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The adaptive preconditioners developed in this paper substantially reduce the computational cost
integrating large kinetic mechanisms using implicit ordinary differential equation (ODE) solvers. For
a well-stirred reactor, the speedup of the new method is an order of magnitude faster than recent ¢
proaches based on direct, sparse linear system solvers. Moreover, the new method is up to three orc
of magnitude faster than traditional implementations of the ODE solver where the Jacobian informatio
is generated automatically via divide differences, and the factorization relies on standard, dense mati
operations. Unlike mechanism reduction strategies, the adaptive preconditioners do not alter the und
lying system of differential equations. Consequently, the new method achieves its performance gait
without any loss of accuracy to within the local error controlled by the ODE solver. Such speedup allow:
higher fidelity mechanism chemistry to be coupled with multi-dimensional fluid dynamics simulations.

1 Introduction

Accurate chemistry modeling in reacting flows is vital to many engineering applications.
the most important, in terms of the environmental impact and the geopolitical challenges ir
ergy market, is the design of high-efficiency, clean-combustion engines for transportation
promising technologies (see Section 2.3 of [1]) rely on low-temperature combustion wh
chemical kinetics of the fuel are used to control the ignition timing. For these advanced
operating modes, resolving the kinetics is essential to guide the design effort. Detailed
mechanism have recently been developed for accurate gasoline surrogates [2], biodiese
nents [3], and the next generation of diesel surrogates [4]. These mechanisms resolve t
of species along tens of thousands of reaction paths to provide a robust and accurate moc
oxidation.

Resolving the detailed chemistry within a computational fluid dynamics (CFD) simulatic
traditionally relied on dense matrix based ordinary differential equation (ODE) solvers [5
traditional approach still remains in wide use because it is straightforward to implement
fective for sufficiently small mechanisms (fewer than 50 species). However, with dense :
as the number of species grows into the hundreds, the overall simulation cost is dominate
dense matrix operations. In fact, the cost of solving a single chemically reacting cell w
7172-species biodiesel component mechanism [3] is on the order of one day. Recent ap

*This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
Laboratory under contact DE-AC52-07NA27344.
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[6, 7] have updated the traditional ODE solver to yield an order of magnitude or more sf
However, further work is still needed to reduce the computational cost to a level where the
mechanisms are widely-used in multidimensional CFD engine simulations.

For several decades, a considerable amount of research has focused on reducing the ¢
kinetic mechanisms in order to reduce the cost of simulating chemistry. There are three m
egories for reducing mechanisms: (i) skeletal reduction; (ii) species lumping; and (iii) tim
analysis. Skeletal reduction is concerned with the direct removal of reactions or species f
mechanism. Approaches based on sensitivity analysis [8] and computational singular pert
(CSP) [9] are used to identify reactions that may be removed from the full mechanism v
least amount of accuracy lost. Species reduction methods require more complex analysis
ate the impact of removal on the overall accuracy, and have been implemented successft
CSP [10], directed relation graph (DRG) analysis [11] and its extension with error prop:
DRG-EP [12]. Lumping reduces the mechanism by grouping together similar species and
pathways, which is particularly effective for large hydrocarbon mechanisms containing me
mers [13, 14]. The final reduction approach is based on timescale analysis. The quasi-ste
(QSS) [15] and patrtial equilibrium (PE) [16] approximations are used to eliminate the re.
and species from the mechanism that are significantly faster than the time scales of intere:
sic low dimension manifolds [17, 18] achieve a similar effect. A recent review by Lu and La
provides a more detailed discussion of these mechanism reduction techniques.

The disadvantage of mechanism reduction is that it often requires a high-level of expertis
derstand its limitations and range of accuracy. Fortunately, mechanism reduction is not"
means to reduce the computational cost of solving detailed chemical kinetics. There are ¢
of strategies based on advances in applied mathematics and algorithm design that delive
tational speedup without any loss of accuracy. The improvements generally apply to tw
categories: thermo-chemical calculations and ODE solvers. The computational time to «
the chemical system derivatives can be reduced by avoiding high-cost functions such as t
nential and logarithm terms in the species production rate. Some strategies to achieve this
pre-computation and interpolation of expensive functions [7], direct elimination of redund:
ponentiation [19], andh situ adaptive tabulation (ISAT) [20].

