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INTRODUCTION
The aim of this paper is to guide designers in determining the optimal number and placement of actuators 
for driving general multi-axis flexure systems at any desired speed. Although the degrees of freedom 
(DOFs) of a flexure system are largely determined by the location and orientation of its flexure elements, 
the system’s stage will tend to displace in unwanted directions (i.e., parasitic errors) while attempting to 
traverse its intended DOFs if it is not actuated correctly. The problem of correctly placing actuators is 
difficult because the optimal location changes depending on the speed with which the stage is driven. In 
this paper we introduce the mathematics necessary to generate geometric shapes, called dynamic 
actuation spaces, which enable designers to rapidly visualize all the ways actuators could be placed for 
driving a general flexure system with minimal parasitic error at any speed without having to move the 
actuators placed. The theory provided here impacts the design of precision motion stages in that it 
significantly simplifies their control and increases their bandwidth. Example systems that benefit from this 
research include flexure-based nano-positioners, high-speed assembly stages, and multi-axis micro-
mirrors.

CONTRIBUTIONS
In this paper we (i) introduce the concept of dynamic actuation space, (ii) provide the complete library of 
these spaces, (iii) provide guidelines for placing the correct number of actuators within these spaces, and 
(iv) introduce the mathematics necessary to generate these spaces as well as calculate the selected 
actuators’ output force magnitudes for driving a system with a desired DOF at a desired speed.

FUNDAMENTAL PRINCIPLES
Consider the steel flexure system in Fig. 1A (E=210GPa, G=79GPa, ρ=7700 kg/m3). Its four wire flexures 
guide its T-shaped stage to move with three DOFs—two translations and one rotation. These DOFs may 
be modeled using twist vectors [1], T1, T2, and T3 (Fig. 1B). If we wish to quasi-statically actuate these 
DOFs, we could do so optimally (i.e., with minimum parasitic error) by pushing on the stage with two 
linear forces located in the middle of the flexures

(A) (B)

(C) (F)

2cm

8cm

20cm

25cm

0.5cm

X
YZ

CM n1

n2
n3

20cm

8cm

20cm

T1T2

T3

W1

W2

W3

D=14.5cm

D
WA1 WA2

WA3

WA4
WA5



(D)

(E)
FIGURE 1. Flexure system (A), optimal actuator placement for static actuation (B), freedom and static 
actuation spaces (C), distance of static actuation space from origin verses stage speed (D), actuator force 
verses stage speed (E), and dynamic actuation space with five actuators (F)
as shown in Fig. 1B and torqueing the stage with one pure moment respectively. These actuation actions 
may be modeled using wrench vectors [1], W1, W2, and W3. Their locations correspond with the system’s 
center of stiffness and are shown a distance, D, from the origin. As long as the system is not driven with 
any appreciable speed, these actions will minimize the axial loads in the flexures and will thus produce 
the corresponding DOFs with minimal parasitic error for small displacements.

Although the stage is capable of moving with three DOFs, it may also move with every combination of 
these DOFs. These motions are visually depicted by the system’s freedom space [2]. Freedom space is a 
geometric shape that represents all the ways a system may move. The freedom space of this example 
consists of an infinitely large box of parallel rotation lines (shown red in Fig. 1C) and a disk of translation 
arrows that are perpendicular to these lines. If T1, T2, and T3 are linearly combined, this freedom space is 
generated. For the case of quasi-static actuation, the optimal locations and orientations of the actuators 
that successfully drive all the motions/twists within this freedom space also lie within a geometric shape 
called a static actuation space [2]. This space results from the linear combination of W1, W2, and W3 and 
consists of a plane of linear forces (shown blue in Fig. 1C) and an orthogonal moment.

The optimal location of this actuation space will remain at D=14.5cm only if the DOFs in the freedom 
space are actuated with quasi-static speeds. If, however, we wish to actuate the motions within the 
freedom space with an increasing sinusoidal frequency of ω, the optimal location of the actuation space 
will displace downwards until it is infinitely far away when ω reaches the system’s first natural frequency 
(Fig. 1D). As ω increases to infinity above this natural frequency, the planar actuation space descends 
from positive infinity until it approaches the stage’s center of mass. The effect of increasing ω on the 
absolute value of the actuation force necessary to displace the stage a sustained-amplitude of 1mm is 
shown in Fig. 1E.

