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The adaptive preconditioners developed in this paper substantially reduce the computational cost of
integrating large kinetic mechanisms using implicit ordinary differential equation (ODE) solvers. For
a well-stirred reactor, the speedup of the new method is an order of magnitude faster than recent ap-
proaches based on direct, sparse linear system solvers. Moreover, the new method is up to three orders
of magnitude faster than traditional implementations of the ODE solver where the Jacobian information
is generated automatically via divide differences, and the factorization relies on standard, dense matrix
operations. Unlike mechanism reduction strategies, the adaptive preconditioners do not alter the under-
lying system of differential equations. Consequently, the new method achieves its performance gains
without any loss of accuracy to within the local error controlled by the ODE solver. Such speedup allows
higher fidelity mechanism chemistry to be coupled with multi-dimensional fluid dynamics simulations.

1 Introduction

Accurate chemistry modeling in reacting flows is vital to many engineering applications. One of
the most important, in terms of the environmental impact and the geopolitical challenges in the en-
ergy market, is the design of high-efficiency, clean-combustion engines for transportation. Many
promising technologies (see Section 2.3 of [1]) rely on low-temperature combustion where the
chemical kinetics of the fuel are used to control the ignition timing. For these advanced engine
operating modes, resolving the kinetics is essential to guide the design effort. Detailed kinetic
mechanism have recently been developed for accurate gasoline surrogates [2], biodiesel compo-
nents [3], and the next generation of diesel surrogates [4]. These mechanisms resolve thousands
of species along tens of thousands of reaction paths to provide a robust and accurate model of fuel
oxidation.

Resolving the detailed chemistry within a computational fluid dynamics (CFD) simulation has
traditionally relied on dense matrix based ordinary differential equation (ODE) solvers [5]. The
traditional approach still remains in wide use because it is straightforward to implement and ef-
fective for sufficiently small mechanisms (fewer than 50 species). However, with dense solvers,
as the number of species grows into the hundreds, the overall simulation cost is dominated by the
dense matrix operations. In fact, the cost of solving a single chemically reacting cell with the
7172-species biodiesel component mechanism [3] is on the order of one day. Recent approaches
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[6, 7] have updated the traditional ODE solver to yield an order of magnitude or more speedup.
However, further work is still needed to reduce the computational cost to a level where the detailed
mechanisms are widely-used in multidimensional CFD engine simulations.

For several decades, a considerable amount of research has focused on reducing the size of the
kinetic mechanisms in order to reduce the cost of simulating chemistry. There are three major cat-
egories for reducing mechanisms: (i) skeletal reduction; (ii) species lumping; and (iii) time scale
analysis. Skeletal reduction is concerned with the direct removal of reactions or species from the
mechanism. Approaches based on sensitivity analysis [8] and computational singular perturbation
(CSP) [9] are used to identify reactions that may be removed from the full mechanism with the
least amount of accuracy lost. Species reduction methods require more complex analysis to evalu-
ate the impact of removal on the overall accuracy, and have been implemented successfully using
CSP [10], directed relation graph (DRG) analysis [11] and its extension with error propagation
DRG-EP [12]. Lumping reduces the mechanism by grouping together similar species and reaction
pathways, which is particularly effective for large hydrocarbon mechanisms containing many iso-
mers [13, 14]. The final reduction approach is based on timescale analysis. The quasi-steady state
(QSS) [15] and partial equilibrium (PE) [16] approximations are used to eliminate the reactions
and species from the mechanism that are significantly faster than the time scales of interest. Intrin-
sic low dimension manifolds [17, 18] achieve a similar effect. A recent review by Lu and Law [19]
provides a more detailed discussion of these mechanism reduction techniques.