Most implicit ODE solvers in current use for chemical kinetics are based on the backwarc
ence formulation (BDF). There is also some recent interest in applying exponential integr
chemical kinetics [21]. The vast majority of the BDF solvers are based directly on the auf
methods that control timestep size and method order to efficiently maintain local error tol:
set by the user [22, 23]. Any implicit time discretization like BDF requires a non-linear sol
determine the system state at the next timestep. Non-linear solvers typically employ the

Newton-Raphson method, which uses the Jacobian matrix of the BDF operator (or its

imation [24]) to calculate each iteration. While direct improvements to the non-linear sol
possible, most advances for chemical system integration have focused on improvements tc
struction of the Jacobian matrix and the linear system solvers used for each non-linear iter
[6], automatic differentiation software is used to construct analytical Jacobian matrices wel
for direct, sparse linear system solvers. Similarly, in [21], the chemical system derivatives
rived to produce an analytical Jacobian approximation that is able to take full advantage c
solvers, which yields a speedup over traditional dense methods of an order of magnitude
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for large mechanisms.

The approach in this paper follows a similar path that seeks to reduce the computatio
through improvements to the linear system solver. The direct sparse solvers implementt
recent approaches [6, 21] are replaced with an iterative linear solver based on the general
imum residual (GMRES) method [25]. Specifically, this paper uses the scaled preconc
GMRES method as implemented in the CVODE solver [26] distributed in the SUNDIALS
ware library [27]. CVODE relies on several time-saving Jacobian approximations including
reuse [24] and matrix-free Krylov projection for GMRES [28], which produces a computati
efficient non-linear solver [29].

This paper develops preconditioners to accelerate the convergence rate of the GMRES
when used as part of the ODE solver for large kinetic mechanisms. In particular, a class of :
preconditioners related to on-the-fly mechanism reduction is constructed. These precon
are then applied to the time integration of a constant volume, well-stirred reactor (WSR) cor
a stoichiometric fuel-air mixture using ten kinetic mechanisms. The mechanisms spanins
hydrogen (10 species [30]) to the biodiesel component 2-methylnonadecane (7172 spe
The average computation time for the WSR is then compared to the traditional ODE solve
on dense matrix operations. For the largest mechanism tested, the new adaptive precotl
are three orders of magnitude faster than the traditional approach. The adaptive precon
are also an order of magnitude faster than recent advanced solvers that use analytical .
and direct sparse solvers.

2 Approach

The aim of this investigation is to reduce the computational cost of combustion simulati
enable the use of more detailed chemistry in engine design. The approach in this paper
effective preconditioners for integrating large kinetic mechanisms using the GMRES-base
in CVODE. For iteratiom, GMRES finds the “best” approximation to the linear system soluti
the span of the-dimensional Krylov subspace of the matrix. The rate at which GMRES con
to the true solution is intimately connected with the eigenspectrum of the matrix (see Lectu
[31] for an illustration). If the eigenvalues are in a tightly clustered group separated some (
from the origin, the convergence can be rapid allowing for machine precision to be obtain
only a few iterations. In such cases, GMRES is able to achieve the same solution as a dire
solver in considerably less computational time.

Using a BDF time discretization in the ODE solver, the resulting linear system provided to tt
linear solver is related to the Jacobian matrix of the ODE system. For a géviatimhensione
ODE systemdz; /dt = fi(z1,...,zn,t) for 1 < i < N, its Jacobian matri¥ is defined as

Ofi

i = A 1
‘]J axj ( )
and the linear system used by the non-linear solver in the stiff integrator is

B =1-—aAtJ, (2)

where [ is the identity matrix, andv is a constant related to the method order and pre
timesteps and\t is the current step size. The matriXis also a Jacobian matrix; howevel
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is the Jacobian of the BDF operator applied to the ODE system. In situations where the .
type may be unclear] is referred to as the ODE or system Jacobian whiles called the BDI
Jacobian.

