very significant improvements
can be achieved in terms of reduction of performance slow-
down and output numerical accuracy when scientific prob-
lems face error injection rates from 3 · 10−11 and 3 · 10−14

per processor cycle at 1Ghz, which are the expected rates
in future high performance computing systems. This work
demonstrates that current scientific application can be safely
executed on such systems if the programmers comprehen-
sively combine a range of resilience techniques.
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