The disadvantage of mechanism reduction is that it often requires a high-level of expertise to un-
derstand its limitations and range of accuracy. Fortunately, mechanism reduction is not the only
means to reduce the computational cost of solving detailed chemical kinetics. There are a number
of strategies based on advances in applied mathematics and algorithm design that deliver compu-
tational speedup without any loss of accuracy. The improvements generally apply to two main
categories: thermo-chemical calculations and ODE solvers. The computational time to evaluate
the chemical system derivatives can be reduced by avoiding high-cost functions such as the expo-
nential and logarithm terms in the species production rate. Some strategies to achieve this include:
pre-computation and interpolation of expensive functions [7], direct elimination of redundant ex-
ponentiation [19], andin situ adaptive tabulation (ISAT) [20].

Most implicit ODE solvers in current use for chemical kinetics are based on the backward differ-
ence formulation (BDF). There is also some recent interest in applying exponential integrators to
chemical kinetics [21]. The vast majority of the BDF solvers are based directly on the automatic
methods that control timestep size and method order to efficiently maintain local error tolerances
set by the user [22, 23]. Any implicit time discretization like BDF requires a non-linear solver to
determine the system state at the next timestep. Non-linear solvers typically employ the iterative
Newton-Raphson method, which uses the Jacobian matrix of the BDF operator (or its approx-
imation [24]) to calculate each iteration. While direct improvements to the non-linear solver are
possible, most advances for chemical system integration have focused on improvements to the con-
struction of the Jacobian matrix and the linear system solvers used for each non-linear iteration. In
[6], automatic differentiation software is used to construct analytical Jacobian matrices well-suited
for direct, sparse linear system solvers. Similarly, in [21], the chemical system derivatives are de-
rived to produce an analytical Jacobian approximation that is able to take full advantage of sparse
solvers, which yields a speedup over traditional dense methods of an order of magnitude or more
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for large mechanisms.

The approach in this paper follows a similar path that seeks to reduce the computational cost
through improvements to the linear system solver. The direct sparse solvers implemented in the
recent approaches [6, 21] are replaced with an iterative linear solver based on the generalized min-
imum residual (GMRES) method [25]. Specifically, this paper uses the scaled preconditioned
GMRES method as implemented in the CVODE solver [26] distributed in the SUNDIALS soft-
ware library [27]. CVODE relies on several time-saving Jacobian approximations including matrix
reuse [24] and matrix-free Krylov projection for GMRES [28], which produces a computationally
efficient non-linear solver [29].

This paper develops preconditioners to accelerate the convergence rate of the GMRES method
when used as part of the ODE solver for large kinetic mechanisms. In particular, a class of adaptive
preconditioners related to on-the-fly mechanism reduction is constructed. These preconditioners
are then applied to the time integration of a constant volume, well-stirred reactor (WSR) containing
a stoichiometric fuel-air mixture using ten kinetic mechanisms. The mechanisms span in size from
hydrogen (10 species [30]) to the biodiesel component 2-methylnonadecane (7172 species [3]).
The average computation time for the WSR is then compared to the traditional ODE solver based
on dense matrix operations. For the largest mechanism tested, the new adaptive preconditioners
are three orders of magnitude faster than the traditional approach. The adaptive preconditioners
are also an order of magnitude faster than recent advanced solvers that use analytical Jacobians
and direct sparse solvers.

2 Approach

The aim of this investigation is to reduce the computational cost of combustion simulation and
enable the use of more detailed chemistry in engine design. The approach in this paper is to find
effective preconditioners for integrating large kinetic mechanisms using the GMRES-based solver
in CVODE. For iterationn, GMRES finds the “best” approximation to the linear system solution in
the span of then-dimensional Krylov subspace of the matrix. The rate at which GMRES converges
to the true solution is intimately connected with the eigenspectrum of the matrix (see Lecture 35 of
[31] for an illustration). If the eigenvalues are in a tightly clustered group separated some distance
from the origin, the convergence can be rapid allowing for machine precision to be obtained with
only a few iterations. In such cases, GMRES is able to achieve the same solution as a direct, dense
solver in considerably less computational time.