If the Jacobian matrix associated with the integration of a large kinetic mechanism is used
in GMRES, the resulting convergence is typically so slow that direct, dense methods are fas
idea behind preconditioned GMRES is that one applies a m&ttixthe system such thd@t !B
converges more rapidly than the original system. Note that the preconditioner can be ap
left multiplication, right multiplication or a combination of the two. An alternative view of
connection between the eigenspectrum and convergence is that the closer (by some r
linear system is to the identity matrix, the more rapidly GMRES converges. Therefore, t
preconditioner in terms of convergence would satiBfy! B = I. While such a precondition
solves the system in a single iteration, the cost of calculafinyis as expensive as solving -
original system. In practice, a good preconditioner strikes a balance between acceler:
convergence rate dP~!' B and reducing the cost of solving~!; however, there does not exis
general method for finding such preconditioners. The general guidelines are to seek out
that captures some of the key features of the original system, but is much easier to sc
Lecture 40 of [31]).

The Jacobian matrices associated with the ODEs of reduced mechanisms are thus ideal c
for use as preconditioners. A preconditioner need only serve as an approximation to the tt
system, which then is improved by the iterative linear and non-linear solver to achieve tr
solution as direct methods. This means that the reduced mechanism selected for the precc
can be smaller and lower in fidelity than the standard approach to global mechanism re
Further, the reduced mechanism must only be accurate for the current composition over
timestep, which means even greater reduction is possible if the preconditioning meche
allowed to adapt during integration. This feature, referred to as adaptive preconditioning
the integration of detailed chemical kinetic mechanisms to occur at a cost comparable to |
using adaptive mechanism reduction without any loss of accuracy.

Before continuing with the preconditioner development, the ODE to which it is applied is
discussed. The constant volume WSR is used as the computational benchmark to evaluat
formance of the adaptive preconditioner strategy. The WSR is a key chemistry model uses
as a standalone calculation and implemented as a sub-model in multi-dimensional combus
ulations [5]. Thus, the computational gains reported in this paper are directly applicable t
practical simulations.

The WSR model describes the time evolution of a homogeneous, or spatially uniform, cl
mixture. The complete state of the mixture is defined by two thermodynamic propertie
density and temperature) and the relative species composition. In this investigation, the
state is defined by the temperatufe relative volumev and the species mass fractiogps for
1 <1 < N,, wherelN, is the number of species. The system of ODEs governing the evolui
the mixture state can be found in any combustion text (see [32]), and is given by

dy;
dt

= ’UMZ‘Q,L', and (3)
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AT 1 <x  dy;

dt ¢ Zlu dt @)
Hereuw is the relative volume, which remains constaht;is the molecular mass of species; is
the net molar production rate of species, is the mixture-averaged, constant volume specific
per unit mass; and, is the specific energy of specigper unit mass. The mixture is assumed t
an ideal gas with the temperature dependencg afepresented by two5degree polynomial fi
to the thermodynamic data in two temperature ranges, as is widely used throughout cor
research [33]. The energy is calculated by integrating the polynomial fit for, and includin
the appropriate offset for the heat of formation.

The net molar production rate; in (3) for each species takes the following general form,

Here NN, is the number of uni-directional reaction steps (i.e.,, the forward and reverse reacti
treated separatelyy; ; andv;’; are the reactant and product stoichiometric coefficients for sy
¢ in reaction step; andy; is the rate of progress of stgpThe rate of progress is typically defir
in terms of the species molar concentration,

Ng ,
v =k [[ (6)
=1

where molar concentration of species determined fronC; = y;/vM;. The rate constant;
in (6) is often represented in elementary hydrocarbon combustion mechanisms by the 1
Arrhenius expression,

ki (T) = AT  exp (T,/T) @

where the pre-factad, the temperature expondnand activation temperatufe are all constant
Some reactions involve third body collisions that introduce a pressure dependence into
constant expression (7).