Given these results, one may conclude that the only way to dynamically actuate a stage with minimal 
parasitic error is to move the actuators according to the desired actuation speed. This is fortunately not 
the case. If the wrench vectors within every planar actuation space for all values of ω are linearly 
combined, a new space emerges. This space is called dynamic actuation space. The dynamic actuation 
space of this example consists of an infinite number of stacked parallel planes that contain linear force 
wrenches (shown blue in Fig. 1F) and coupled moment/force wrenches as well as a sphere of pure 
moment wrenches. Unlike the planar static actuation space from Fig. 1C that contains three independent 
linear forces, the dynamic actuation space of Fig. 1F contains five such forces. Thus, while quasi-static 
actuation requires only three actuators from the plane of Fig. 1C to drive the system’s three DOFs with 



minimal parasitic error, dynamic actuation requires at least five actuators from the parallel planes of Fig. 
1F. As long as these five actuators’ lines of action are all independent, like W1 through W5 shown in Fig. 
1F, their output forces may be combined to actuate any motion within the system’s freedom space with 
minimal parasitic error at any speed without the actuators needing to change locations at any time. A later 
section provides the mathematics necessary to (i) generate a general flexure system’s dynamic actuation 
space, (ii) determine the fewest number of actuators that need to be selected from this space, and (iii)
calculate the output force magnitudes of the selected actuators for achieving any desired DOF with 
minimal parasitic error at any speed, ω.  

CONCLUSIONS
This paper introduces the concept of dynamic actuation space as a geometric shape that guides 
designers in placing static actuators for driving multi-axis flexure systems at various speeds with minimal 
parasitic error. A comprehensive library of these spaces as well as the mathematics necessary to 
generate them, have been provided. This work was performed under the auspices of the U.S. Department 
of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-
CONF-XXXXX.
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INTRODUCTION
The aim of this paper is to guide designers in 
determining the optimal number and placement 
of actuators for driving general parallel multi-axis 
flexure systems at any desired speed. Although 
the degrees of freedom (DOFs) of a flexure 
system are largely determined by the location 
and orientation of its flexure elements, the 
system’s stage will tend to displace in unwanted 
directions (i.e., parasitic errors) while attempting 
to traverse its intended DOFs if it is not actuated 
correctly. The problem of correctly placing 
actuators is difficult because the optimal location 
changes depending on the speed with which the 
stage is driven. In this paper we introduce the 
mathematics necessary to generate geometric 
shapes, called dynamic actuation spaces, which 
enable designers to rapidly visualize all the ways 
actuators could be placed for driving a general 
flexure system with minimal parasitic error at 
any speed without having to move the actuators 
placed. The theory provided here impacts the 
design of precision motion stages in that it 
significantly simplifies their control and increases 
their bandwidth. Example systems that benefit 
from this research include flexure-based nano-
positioners, high-speed assembly stages, and 
multi-axis micro-mirrors.

CONTRIBUTIONS
In this paper we (i) introduce the concept of 
dynamic actuation space, (ii) provide the 
complete library of these spaces, (iii) provide 
guidelines for placing the correct number of 
actuators within these spaces, and (iv) introduce 
the mathematics necessary to generate these 
spaces as well as calculate the selected 
actuators’ output force magnitudes for driving a 
system with a desired DOF at a desired speed.

FUNDAMENTAL PRINCIPLES
Consider the steel flexure system in Fig. 1A 
(E=210GPa, G=79GPa, ρ=7700 kg/m

3
). Its four 

wire flexures guide its T-shaped stage to move 
with three DOFs—two translations and one 
rotation. These DOFs may be modeled using 
twist vectors [1], T1, T2, and T3 (Fig. 1B). If we 

wish to quasi-statically actuate these DOFs, we 
could do so optimally (i.e., with minimum 
parasitic error) by pushing on the stage with two 
linear forces located in the middle of the flexures
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FIGURE 1. Flexure system (A), optimal actuator 
placement for static actuation (B), freedom and 
static actuation spaces (C), distance of static 
actuation space from origin verses stage speed 
(D), actuator force verses stage speed (E), and 
dynamic actuation space with five actuators (F)
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as shown in Fig. 1B and torqueing the stage with 
one pure moment respectively. These actuation 
actions may be modeled using wrench vectors 
[1], W1, W2, and W3. Their locations correspond 
with the system’s center of stiffness and are 
shown a distance, D, from the origin. As long as 
the system is not driven with any appreciable 
speed, these actions will minimize the axial 
loads in the flexures and will thus produce the 
corresponding DOFs with minimal parasitic error 
for small displacements.

Although the stage is capable of moving with 
three DOFs, it may also move with every 
combination of these DOFs. These motions are 
visually depicted by the system’s freedom space 
[2]. Freedom space is a geometric shape that 
represents all the ways a system may move. 
The freedom space of this example consists of 
an infinitely large box of parallel rotation lines 
(shown red in Fig. 1C) and a disk of translation 
arrows that are perpendicular to these lines. If 
T1, T2, and T3 are linearly combined, this 
freedom space is generated. For the case of 
quasi-static actuation, the optimal locations and 
orientations of the actuators that successfully 
drive all the motions/twists within this freedom 
space also lie within a geometric shape called a 
static actuation space [2]. This space results 
from the linear combination of W1, W2, and W3

and consists of a plane of linear forces (shown 
blue in Fig. 1C) and an orthogonal moment.