Using a BDF time discretization in the ODE solver, the resulting linear system provided to the non-
linear solver is related to the Jacobian matrix of the ODE system. For a generalN -dimensional
ODE system,dxi/dt = fi(x1, . . . , xN , t) for 1 ≤ i ≤ N , its Jacobian matrixJ is defined as

Jij =
∂fi
∂xj

, (1)

and the linear system used by the non-linear solver in the stiff integrator is

B = I − α∆tJ, (2)

where I is the identity matrix, andα is a constant related to the method order and previous
timesteps and∆t is the current step size. The matrixB is also a Jacobian matrix; however, it
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is the Jacobian of the BDF operator applied to the ODE system. In situations where the Jacobian
type may be unclear,J is referred to as the ODE or system Jacobian whileB is called the BDF
Jacobian.

If the Jacobian matrix associated with the integration of a large kinetic mechanism is used directly
in GMRES, the resulting convergence is typically so slow that direct, dense methods are faster. The
idea behind preconditioned GMRES is that one applies a matrixP to the system such thatP−1B
converges more rapidly than the original system. Note that the preconditioner can be applied via
left multiplication, right multiplication or a combination of the two. An alternative view of the
connection between the eigenspectrum and convergence is that the closer (by some norm) the
linear system is to the identity matrix, the more rapidly GMRES converges. Therefore, the best
preconditioner in terms of convergence would satisfyP−1B = I. While such a preconditioner
solves the system in a single iteration, the cost of calculatingP−1 is as expensive as solving the
original system. In practice, a good preconditioner strikes a balance between accelerating the
convergence rate ofP−1B and reducing the cost of solvingP−1; however, there does not exist a
general method for finding such preconditioners. The general guidelines are to seek out a matrix
that captures some of the key features of the original system, but is much easier to solve (see
Lecture 40 of [31]).

The Jacobian matrices associated with the ODEs of reduced mechanisms are thus ideal candidates
for use as preconditioners. A preconditioner need only serve as an approximation to the true ODE
system, which then is improved by the iterative linear and non-linear solver to achieve the same
solution as direct methods. This means that the reduced mechanism selected for the preconditioner
can be smaller and lower in fidelity than the standard approach to global mechanism reduction.
Further, the reduced mechanism must only be accurate for the current composition over a single
timestep, which means even greater reduction is possible if the preconditioning mechanism is
allowed to adapt during integration. This feature, referred to as adaptive preconditioning, allows
the integration of detailed chemical kinetic mechanisms to occur at a cost comparable to methods
using adaptive mechanism reduction without any loss of accuracy.

Before continuing with the preconditioner development, the ODE to which it is applied is briefly
discussed. The constant volume WSR is used as the computational benchmark to evaluate the per-
formance of the adaptive preconditioner strategy. The WSR is a key chemistry model used widely
as a standalone calculation and implemented as a sub-model in multi-dimensional combustion sim-
ulations [5]. Thus, the computational gains reported in this paper are directly applicable to many
practical simulations.

The WSR model describes the time evolution of a homogeneous, or spatially uniform, chemical
mixture. The complete state of the mixture is defined by two thermodynamic properties (e.g.,
density and temperature) and the relative species composition. In this investigation, the mixture
state is defined by the temperatureT , relative volumev and the species mass fractionsyi, for
1 ≤ i ≤ Ns, whereNs is the number of species. The system of ODEs governing the evolution of
the mixture state can be found in any combustion text (see [32]), and is given by

dyi
dt

= vMiΩi, and (3)
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dT

dt
= −

1

c̄v

Ns
∑

i=1

ui
dyi
dt
. (4)

Herev is the relative volume, which remains constant;Mi is the molecular mass of speciesi; Ωi is
the net molar production rate of speciesi; c̄v is the mixture-averaged, constant volume specific heat
per unit mass; andui is the specific energy of speciesi per unit mass. The mixture is assumed to be
an ideal gas with the temperature dependence ofcv,i represented by two 5th degree polynomial fits
to the thermodynamic data in two temperature ranges, as is widely used throughout combustion
research [33]. The energyui is calculated by integrating the polynomial fit forcv,i and including
the appropriate offset for the heat of formation.