Since most reactions involve less than four reactants and four products, the majority of the ¢
metric coefficients/; ; andv;’; are zero for large elementary mechanisms. The evaluation
net species production rates and reaction rates of progress does not explicitly follow the f
in (5-6). Rather, the stoichiometric coefficiem{s andv;’; are stored using a compressed sto
technique similar to that used for sparse matrices following the suggestions in [19]. In adc
processing the summation and products using sparse operations, further cost savings ar
by taking advantage of the fact that vast majority of reactant stoichiometric coefficients ai
in an elementary mechanism. This allows the exponentiation operation in (6) to be replac
simple multiplication. To accommodate situations where> 2, the stoichiometric coefficier
are stored as a operation list with the species and reactiofipgiappearing in the list; ; times
The operation list can similarly be used to eliminate the multiplicatiorf pfindv;’; to reduce (£
to a simple summation. The use of these operation lists require all the stoichiometric coe

to be integer-valued, which is true for elementary mechanisms.
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Returning to the construction of a preconditioner for the integration of the ODE syste
Jacobian matrix requires closer inspection. Assuming the system state for (3-4) is orc
(y1,--.,yn,T), the Jacobian matrix is

( M, 0%);
- if1<4,j<N,

Mjan =hJl=
1 YoM, 99,

- <0U7jfT+ZuiﬁlaCl> ifi=N,+1andl <j <N,

Jij: Cv = J J (8)

09 ) . .

MZ@T if1<i< Nyandj = N, +1

Ofr L

\a_T IfZ—.]_NS—I_]-’

where the functioryr is the temperature time derivative defined in (4). Under certain cond
the evaluation of the derivativé¥?; /0C; may be greatly simplified. If all the rate constahtare
only functions of temperature arid > 0, then

0% <=, Y
ac; = Z(Vz/k - Vz/k)yj/kal; %)
k=1

For large kinetic mechanisms, the majority of the product tefwfis — v}, )v; , are zero meanir
that the system Jacobian (8) is sparse. It is thus possible to use a similar operation list ¢
as done in (5-6) to efficiently store the nonzero terms of stoichiometric coefficient prodt
process the summation. Further, sparse matrix vector multiplication improves the com
time of the last row of/ (i = Ny + 1 and1l < j < N,).

Recent approaches [6, 7] take advantage of the sparsity of large kinetic mechanism using
plete form of the analytical Jacobian in (8) combined with direct sparse solvers. While
alytical Jacobian is exact for a given composition, temperature and density, the inexact
solver reuses a Jacobian for multiple non-linear iterations while the system state is changit
implicit ODE solvers also reuse the Jacobian for multiple timesteps as an additional cost:
measure, with new Jacobians constructed when the non-linear solver fails to converge. #
sequence, the Jacobian typically used within the integrator is not exact for most of the ite
The Jacobian is usually an approximation from another state that is sufficiently close in

sition to enable convergence to the user tolerances. Moreover, the preconditioned Krylc
ODE solver does not actually require the Jacobian matrix to be provided explicitly. The ac
requirements are thus further relaxed on any Jacobian information used to construct the
ditioner; therefore, a simple, computationally efficient alternative to the analytical Jacobia
sought in this paper.

Two simplifications are made to the calculation (8) so that a semi-analytical approxiniatiay
be made with just two evaluations of the right-hand side functions in (3-4). The first simplifi
is that the pressure dependence and third-body collision efficiency are neglected so that
duction rate derivatives as calculated in (9) may be applied for all species. The exact com
is not used in (9) because of potential problems with zero and negative concentrations.
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these problems] is calculated from a strictly positive composition Specifically,

. v ify;>e
Yi = . (20)
e otherwise,

wheree is a positive number smaller than the ODE solver absolute tolerance. It is normal
ODE solver to obtain small, negative values for the mass fractions over the course of inte
While applying (10) in the evaluation of the right-hand-side functions (3-4) can have dele
effects on the performance of the ODE solver [34], ugintp construct an approximate Jacot
does not. A single evaluation of the right-hand-side function ugjngoduces all the necess
data to calculate the firs¥, columns of.J corresponding to the derivatives with respect tc
species composition.

The second simplification concerns the treatment of the derivatives with respect to tem,
corresponding to the last column df Rather than computing the analytical derivatives of
constants fod)(2; /0T andd fr /0T as in [7], they are approximated using divided differences.
right-hand-side functions are re-evaluated,and7 + AT where the temperature perturbatio
calculated using the same procedure as the general divided difference approach used ir
for automatic Jacobian construction [26]. The cost of computing the divided differences is
to the analytical temperature derivatives because both have related Arrhenius forms (7).

