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Abstract 

 
Numerous studies have emphasized that climate simulations are subject to various biases and 

uncertainties. The objective of this study is to cross-validate 34 Coupled Model Intercomparison 

Project Phase 5 (CMIP5) historical simulations of precipitation against the Global Precipitation 

Climatology Project (GPCP) data, quantifying model pattern discrepancies and biases for both entire 

data distributions and their upper tails. The results of the Volumetric Hit Index (VHI) analysis of the 

total monthly precipitation amounts show that most CMIP5 simulations are in good agreement with 

GPCP patterns in many areas, but that their replication of observed precipitation over arid regions 

and certain sub-continental regions (e.g., northern Eurasia, eastern Russia, central Australia) is 

problematical. Overall, the VHI of the multi-model ensemble mean and median also are superior to 

that of the individual CMIP5 models. However, at high quantiles of reference data (e.g., the 75th and 

90th percentiles), all climate models display low skill in simulating precipitation, except over North 

America, the Amazon, and central Africa. Analyses of total bias (B) in CMIP5 simulations reveal 

that most models overestimate precipitation over regions of complex topography (e.g. western North 

and South America and southern Africa and Asia), while underestimating it over arid regions. Also, 

while most climate model simulations show low biases over Europe, inter-model variations in bias 

over Australia and Amazonia are considerable. The Quantile Bias (QB) analyses indicate that 

CMIP5 simulations are even more biased at high quantiles of precipitation. It is found that a simple 

mean-field bias removal improves the overall B and VHI values, but does not make a significant 

improvement in these model performance metrics at high quantiles of precipitation.  



1. Introduction  

Numerous studies have emphasized that water resources are sensitive to climate change, and 

thus water resources management and planning strategies should be adjusted accordingly [e.g., Seager 

et al., 2007; Stoll et al., 2011; Sivakumar, 2011; Cayan et al., 2008; Wood et al., 1997]. One of the key 

climate variables is precipitation, which plays a dominant role in the hydrologic cycle. Developing 

future water resources management and planning strategies thus requires estimation of current and 

future precipitation magnitude and variability [Wehner et al., 2013].  

In the past several decades, global climate models have been used to estimate future 

projections of precipitation [IPCC, 2007]. However, these projections are inherently uncertain and 

often are difficult for decision makers to interpret [e.g., Liepert and Previdi, 2012; Reichler and 

Kim, 2008; Brekke and Barsugli, 2012; Schubert and Lim, 2013; Feddema et al., 2005; Min et al., 

2007]. Quantification of biases and uncertainties in climate simulations of precipitation thus are 

fundamental to understanding the reliability of climate simulations for future water resources 

management. Gleckler et al., [2008] introduced several metrics for performance analysis of climate 

models and emphasized the need to go beyond the mean statistics for comprehensive analysis of 

climate model performance. Moise and Delage [2011] and Schaller et al. [2011] subsequently 

presented alternative approaches and metrics for evaluating seasonal precipitation simulations. 

AghaKouchak and Mehran [2013] introduced a number of volumetric indicators for validation and 

verification of climate model simulations. 

Since the inception of the of the Coupled Model Intercomparison Project Phase 3 (CMIP3) 

by the World Climate Research Programme (WCRP) Working Group on Coupled Modelling 

(WGCM), evaluation of coupled ocean-atmosphere simulations of historical climate relative to 

available observational data has become an especially strong scientific focus [e.g., Bony et al., 



    
 

2006]. Indeed, future developments and improvements in global climate models (GCMs) rely 

heavily on their rigorous and informative validation.  

Generally, climate model simulations are known for poor representation of frontal, 

convective and mesoscale processes [Van Weverberg et al., 2013]. Numerous studies have evaluated 

various aspects of precipitation in the CMIP3 model simulations. Phillips and Gleckler [2006], for 

example, evaluated CMIP3 simulations of seasonal-mean continental precipitation amounts, and 

concluded that many of these differed markedly from several observational estimates. They also 

noted that the ensemble-mean model precipitation was generally closer to the observations than that 

of any individual CMIP3 model. Several studies focused on the common errors and/or frequency 

and intensity of CMIP3 daily precipitation simulations [e.g. Dai, 2006; Sun et al., 2007; Stephenson 

et al., 2010; Brown et al., 2010]. Dai, 2006 evaluated the mean spatial patterns, precipitation 

intensity, frequency, and diurnal cycle. The results showed that many climate models simulated 

unrealistic double Intertropical Convergence Zone precipitation patterns, though most models 

captured the overall precipitation pattern. Furthermore, Dai, [2006] showed that the CMIP3 

simulations produce light rain (1 to 10 mm) too frequently (see Brown et al., [2010]; Stephens et al., 

[2010]; Wilcox and Donner, [2007]; Sun et al., [2007]).  