The net molar production rateΩi in (3) for each species takes the following general form,

Ωi =
Nr
∑

j=1

(

ν ′′i,j − ν ′i,j
)

ψj. (5)

HereNr is the number of uni-directional reaction steps (i.e., the forward and reverse reactions are
treated separately);ν ′i,j andν ′′i,j are the reactant and product stoichiometric coefficients for species
i in reaction stepj; andψj is the rate of progress of stepj. The rate of progress is typically defined
in terms of the species molar concentration,

ψj = kj

Ns
∏

i=1

C
ν′i,j
i , (6)

where molar concentration of speciesi is determined fromCi = yi/vMi. The rate constantkj
in (6) is often represented in elementary hydrocarbon combustion mechanisms by the modified
Arrhenius expression,

kj(T ) = AT b exp (Ta/T ) , (7)

where the pre-factorA, the temperature exponentb and activation temperatureTa are all constants.
Some reactions involve third body collisions that introduce a pressure dependence into the rate
constant expression (7).

Since most reactions involve less than four reactants and four products, the majority of the stoichio-
metric coefficientsν ′i,j andν ′′i,j are zero for large elementary mechanisms. The evaluation of the
net species production rates and reaction rates of progress does not explicitly follow the formulas
in (5-6). Rather, the stoichiometric coefficientsν ′i,j andν ′′i,j are stored using a compressed storage
technique similar to that used for sparse matrices following the suggestions in [19]. In addition to
processing the summation and products using sparse operations, further cost savings are possible
by taking advantage of the fact that vast majority of reactant stoichiometric coefficients are unity
in an elementary mechanism. This allows the exponentiation operation in (6) to be replaced with
simple multiplication. To accommodate situations whereν ′i,j ≥ 2, the stoichiometric coefficients
are stored as a operation list with the species and reaction pair(i, j) appearing in the listν ′i,j times.
The operation list can similarly be used to eliminate the multiplication ofν ′i,j andν ′′i,j to reduce (5)
to a simple summation. The use of these operation lists require all the stoichiometric coefficients
to be integer-valued, which is true for elementary mechanisms.
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Returning to the construction of a preconditioner for the integration of the ODE system, the
Jacobian matrix requires closer inspection. Assuming the system state for (3-4) is ordered as
(y1, . . . , yN , T ), the Jacobian matrix is

Jij =























































Mi

Mj

∂Ωi

∂Cj

if 1 ≤ i, j ≤ Ns

−
1

c̄v

(

cv,jfT +
Ns
∑

i=1

ui
Mi

Mj

∂Ωi

∂Cj

)

if i = Ns + 1 and1 ≤ j ≤ Ns

Mi

∂Ωi

∂T
if 1 ≤ i ≤ Ns andj = Ns + 1

∂fT
∂T

if i = j = Ns + 1,

(8)

where the functionfT is the temperature time derivative defined in (4). Under certain conditions,
the evaluation of the derivatives∂Ωi/∂Cj may be greatly simplified. If all the rate constantsk are
only functions of temperature andCi > 0, then

∂Ωi

∂Cj

=
Nr
∑

k=1

(ν ′′i,k − ν ′i,k)ν
′

j,k

ψk

Cj

. (9)

For large kinetic mechanisms, the majority of the product terms(ν ′′i,k − ν ′i,k)ν
′

j,k are zero meaning
that the system Jacobian (8) is sparse. It is thus possible to use a similar operation list approach
as done in (5-6) to efficiently store the nonzero terms of stoichiometric coefficient product and
process the summation. Further, sparse matrix vector multiplication improves the computation
time of the last row ofJ (i = Ns + 1 and1 ≤ j ≤ Ns).