With the means to compute a simple, yet reasonably accurate, system Jacobian with t
analytical approach, the focus shifts to constructing a preconditioner matrix. The choice
preconditioner needs to balance the cost of constructing, factoring and solving the precor
matrix with the increase in the number of GMRES iterations. To reduce the construction
class of adaptive preconditioners is considered based on filtering the BDF Jacobian compt
the semi-analytical form (i.e3 = I — aAt.J). Specifically,

P, - {Bij if i = j.or]-"(Bij) is true (1)

0 otherwise

where F is the filter that defines the conditions under which the off-diagonal terms are re
in the preconditioner. The preconditioner matrix is thus sparser than the original BDF Ja
making the factorization and solution of the preconditioner system faster when more elem
filtered out. In this paper, the factorization and solution of the preconditioner is handled us
freely available SuperLU sparse matrix library [35, 36].

The choice of filter is not restricted to independently evaluating each element of the BDF Je¢
Generalized filters considering groups of elements or even the BDF Jacobian as a whole ¢
ble. Moreover, the filter can act on the mechanism directly, eliminating reactions and spec
to the construction of3. The application of the filter adds to the overall cost of constructin
preconditioner, so the filter complexity must be weighed against the overall performance
RES in the ODE integrator. As a consequence, the investigation begins with a simple tt
filter.

Based on the general guidelines for choosing a good preconditioner, the filter should be se
retain the dominant features of the ODE system, or, equivalently, the dominant eigenstruct
largest eigenvalues in the chemically reacting system are related to the fastest time scal

7
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system. To retain these dominant eigenvalues, the filter keeps all off-diagonal terms great
user-defined thresholg Specifically,

. (12)
0 otherwise,

1]
Since the Jacobian elements fraéift;/0C; represents the characteristic frequency at whict
species are coupled in a reaction, the application of (12) can be thought of as a high-pass
frequency filter whereby the slowest reaction modes are removed from the system.

The removal of these slow modes only occurs in the preconditioner, and does not affect thi
accuracy of the ODE solver, which remains under the user-specified error tolerances. Bec
temperature in (4) is non-dimensionalized by a reference temperature, all the tefmepireser
characteristic frequencies. These frequencies are then normalized by the internal timest
ODE integrator in the construction & meaning that the threshold valyds dimensionless.
threshold value of zero uses the entire reaction mechanism as a preconditiongrincAsase:
slower reactions are dropped out of the preconditioner leading to faster factorization ar
tions; however, the number of GMRES iterations may increase because of the slower conv
Eventuallyn increases to such a level that too many reactions have been removed and GN
longer converges with sufficient speed. The optimum valug laefs between these extremes
is found through a direct search for each mechanism listed in Table 1. In practice, the o
value ofy is found to be effective over a wide range of conditions.

The specific choice of variables for the mixture state has a pronounced affect on the comp!
performance for the direct sparse solver using automatic differentiation. The choice of stz
ables(T, v, y;) in (3-4), or its density equivalent, is noted in [6] to produce a fully dense Jac
matrix, for the constant pressure WSR, negating any possible benefit of the sparse solvel
trast, the use the GMRES based ODE solver with the adaptive preconditioner allows for
flexibility in the choice of Jacobian matrix approximation. There is no measurable differe
computational performance using the adaptive preconditioner for the state variables in (3-
ing a concentration formulation that yields the sparsest representation with the direct app

[6].