Brown et al., [2010] demonstrated that models capture the synoptic regimes well, and 

concluded that uncertainties in precipitation simulations are due to problems in simulating the 

characteristics of precipitation within different synoptic regimes. In a recent study, Catto et al., 

2013, argued that climate models often underestimate frontal precipitation estimates.  Biases have 

been reported in model precipitation simulations from warm clouds, associated with 

unrepresentative microphysical parameterizations [Lebsock et al., 2013].  Wehner et al., [2010] 

showed that many climate models underestimated 20-year return values of precipitation, and 



suggested increasing the horizontal resolution could improve estimation of extremes. Ghan et al., 

2002 showed that improving representation of subgrid variability and surface topography has a 

significant positive impact on model precipitation simulations (see also Qian et al., [2010]).     

Following upon CMIP3, the current Coupled Model Intercomparison Project Phase 5 

(CMIP5) includes an unprecedented suite of coordinated simulations of historical and future-climate 

scenarios [Taylor et al., 2012] that are designed to facilitate consideration of the wide range of 

scientific issues to be addressed in the forthcoming Intergovernmental Panel on Climate Change 

(IPCC) 5th Assessment Report. The CMIP5 climate simulations are archived by institutional 

participants in the Global Organization for Earth System Science Portals that is coordinated by the 

U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison (PCMDI). 

A comprehensive description of the detailed numerical, dynamical, and physical properties of the 

CMIP5 models is now in progress [Guilyardi et al., 2013].  

In a recent study, Liu et al. [2012] evaluated the variability of CMIP5 precipitation 

simulations and their response to temperature using satellite data and showed that there is generally 

good agreement (correlation) between model simulations and satellite-inferred observed 

precipitation anomalies over land, both in the Tropics and globally. In addition, Sillman et al. [ 2013] 

evaluated models’ performance in simulating precipitation extremes at 1-5 day time scales. Hirota et 

al. [2013] investigated reproducibility of observed precipitation distribution in CMIP5 relative to 

CMIP3 simulations over the tropical oceans. They showed ensemble mean of CMIP5 simulations 

exhibited slightly higher skill score compared to CMIP3 ensemble mean. Gaetani and Mohino, 

[2013] studied the decadal predictability of CMIP5 simulations of the Sahel precipitation, and 

concluded that predictive skills of CMIP5 precipitation simulations varies significantly from 

model-to-model. Kumar et al., 2013 showed that the CMIP5 ensemble mean precipitation matched 



    
 

very well with that of ground-based observations, while there were substantial biases in the 

simulation of regional precipitation trends. A number of other studies assessed future changes in 

precipitation based on CMIP5 simulations at regional or global scales (e.g., Chadwick et al., [2013]; 

Joetzjer et al., [2013]).  

The present study evaluates CMIP5 historical simulations of continental precipitation 

against the Global Precipitation Climatology Project (GPCP) monthly mean observational estimates 

[Adler et al., 2003] using several quantitative statistical measures. This model evaluation focuses on 

the years 1979-2005, a period for which long-term and gauge-adjusted satellite observations are 

available. The remainder of this paper is organized into three sections. The observational data sets 

are briefly introduced in Section 2, while Section 3 is devoted to methodology and results. Summary 

remarks and conclusions are included in Section 4.  

 

2. Data Sets 

The GPCP reference data set [Adler et al., 2003] is derived from merged 

satellite-precipitation data that are bias-corrected using thousands of continental rain-gauge 

observations. The GPCP land algorithm is primarily based on microwave-scattering estimates from 

low-Earth-orbit satellites, and Geosynchronous Infrared (IR) estimates. Additional precipitation 

information is integrated based on data from the Television and Infrared Observation Satellite 

(TIROS) Operational Vertical Sounder (TOVS), and outgoing longwave radiation (OLR) 

measurements [Adler et al., 2003]. The data set is available as a monthly time series from 1979 

onward. GPCP data sets have been validated and widely used in numerous studies [e.g., Bolvin et al., 

2009; Huffman et al., 2009]).  The ground-based data are assembled by the Global Precipitation 

Climatology Centre (GPCC; Rudolf et al., [1994]) of the Deutscher Wetterdienst and by the National 



Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) and used for 

bias correction of the final product (see Easterling 2013 for the distribution of gauges). 

In this study, 34 CMIP5 historical simulations of monthly mean precipitation for the period 

1979-2005, as well as their ensemble mean and median, are validated against the GPCP 

observations. Because of lack of reference gauge data across oceans, GPCP data over oceans are not 

bias-adjusted. One cannot evaluate biases in CMIP5 simulations with a reference data set having 

unknown bias. For this reason, this study is limited to evaluation of CMIP5 simulations overland 

where GPCP data are bias-adjusted using thousands of ground-based gauge data [Adler et al., 2003]. 