The optimal location of this actuation space will 
remain at D=14.5cm only if the DOFs in the 
freedom space are actuated with quasi-static 
speeds. If, however, we wish to actuate the 
motions within the freedom space with an 
increasing sinusoidal frequency of ω, the optimal 
location of the actuation space will displace 
downwards until it is infinitely far away when ω
reaches the system’s first natural frequency (Fig. 
1D). As ω increases to infinity above this natural 
frequency, the planar actuation space descends 
from positive infinity until it approaches the 
stage’s center of mass. The effect of increasing 
ω on the absolute value of the actuation force 
necessary to displace the stage a sustained-
amplitude of 1mm is shown in Fig. 1E.

Given these results, one may conclude that the 
only way to dynamically actuate a stage with 
minimal parasitic error is to move the actuators 
according to the desired actuation speed. This is 
fortunately not the case. If the wrench vectors 
within every planar actuation space for all values 

of ω are linearly combined, a new space 
emerges. This space is called dynamic actuation 
space. The dynamic actuation space of this 
example consists of an infinite number of 
stacked parallel planes that contain linear force 
wrenches (shown blue in Fig. 1F) and coupled 
moment/force wrenches as well as a sphere of 
pure moment wrenches. Unlike the planar static 
actuation space from Fig. 1C that contains three 
independent linear forces, the dynamic actuation 
space of Fig. 1F contains five such forces. Thus, 
while quasi-static actuation requires only three 
actuators from the plane of Fig. 1C to drive the 
system’s three DOFs with minimal parasitic 
error, dynamic actuation requires at least five 
actuators from the parallel planes of Fig. 1F. As 
long as these five actuators’ lines of action are 
all independent, like W1 through W5 shown in 
Fig. 1F, their output forces may be combined to 
actuate any motion within the system’s freedom 
space with minimal parasitic error at any speed 
without the actuators needing to change 
locations at any time. A system’s static and 
dynamic actuation spaces contain wrench 
vectors that are independent of the wrench 
vectors contained within its constraint space [3].

There are a finite number static and dynamic 
actuation spaces. These spaces are provided in 
Fig. 2. They are identical to the constraint 
spaces described in Hopkins [3]. They consist of 
linear forces depicted as blue lines, pure 
moments depicted as black lines with circular 
arrows about their axes, and coupled 
moment/force wrenches depicted as orange 
lines. It is not important to the purpose of this 
paper that the reader understand the details of 
these spaces. What is important to recognize is 
that each space is numbered and belongs to 
one of seven columns. Each column is labeled 
with the number of independent wrenches (i.e., 
minimum number of necessary actuators) 
contained within its actuation spaces. Note that 
the actuation space of Fig. 1C is the first space 
in the “3 Actuators” column of Fig. 2 and that the 
actuation space of Fig. 1F is the third space in 
the “5 Actuators” column. 

Thus, when a system’s dynamic actuation space 
has been determined, Fig. 2 may be used to 
identify the fewest number of actuators 
necessary to actuate the systems DOFs with 
minimal parasitic error. The only actuation 
spaces that contain enough linear force 
actuators to achieve all of the system’s DOFs 
are those shown in the pyramid outlined in black 



(Fig. 2). If the system’s actuation space lies 
outside of this pyramid, it will require at least one 
pure moment or coupled moment/force actuator 
to drive all of the system’s DOFs.

FIGURE 2. Complete library of actuation spaces

MATHEMATICAL TOOLS
This section provides the mathematical tools 
necessary to (i) generate a general parallel 
flexure system’s dynamic actuation space, (ii)
select appropriate actuators within this space, 
and (iii) calculate the output force magnitudes of 
the selected actuators for achieving any desired 
DOF with minimal parasitic error at any speed.

If we wish a general system’s stage to move 
with a twist, Ti, at a speed of ω, the wrench, Wi, 
required to drive the stage may be calculated 
using

     ii TW 2
TWTW KM   ,         (1)

where [MTW] is the system’s twist-wrench mass 
matrix [1] defined by

       1
 NinNMTW ,         (2)

where [N] is defined by
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The vector L is a 3x1 location vector that points 
from the system’s origin to the stage’s center of 
mass (labeled CM in Fig. 1A), n1, n2, and n3 are 
3x1 orthogonal unit vectors, 0 is a 3x1 zero 
vector, and [Δ] from Eq. (2) is
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Matrix [0] is a 3x3 zero matrix, [I] is a 3x3 identity 
matrix, and [in] from Eq. (2) is a 6x6 inertia 
matrix defined by

   mmmIIIdiagin 321 ,                 (5)