3 Test Cases

The adaptive preconditioner approach is evaluated for a constant volume, well-stirred
(WSR) model using the ten detailed reaction mechanisms listed in Table 1. The system ¢
(3-4) is solved using the preconditioned, Krylov-based integrator distributed as part of the (
package [26] included in the SUNDIALS library [27]. The mechanisms are integrated for ol
ond of physical time with user-specified relative and absolute error tolerandés®and10-2,
respectively. To ensure that the tolerances are not skewed by the scale difference betwee
ature and mass fractions, the temperature in (4) is scaled by a constant reference temp
1000 K. The maximum internal timestep is limited to 0.05 s, and the maximum allowable r
of internal timesteps i$0°. The number of internal timesteps is set much higher than the ¢
value of 500 in order to more easily detect linear and non-linear solver convergence prot
the final computational timings.
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Mechanism Formula  No. Species No. Reactions Threshagld Ref.
hydrogen Ho 10 21 107° [30]
methane CH, 53 325 21076 [37]
n-heptane (skeletal) n-CrHig 160 1540 1073 [38]
E85 surrogate (skeletal) ,E50HP 312 1488 81073 [39]
n-heptane (full) n-CyHig 654 2827 81073 [2,40]
iso-octane i-CgHis 874 3796 2.1073 [40]
gasoline surrogate 1-CgH1s° 1388 5935 81073 [2,40]
n-hexadecane n-CiHsu 2115 8157 8.1073 [41]
methyldecanoate GH2205 2878 8555 4.1073 [42]
2-methylnonadecane ofH0 7172 31351 71072 [3]

aThe thresholdy in (12), for the lowest average computation time using the adaptive preconditioner.
bFive-component E85 surrogate (% by vol.): 93.19%HEOH, 3.32%i-CsHis, 2.09% GH5CHs,
1.04%n-C;H5 and 0.36% GH;, (2-pentene).
¢Four-component gasoline surrogate (% by vol.): 48i8%%Hs, 30.6% GH5;CHs, 15.3%n-C;H4
and 5.3% GH;( (2-pentene).

Table 1: Fuel mechanisms tested using the adaptive preconditioner approach for the integration of
a constant volume, well-stirred reactor model.

All mechanisms are integrated for a stoichiometric fuel-air mixture with an initial press
20 atm. The number of initial temperatures simulated varies from eight (2-methylnonac
to twenty-five (hydrogen), with most of mechanisms tested at seventeen equally-space
temperatures in the range from 650 K to 1450 K. In cases where the mixture did not t
autoignition during the one second simulation interval, the computation time is excluded f
mechanism average. As a consequence, the temperature range for hydrogen and meth:
at 850 K; and the temperature range for E85 begins at 700 K. For the purposes of calcul:
ignition delay time (IDT), or the time until auto-ignition, the IDT is defined as the time at v
the mixture temperature is 400 K above the initial temperature.

The adaptive preconditioner matrix is constructed using the semi-analytical Jacobian apg
tion J to (8). The terms in the preconditioner are retained from the approximate Jacobia
the threshold values in Table 1. Other preconditioners are also tested as part of this ir
gation, but none have been found so far to produce a measurably faster method than tf
high-frequency filtering approach considered here. As a consequence, the computationa
for these other preconditioners are not discussed in this paper. The filter metrics for the
preconditioners include: (i) the species coupling frequency normalized by the destruction r
row-normalization); (ii) the species coupling frequency normalized by the perturbation spe:
struction rate (i.e., column-normalization); (iii) the maximum and minimum of metrics (i) an
and (iv) the species coupling metric used in the approach in [12] for mechanism reduc
DRG-EP analysis. It is interesting to note that filtering by the DRG-EP metric offers large
tions in the preconditioner size near equilibrium. However, the performance is not consisti
the range of conditions tested due to convergence problems. Further investigation is nec
apply this more sophisticated preconditioner in a manner that is able to systematically a
non-linear convergence errors currently observed.

There are a number of additional options not considered in this paper for the ODE int

9
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and the sparse matrix solver used to apply the preconditioner, some of which significantly
the overall computational cost. The optimization of the solver options as well as some
involving the function evaluation for the right-hand side of (3-4) are discussed in greate
in a companion paper by Whitesidetsal. [43]. However, any solver option not discussed al
remains at its default value in this paper.