All CMIP5 precipitation simulations and GPCP data are re-gridded onto a common 2 × 

2-degree grid. Table 1 summarizes the CMIP5 models considered in this study. In addition, the 

results for both the multi-model ensemble mean and median are provided, since the latter is less 

sensitive to statistical outliers than the former.  

It should be noted that the model simulations that are designated as “_esm” are historical 

simulations of climate with atmospheric CO2 emissions specified in coupled earth systems models 

(ESMs) that include a prognostic carbon cycle, but with model-specific dynamical vegetation 

schemes “turned off”. All the other climate simulations are performed with coupled 

ocean-atmosphere models in which the historical time series of global atmospheric CO2 

concentrations are prescribed. Although the CO2 concentration time series in the “_esm” runs are 

not identical to these prescribed values (owing to model-specific differences in converting CO2 

emissions to concentrations), they are effectively constrained to be very similar.  

3. Methodology and Results  

Several statistical measures are employed to assess climate model-based historical 

precipitation simulations. Figure 1 displays the overall biases of climate model simulations relative 



    
 

to observations. The bias B is defined as the sum of monthly precipitation amount P for each CMIP5 

model divided by the sum of the corresponding GPCP observations in each 2x2-degree grid box: 

𝐵 = ∑ 𝑃𝐶𝑀𝐼𝑃5
𝑛
𝑖=1
∑ 𝑃𝐺𝑃𝐶𝑃𝑛
𝑖=1

         (1) 

Here n is the number of exceedances of a specified local monthly (daily) precipitation threshold t 

(which in this case is set equal to 1 mm/day), while, for simplification, the index i signifying each 

month in the 1979-2005 time series is not included (i.e., PCMIP5 = PCMIP5i and PGPCP = PGPCPi). A bias 

value above (below) 1 thus indicates an aggregate model overestimation (underestimation) of the 

monthly GPCP precipitation amounts for a particular grid box.  

In the Figure 1 mappings of B, the color green indicates where there is little simulation bias, 

while red (blue) indicates large positive (negative) bias relative to GPCP data (white areas indicate 

no data in either observations or model simulations). This pertains to most model simulations of 

precipitation over the eastern United States and northern Europe and Asia; but many show a large 

positive bias (as high as ~ 2) in regions of complex topography such as western North and South 

America, and southern Africa and Asia, as was also noted for CMIP3 models by Phillips and 

Gleckler [2006]. In contrast, most models underestimate precipitation over the Saharan and central 

Asian deserts. Australia and Amazonia are other locations where there are substantial variations in 

both the sign and magnitude of the biases across individual simulations. On the other hand, the 

GPCP data may be subject to biases due to the limited availability of ground-based gauge data for 

bias-correction, as well as the limitations of satellite data in estimating orographic precipitation 

[Sorooshian et al., 2011; Mehran and AghaKouchak, 2013].  

In Figure 1, it is also noteworthy that the spatial patterns of the biases of the ensemble mean 

and median simulations are similar (bottom right panels), and over several regions (e.g., Australia 

and the Americas) are of lower magnitude than the biases of most of the individual model 



simulations. From comparing global-average biases B summarized in Table 1, however, the overall 

global bias of a number of the CMIP5 simulations is seen to be closer to the optimum value of 1 than 

is that of the ensemble mean (B = 0.89) and median (B=0.85).   

It is well known that the bias is not necessarily constant throughout a distribution function, 

but may change at different quantile levels. To further investigate precipitation biases in the CMIP5 

simulations, the quantile bias (QBt), defined as the ratio of monthly precipitation amounts in each 

simulation to that of the GPCP observations above a specified threshold t (e.g., the 75th percentile of 

all the local monthly values), can be calculated in each 2x2-degree grid box: 

 

𝑄𝐵𝑡 = ∑ (𝑃𝐶𝑀𝐼𝑃5|𝑃𝐶𝑀𝐼𝑃5≥𝑡)𝑛
𝑖=1
∑ (𝑃𝐺𝑃𝐶𝑃𝑛
𝑖=1 |𝑃𝐺𝑃𝐶𝑃≥𝑡)

        (2) 

 

Here, QBt = 1 indicates no bias in the simulations, whereas a value above (below) 1 

corresponds to a climate model’s overestimation (underestimation) of precipitation amount above 

the specified threshold t, with respect to that of the GPCP observations. Figure 2 displays QBt 

values, computed for the 75th percentile (precipitation values above t = 75% of the reference data), 

in the CMIP5 simulations. This figure indicates that the climate model biases apparent in Figure 1 

are generally accentuated in the upper tail (i.e., > 75% quantile) of the GPCP precipitation 

distribution. While individual CMIP5 models behave somewhat differently from one another, most 

of their simulations underestimate heavier precipitation amounts over large areas (e.g. Eurasia, 

Middle East, northern China), while overestimating them only in certain limited regions (e.g., 

Amazonia, central Africa, United States). Given this general behavior, it is not surprising that the 

multi-model ensemble mean and median also show large negative biases for observed precipitation 

amounts > 75% quantile of the distribution. Such negative biases are even more pronounced for P 



    
 

amounts > 90% of the distribution (figure not shown for brevity). 