Recent approaches [6, 7] take advantage of the sparsity of large kinetic mechanism using the com-
plete form of the analytical Jacobian in (8) combined with direct sparse solvers. While the an-
alytical Jacobian is exact for a given composition, temperature and density, the inexact Newton
solver reuses a Jacobian for multiple non-linear iterations while the system state is changing. Most
implicit ODE solvers also reuse the Jacobian for multiple timesteps as an additional cost-savings
measure, with new Jacobians constructed when the non-linear solver fails to converge. As a con-
sequence, the Jacobian typically used within the integrator is not exact for most of the iterations.
The Jacobian is usually an approximation from another state that is sufficiently close in compo-
sition to enable convergence to the user tolerances. Moreover, the preconditioned Krylov-based
ODE solver does not actually require the Jacobian matrix to be provided explicitly. The accuracy
requirements are thus further relaxed on any Jacobian information used to construct the precon-
ditioner; therefore, a simple, computationally efficient alternative to the analytical Jacobian (8) is
sought in this paper.

Two simplifications are made to the calculation (8) so that a semi-analytical approximationĴ may
be made with just two evaluations of the right-hand side functions in (3-4). The first simplification
is that the pressure dependence and third-body collision efficiency are neglected so that net pro-
duction rate derivatives as calculated in (9) may be applied for all species. The exact composition
is not used in (9) because of potential problems with zero and negative concentrations. To avoid
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these problems,̂J is calculated from a strictly positive compositionŷi. Specifically,

ŷi =

{

yi if yi > ǫ

ǫ otherwise,
(10)

whereǫ is a positive number smaller than the ODE solver absolute tolerance. It is normal for the
ODE solver to obtain small, negative values for the mass fractions over the course of integration.
While applying (10) in the evaluation of the right-hand-side functions (3-4) can have deleterious
effects on the performance of the ODE solver [34], usingŷi to construct an approximate Jacobian
does not. A single evaluation of the right-hand-side function usingŷi produces all the necessary
data to calculate the firstNs columns ofĴ corresponding to the derivatives with respect to the
species composition.

The second simplification concerns the treatment of the derivatives with respect to temperature
corresponding to the last column of̂J . Rather than computing the analytical derivatives of rate
constants for∂Ωi/∂T and∂fT/∂T as in [7], they are approximated using divided differences. The
right-hand-side functions are re-evaluated atŷi andT +∆T where the temperature perturbation is
calculated using the same procedure as the general divided difference approach used in CVODE
for automatic Jacobian construction [26]. The cost of computing the divided differences is similar
to the analytical temperature derivatives because both have related Arrhenius forms (7).

With the means to compute a simple, yet reasonably accurate, system Jacobian with the semi-
analytical approach, the focus shifts to constructing a preconditioner matrix. The choice of the
preconditioner needs to balance the cost of constructing, factoring and solving the preconditioner
matrix with the increase in the number of GMRES iterations. To reduce the construction costs, a
class of adaptive preconditioners is considered based on filtering the BDF Jacobian computed with
the semi-analytical form (i.e.,̂B = I − α∆tĴ). Specifically,

Pij =

{

B̂ij if i = j orF(B̂ij) is true

0 otherwise,
(11)

whereF is the filter that defines the conditions under which the off-diagonal terms are retained
in the preconditioner. The preconditioner matrix is thus sparser than the original BDF Jacobian,
making the factorization and solution of the preconditioner system faster when more elements are
filtered out. In this paper, the factorization and solution of the preconditioner is handled using the
freely available SuperLU sparse matrix library [35, 36].

The choice of filter is not restricted to independently evaluating each element of the BDF Jacobian.
Generalized filters considering groups of elements or even the BDF Jacobian as a whole are possi-
ble. Moreover, the filter can act on the mechanism directly, eliminating reactions and species prior
to the construction of̂B. The application of the filter adds to the overall cost of constructing the
preconditioner, so the filter complexity must be weighed against the overall performance of GM-
RES in the ODE integrator. As a consequence, the investigation begins with a simple threshold
filter.

