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The Richtmyer-Meshkov (RM) [1,2] instability refers to the evolution of 

perturbations )cos(kx ( =amplitude,  /2k ,  =wavelength) at the interface 

between two fluids of densities l and h ( l =light, h =heavy) after the passage of a 

shock inducing a velocity jump v . The classical result in the absence of surface tension 

or viscosity is [1,2]

              kAtt v1/)( 0  (1)

where )0(0  t and )/()( lhlhA   . All formulas in this Comment apply to

the linear regime, i.e. .1k

When surface tension )(sT is present we found [3]
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When viscosities l and h are present we found [4]
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where )/()( lhlh   .

Subsequently, Carlès and Popinet (CP) presented [5]
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when surface tension is present. As far as we know the derivation of this equation, and 

that of Eq. (5) below, has never been published citing that it requires “typically more than 

a hundred pages.”[5].

We note here that Eq. (4) is merely a small-time expansion of Eq. (2), and is valid 

only for /1t . It does not capture the oscillating nature of )(t and can be highly 

misleading if used for /1t .

For viscosity, CP presented [5]

             )1(v1/)( 2/1
0 CtkAtt  (5)

where )])((3/[16 hlhhllhlhlkC   .

CP point out that C vanishes when only one of the fluids has viscosity, i.e. when 

0l but 0h or vice versa, predicting no viscous damping in such a configuration, 

and they point out that this is not the case for the Rayleigh-Taylor instability. Here we 

point out that Eq. (5) should not be used in a configuration where one of the s' is zero 

or much smaller than the other: There are viscous effects in the RM instability when only 

one of the fluids is viscous. In Eq. (3) viscous effects survive when one of the s' is zero 

because  in Eq. (3) depends on the sum hl   , while C appearing in Eq. (5) depends 

on the product hl .

Eq. (5), such as it is, has another serious limitation: Even for 0l and 0h it is 

limited to short times:

                                  CPtt  (6)

where 29/4 CtCP  . Again, serious errors will be made if one uses Eq. (5) beyond CPt . 

According to Eq. (5) 0 at CPtt  and, for CPtt  , it predicts that the amplitude will 
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decrease and eventually become negative (!) at late times. Nothing of this sort happens in 

actual calculations (experiments are sparse). In contrast, Eq. (3) predicts that 0 only 

at t , or 22/1 kt  .

We agree with CP that Eq. (3) can, in certain cases, underestimate the effects of 

viscosity. We want to clarify their claim that our viscous term can be “several orders of 

magnitude smaller,” as shown in Fig.3(d) of CP [5]. 6.0A in that figure where the 

magnitude of the “viscous term” is plotted as a function of nondimensional ktt v'  . For 

example, for 4000Re  and at 1.0't Eq. (3) predicts 2.4e-6, two orders of magnitude 

smaller than the 2.4e-4 predicted by Eq. (5). What this means is the following:

0599976.1_'1/ 0  termviscousAt from Eq. (3) to be compared with 1.05976 

from Eq. (5), a 0.02% difference. Similarly, at 1't , where our “viscous term” is some 

32 times smaller than theirs (2.4e-4 vs. 7.6e-3), the difference in 0/ is less than 0.5%: 

1.59976 vs. 1.5924.

Using the hydrocode CALE [6] we have run several direct numerical simulations to 

compare Eqs. (3) and (5) and to verify the above statements. In Fig. 1 we show the case 

10  mm, 13 cm, 166.0l mg/cm3, 1 hl  poise, lh  4 , and 

9.18v  cm/ms. This case was chosen to favor Eq. (5) [We do not show problems 

where one of the viscosities was very small and where Eq. (5) gave a completely wrong 

answer while Eq. (3) was in fair agreement with CALE]. From Fig. 1 we see that, 

compared to CALE, Eq. (3) does indeed underestimate viscous effects and hence 

overestimate )(t , but by no more that 16%. There are compressional effects but they are 

kept at a minimum in the code. Eq. (5) comes closer to the simulation at early times, but 

then exhibits the unphysical behavior described above. For this case 1.2CPt ms, and 
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indeed in Fig. 1 CP stops growing after CPt , decreasing and becoming negative around

5ms. In contrast, as t , the simulation approaches the asymptote
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given by Eq. (3). We will show elsewhere that this is indeed the correct asymptote.
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FIGURE CAPTION

Fig. 1. The evolution of the perturbation amplitude )(t for the problem described in the 

text, as calculated by Eq. (3), the hydrocode CALE, and Eq. (5).
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