4 Results

The average computation times for integrating the constant volume WSR are compared fol
proaches. The first approach is based on the traditional ODE solver methods first used in «
kinetics, which can still be found in some multi-dimensional CFD codes (e.g., Kiva3V-MZ
While the approach is essentially unchanged from the 1970s [22], it remains popular becal
simple implementation. The only requirement is for the user to supply the functions for eve
the right-hand side of the ODE system (3-4). The integrator generates the associated

matrix needed for the non-linear solver automatically using the divided difference approxii
The subsequent factorization and solution of the linear systems related to the Jacobian n
then carried out by the standard dense matrix routines distributed in the LAPACK software

The second approach is based on the adaptive preconditioner developed for this investig
ing the non-optimized solver settings for CVODE and SuperLU. Implementing the appro
qguires much more development on the part of the user. Specifically, the user must not o
vide the solver with the right-hand-side of the ODE system (3-4), but also routines to co
factor and solve the adaptive preconditioner matrix. The preconditioner is constructed u
semi-analytical method described in Section 2 with the reaction coupling terms filtered u
threshold values in Table 1. Both approaches are implemented using CVODE with the sar
hand-side ODE functions. Thus, the reduction in computational cost reported here for the :
preconditioner is attributed to the improvements in the linear and non-linear solvers and n
algorithmic improvements made to the thermo-chemical functions based on [19].

The average computation time is obtained for each approach using a single thread of an Ir
E5620 processor (2.4 GHz clock speed with 1.33 GHz DDR3 ECC RAM). The timing rest
shown in Figure 1 for the ten elementary mechanisms listed in Table 1. For the largest me
tested (2-methylnonadecane, 7172 species), the adaptive preconditioner has an averag
time of 55 seconds compared to®1€econds (more than one day) for the traditional appr
which represents three orders of magnitude of computational speedup. It is important f
that while the mechanism is effectively reduced at each timestep by the filtering opera
the preconditioner, the mechanism governing the ODE system (3-4) is unchanged. Consi
the ignition delay times, temperatures and major species mass fractions obtained througl
approaches agree to a minimum of six decimal places for the user-specified relative tole
10-%. The mass fractions of trace speciesf0< y; < 107%) are found to agree to within fo
decimal places. The computational speedup shown in Figure 1 therefore occurs with no |
loss in accuracy.

For the second largest mechanism tested (methyldecanoate, 2878 species), the adaptive
tioner has an average solution time of 18 seconds compared to 6600 seconds using the t
approach. The adaptive preconditioner is also observed to be an order of magnitude fa

10
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Figure 1: Comparison of the computational cost between the ne w adaptive preconditioner approach
and the traditional ODE solver using dense matrix methods and divided differences for construct-

ing the Jacobian. Also shown are the results using the refined ODE and sparse solvers settings
reported in the companion paper by Whitesides et al. [43].

new sophisticated solvers using analytical Jacobian matrices in direct sparse solvers. In t|
article by Periniet al. [7], the average solution time for methyldecanoate is 128 seconds
comparison with the timings in [7] is only approximate as the computations are run on simil
cessors, but not on identical machines. Further, the ODE solver in [7] has more relaxed to
(10~* relative and 10'3 absolute), which reduces the computational cost.

For the smaller mechanisms, hydrogen (10 species) and methane (53 species) the Jacobia
sufficiently dense that the adaptive preconditioner is slower than the traditional approach.
strategy can be developed that combines the two approaches and automatically select:
method based on mechanism size or through automatic-tuning when the mechanism inf
is first read in the simulation. The average computation times reported in the companion |
Whitesideset al. [43] are also included in Figure 1 for reference. Using the refined solver o
for CVODE and SuperLU along with the improved right-hand side ODE function evaluation
an additional factor of 1.5 to 2 times speedup.

5 Conclusion

Adaptive preconditioners for implicit ordinary differential equation (ODE) solvers are shc
this investigation to substantially reduce the computational cost of integrating large kinetic
anisms (i.e., one hundred species or greater). In particular, the speedup of the new metl
order of magnitude faster than recent approaches based on direct, sparse linear system sc
well-stirred reactor. The new method is also up to three orders of magnitude faster than tre
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implementations of the ODE solver for the largest mechanism tested (2-methylnonadeca
species). Unlike mechanism reduction strategies, the adaptive preconditioners do not alte
derlying system of differential equations. Consequently, the new method achieves its perft
gainswithout any loss of accuracy to within the local error controlled by the ODE solver.
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