Based on the general guidelines for choosing a good preconditioner, the filter should be selected to
retain the dominant features of the ODE system, or, equivalently, the dominant eigenstructure. The
largest eigenvalues in the chemically reacting system are related to the fastest time scales of the
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system. To retain these dominant eigenvalues, the filter keeps all off-diagonal terms greater than a
user-defined thresholdη. Specifically,

Pij =

{

B̂ij if i = j or B̂ij > η

0 otherwise,
(12)

Since the Jacobian elements from∂Ωi/∂Cj represents the characteristic frequency at which two
species are coupled in a reaction, the application of (12) can be thought of as a high-pass or high-
frequency filter whereby the slowest reaction modes are removed from the system.

The removal of these slow modes only occurs in the preconditioner, and does not affect the overall
accuracy of the ODE solver, which remains under the user-specified error tolerances. Because the
temperature in (4) is non-dimensionalized by a reference temperature, all the terms inĴ represent
characteristic frequencies. These frequencies are then normalized by the internal timestep of the
ODE integrator in the construction of̂B meaning that the threshold valueη is dimensionless. A
threshold value of zero uses the entire reaction mechanism as a preconditioner . Asη increases,
slower reactions are dropped out of the preconditioner leading to faster factorization and solu-
tions; however, the number of GMRES iterations may increase because of the slower convergence.
Eventuallyη increases to such a level that too many reactions have been removed and GMRES no
longer converges with sufficient speed. The optimum value ofη lies between these extremes and
is found through a direct search for each mechanism listed in Table 1. In practice, the optimum
value ofη is found to be effective over a wide range of conditions.

The specific choice of variables for the mixture state has a pronounced affect on the computational
performance for the direct sparse solver using automatic differentiation. The choice of state vari-
ables(T, v, yi) in (3-4), or its density equivalent, is noted in [6] to produce a fully dense Jacobian
matrix, for the constant pressure WSR, negating any possible benefit of the sparse solver. In con-
trast, the use the GMRES based ODE solver with the adaptive preconditioner allows for greater
flexibility in the choice of Jacobian matrix approximation. There is no measurable difference in
computational performance using the adaptive preconditioner for the state variables in (3-4) or us-
ing a concentration formulation that yields the sparsest representation with the direct approach in
[6].

3 Test Cases

The adaptive preconditioner approach is evaluated for a constant volume, well-stirred reactor
(WSR) model using the ten detailed reaction mechanisms listed in Table 1. The system of ODEs
(3-4) is solved using the preconditioned, Krylov-based integrator distributed as part of the CVODE
package [26] included in the SUNDIALS library [27]. The mechanisms are integrated for one sec-
ond of physical time with user-specified relative and absolute error tolerances of10−8 and10−20,
respectively. To ensure that the tolerances are not skewed by the scale difference between temper-
ature and mass fractions, the temperature in (4) is scaled by a constant reference temperature of
1000 K. The maximum internal timestep is limited to 0.05 s, and the maximum allowable number
of internal timesteps is105. The number of internal timesteps is set much higher than the default
value of 500 in order to more easily detect linear and non-linear solver convergence problems in
the final computational timings.
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Mechanism Formula No. Species No. Reactions Thresholda η Ref.
hydrogen H2 10 21 10

−6 [30]
methane CH4 53 325 2 · 10−6 [37]
n-heptane (skeletal) n-C7H16 160 1540 10

−3 [38]
E85 surrogate (skeletal) C2H5OHb 312 1488 8 · 10−3 [39]
n-heptane (full) n-C7H16 654 2827 8 · 10−3 [2, 40]
iso-octane i-C8H18 874 3796 2 · 10−3 [40]
gasoline surrogate i-C8H18

c 1388 5935 8 · 10−3 [2, 40]
n-hexadecane n-C16H34 2115 8157 8 · 10−3 [41]
methyldecanoate C11H22O2 2878 8555 4 · 10−3 [42]
2-methylnonadecane C20H42 7172 31351 7 · 10−2 [3]

aThe threshold,η in (12), for the lowest average computation time using the adaptive preconditioner.
bFive-component E85 surrogate (% by vol.): 93.19% C2H5OH, 3.32%i-C8H18, 2.09% C6H5CH3,