where I1, I2, and I3 are the stage’s mass 
moments of inertia (centered about the stage’s 
center of mass) that correspond with the 
directions of n1, n2, and n3 respectively, and m is 
the stage’s mass. For the plots of the example of 
Fig. 1, 1/3 of the four wire flexures’ mass 
protruding from the system’s stage is considered 
in the values of Eq. (5).  This is done to take the 
inertia of the moving section of the flexures into 
account as well as the rigid stage. The twist-
wrench stiffness matrix [KTW] in Eq. (1) may be 
calculated using the theory provided in Hopkins 
[2]. This stiffness matrix is constructed using 
information pertaining to the system’s flexure 
element topology as well as geometry and 
material properties.

The static actuation space of a general flexure 
system is generated by linearly combining the 
wrench vectors, Wi, that result from substituting 
all of the system’s DOF twists, Ti, into Eq. (1) for 
ω equal to zero. The dynamic actuation space of 
a general flexure system is generated by linearly 
combining the wrench vectors, Wi, that result 
from substituting all of the system’s DOF twists, 
Ti, into Eq. (1) for every value of ω.  In practice, 
however, only a few values of ω are necessary 
to substitute into the equation before a sufficient 
number of independent wrench vectors are 
identified that are capable of generating the 
entire dynamic actuation space.

Once a system’s dynamic actuation space has 
been identified, designers may use the library of 
Fig. 2 to identify the minimum number of 
necessary actuators that must be selected from 
within the space depending on the column under 
which the space is categorized. This number is 
never less than the number of system DOFs, nor 
is it ever more than six. If it equals the number of 
system DOFs, the system is well designed and 
requires the fewest number of actuators to 
eliminate parasitic error for both static and 
dynamic scenarios. Such systems are generally 
symmetric and/or possess a center of stiffness 
that is coincident with their stage’s center of 

Linear Force Pure Moment Coupled Moment/Force



mass. Their static and dynamic actuation spaces 
are identical. An example of such a flexure 
system that achieves the same three DOFs as 
the system from Fig. 1 with minimal parasitic 
error but with three actuators instead of five is 
shown in Fig. 3. The system’s three actuators 
are sufficient to drive the stage’s DOFs at any 
speed because the system’s static and dynamic 
actuation spaces are synonymous (i.e., a plane 
of linear forces and a perpendicular moment).

FIGURE 3. Improved flexure system

Once designers know how many actuators to 
select from the system’s dynamic actuation 
space, they must select them such that their 
lines of action are independent and correspond 
with their actuator’s type (e.g., blue lines 
correspond with linear actuators, black lines 
correspond with pure moment actuators, and 
orange lines correspond with coupled 
moment/force actuators). To ensure that the 
actuators selected are independent, designers 
may use the concept of sub-constraint spaces 
described in Hopkins [2-3], or they may apply 
Gaussian elimination to their actuators’ wrench 
vectors. Actuators should be arranged with as 
much symmetry as possible and designers 
should ensure that their lines of action are 
orthogonal to the stage where they act. Stages 
should be designed with as few protrusions as 
possible to minimize inertia and thus increase 
the system’s natural frequencies.

After the actuators have been placed, their 6x1 
wrench vectors, WAj, should be arranged in a 
matrix [WA] according to

   AjA2A1 WWW AW ,                         (6)

where the force magnitude of each vector is set 
to unity and j is the number of actuators placed. 
If any of these vectors are pure moment vectors, 
the magnitude of their moment is also set to 
unity. Note that j is five for the system of Fig. 1F. 
The actuators’ output force magnitudes, FAj, that 
are necessary to drive a stage with a desired 

twist, Ti, at a speed of ω, can be calculated 
according to

         iW
 T
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where Wi is calculated using Eq. (1).

The six mode shapes of a general parallel 
flexure system are the Eigen vectors of its 
[Mode] matrix defined by

     TW

1
K


 TWMMode .                                         (8)

The natural frequency, ωn, associated with each 
mode shape is the square root of the mode 
shape’s Eigen value. The first i mode shapes of 
a parallel flexure system correspond with the i
independent DOF twists that lie within the 
system’s freedom space.

Finally, note that the theory provided in this
paper is specific to parallel flexure systems that 
are not subject to damping or internal losses. 
Extending this theory such that it applies to more 
general flexure systems is ongoing research.

CONCLUSIONS
This paper introduces the concept of dynamic 
actuation space as a geometric shape that 
guides designers in placing static actuators for 
driving multi-axis parallel flexure systems at 
various speeds with minimal parasitic error. A 
comprehensive library of these spaces as well 
as the mathematics necessary to generate 
them, have been provided. This work was 
performed under the auspices of the U.S. 
Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-
07NA27344. LLNL-CONF-XXXXX.
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