1.04%n-C7H16 and 0.36% C5H10 (2-pentene).
cFour-component gasoline surrogate (% by vol.): 48.8%i-C8H18, 30.6% C6H5CH3, 15.3%n-C7H16

and 5.3% C5H10 (2-pentene).

Table 1: Fuel mechanisms tested using the adaptive preconditioner approach for the integration of
a constant volume, well-stirred reactor model.

All mechanisms are integrated for a stoichiometric fuel-air mixture with an initial pressure of
20 atm. The number of initial temperatures simulated varies from eight (2-methylnonadecane)
to twenty-five (hydrogen), with most of mechanisms tested at seventeen equally-spaced initial
temperatures in the range from 650 K to 1450 K. In cases where the mixture did not undergo
autoignition during the one second simulation interval, the computation time is excluded from the
mechanism average. As a consequence, the temperature range for hydrogen and methane begins
at 850 K; and the temperature range for E85 begins at 700 K. For the purposes of calculating the
ignition delay time (IDT), or the time until auto-ignition, the IDT is defined as the time at which
the mixture temperature is 400 K above the initial temperature.

The adaptive preconditioner matrix is constructed using the semi-analytical Jacobian approxima-
tion Ĵ to (8). The terms in the preconditioner are retained from the approximate Jacobian using
the threshold valuesη in Table 1. Other preconditioners are also tested as part of this investi-
gation, but none have been found so far to produce a measurably faster method than the simple
high-frequency filtering approach considered here. As a consequence, the computational timings
for these other preconditioners are not discussed in this paper. The filter metrics for these other
preconditioners include: (i) the species coupling frequency normalized by the destruction rate (i.e.,
row-normalization); (ii) the species coupling frequency normalized by the perturbation species de-
struction rate (i.e., column-normalization); (iii) the maximum and minimum of metrics (i) and (ii);
and (iv) the species coupling metric used in the approach in [12] for mechanism reduction via
DRG-EP analysis. It is interesting to note that filtering by the DRG-EP metric offers large reduc-
tions in the preconditioner size near equilibrium. However, the performance is not consistent over
the range of conditions tested due to convergence problems. Further investigation is necessary to
apply this more sophisticated preconditioner in a manner that is able to systematically avoid the
non-linear convergence errors currently observed.

There are a number of additional options not considered in this paper for the ODE integrator
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and the sparse matrix solver used to apply the preconditioner, some of which significantly impact
the overall computational cost. The optimization of the solver options as well as some aspects
involving the function evaluation for the right-hand side of (3-4) are discussed in greater detail
in a companion paper by Whitesideset al. [43]. However, any solver option not discussed above
remains at its default value in this paper.

4 Results

The average computation times for integrating the constant volume WSR are compared for two ap-
proaches. The first approach is based on the traditional ODE solver methods first used in chemical
kinetics, which can still be found in some multi-dimensional CFD codes (e.g., Kiva3V-MZ [5]).
While the approach is essentially unchanged from the 1970s [22], it remains popular because of its
simple implementation. The only requirement is for the user to supply the functions for evaluating
the right-hand side of the ODE system (3-4). The integrator generates the associated Jacobian
matrix needed for the non-linear solver automatically using the divided difference approximation.
The subsequent factorization and solution of the linear systems related to the Jacobian matrix are
then carried out by the standard dense matrix routines distributed in the LAPACK software library.

The second approach is based on the adaptive preconditioner developed for this investigation us-
ing the non-optimized solver settings for CVODE and SuperLU. Implementing the approach re-
quires much more development on the part of the user. Specifically, the user must not only pro-
vide the solver with the right-hand-side of the ODE system (3-4), but also routines to construct,
factor and solve the adaptive preconditioner matrix. The preconditioner is constructed using the
semi-analytical method described in Section 2 with the reaction coupling terms filtered using the
threshold values in Table 1. Both approaches are implemented using CVODE with the same right-
hand-side ODE functions. Thus, the reduction in computational cost reported here for the adaptive
preconditioner is attributed to the improvements in the linear and non-linear solvers and not to the
algorithmic improvements made to the thermo-chemical functions based on [19].

The average computation time is obtained for each approach using a single thread of an Intel Xeon
E5620 processor (2.4 GHz clock speed with 1.33 GHz DDR3 ECC RAM). The timing results are
shown in Figure 1 for the ten elementary mechanisms listed in Table 1. For the largest mechanism
tested (2-methylnonadecane, 7172 species), the adaptive preconditioner has an average solution
time of 55 seconds compared to 105 seconds (more than one day) for the traditional approach,
which represents three orders of magnitude of computational speedup. It is important to stress
that while the mechanism is effectively reduced at each timestep by the filtering operation for
the preconditioner, the mechanism governing the ODE system (3-4) is unchanged. Consequently,
the ignition delay times, temperatures and major species mass fractions obtained through the two
approaches agree to a minimum of six decimal places for the user-specified relative tolerance of
10−8. The mass fractions of trace species (10−12 < yi < 10−6) are found to agree to within four
decimal places. The computational speedup shown in Figure 1 therefore occurs with no practical
loss in accuracy.

For the second largest mechanism tested (methyldecanoate, 2878 species), the adaptive precondi-
tioner has an average solution time of 18 seconds compared to 6600 seconds using the traditional
approach. The adaptive preconditioner is also observed to be an order of magnitude faster than
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Figure 1: Comparison of the computational cost between the ne w adaptive preconditioner approach
and the traditional ODE solver using dense matrix methods and divided differences for construct-
ing the Jacobian. Also shown are the results using the refined ODE and sparse solvers settings
reported in the companion paper by Whitesides et al. [43].

new sophisticated solvers using analytical Jacobian matrices in direct sparse solvers. In the recent
article by Periniet al. [7], the average solution time for methyldecanoate is 128 seconds. The
comparison with the timings in [7] is only approximate as the computations are run on similar pro-
cessors, but not on identical machines. Further, the ODE solver in [7] has more relaxed tolerances
(10−4 relative and 10−13 absolute), which reduces the computational cost.

For the smaller mechanisms, hydrogen (10 species) and methane (53 species) the Jacobian matrix is
sufficiently dense that the adaptive preconditioner is slower than the traditional approach. A meta-
strategy can be developed that combines the two approaches and automatically selects the best
method based on mechanism size or through automatic-tuning when the mechanism information
is first read in the simulation. The average computation times reported in the companion paper of
Whitesideset al. [43] are also included in Figure 1 for reference. Using the refined solver options
for CVODE and SuperLU along with the improved right-hand side ODE function evaluation yields
an additional factor of 1.5 to 2 times speedup.

5 Conclusion

Adaptive preconditioners for implicit ordinary differential equation (ODE) solvers are shown in
this investigation to substantially reduce the computational cost of integrating large kinetic mech-
anisms (i.e., one hundred species or greater). In particular, the speedup of the new method is an
order of magnitude faster than recent approaches based on direct, sparse linear system solvers for a
well-stirred reactor. The new method is also up to three orders of magnitude faster than traditional
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implementations of the ODE solver for the largest mechanism tested (2-methylnonadecane, 7172
species). Unlike mechanism reduction strategies, the adaptive preconditioners do not alter the un-
derlying system of differential equations. Consequently, the new method achieves its performance
gainswithout any loss of accuracy to within the local error controlled by the ODE solver.
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