Bias and Quantile Bias describe the overall ratio of simulations over observations, and do not 

provide information on the grid-scale matching of simulated precipitation relative to missed 

precipitation based on reference observations. The Volumetric Hit Index (VHI; AghaKouchak et al., 

2011), which measures the volume of precipitation above the threshold (t) detected correctly by 

climate models with respect to the total simulated and missed precipitation (based on GPCP), can 

provide such a measure of model performance [Mehran and AghaKouchak, 2013]. For t = 0 and t > 

0, the VHI in each 2x2-degree grid box is defined as (AghaKouchak et al., 2011):  

 
for t=0   𝑉𝐻𝐼 = ∑ (𝑃𝐶𝑀𝐼𝑃5|𝑃𝐶𝑀𝐼𝑃5>0 & 𝑃𝐺𝑃𝐶𝑃>0)𝑛

𝑖=1
∑ (𝑃𝐶𝑀𝐼𝑃5|𝑃𝐶𝑀𝐼𝑃5>0 &𝑃𝐺𝑃𝐶𝑃>0)𝑛
𝑖=1 +∑ (𝑃𝐺𝑃𝐶𝑃𝑛

𝑖=1 |𝑃𝐺𝑃𝐶𝑃>0 & 𝑃𝐶𝑀𝐼𝑃5=0)
  

            (3) 

for t >0   𝑉𝐻𝐼 = ∑ (𝑃𝐶𝑀𝐼𝑃5|𝑃𝐶𝑀𝐼𝑃5≥𝑡 & 𝑃𝐺𝑃𝐶𝑃≥𝑡)𝑛
𝑖=1

∑ (𝑃𝐶𝑀𝐼𝑃5|𝑃𝐶𝑀𝐼𝑃5≥𝑡 & 𝑃𝐺𝑃𝐶𝑃≥𝑡)𝑛
𝑖=1 +∑ (𝑃𝐺𝑃𝐶𝑃𝑛

𝑖=1 |𝑃𝐺𝑃𝐶𝑃≥𝑡 & 𝑃𝐶𝑀𝐼𝑃5<𝑡)
    

 

where PCMIP5 = CMIP5 simulations, PGPCP = GPCP observations, n = number of exceedances above 

threshold t. The ideal VHI score is 1, indicating perfect simulation skill, while 0 corresponds to no 

skill. In this study, VHI is computed for the entire distribution of precipitation (t = 0) and for values 

above the 75th percentile of the observations (t ≥ 75 percentile of GPCP). Figure 3 presents the VHI 

when all precipitation data are included in the analysis (t = 0) – white areas indicate no data below 

the choice of threshold t in either climate model simulations or observations. There is generally good 

agreement between model simulations and GPCP observations over many areas, especially in moist 

tropical regions such as Amazonia and southern Africa, and in temperate latitudes of Eurasia and 

North American, consistent with the findings of Liu et al. [2012]. However, there are obvious 

discrepancies over arid regions, especially northern Africa and the Middle East, but also the 



southwestern U.S. and Australia. From Figure 3, the ensemble mean and median appear to be 

superior to the individual climate models in reproducing the main GPCP precipitation patterns (see 

also Table 1 for global-average VHI values of the CMIP5 models and their ensemble mean and 

median).  

It is acknowledged that the VHI is a skill score which assumes that a “perfect” model will be 

able to recreate the observations at each grid. However, the CMIP5 historical runs have large 

internal variability in precipitation, and one cannot expect the models to precisely reproduce 

precipitation observations, since they are not forced with prescribed, historical sea surface 

temperatures. Nevertheless, the VHI still provides valuable information as to what extent model 

simulations can capture historical satellite-based gauge-adjusted observations. Here, the main 

purpose of using VHI is to show whether climate models, relative to each other, are consistent with 

observations. As shown, over many regions, many climate model simulations exhibit high VHI 

scores indicating reasonable consistency with observations.   

Figure 4 displays VHI for the 75th percentile threshold of the observations (hereafter, 

VHI75). When considering only data above this threshold, the performance of most models is seen to 

decrease substantially, indicating the presence of systematic biases in the CMIP5 simulations at 

higher quantiles. The VHI75 maps show that except over parts of high-latitude Eurasia, temperate 

North America, the lower Amazon, southeast Asia and central Africa, the model simulations lack 

skill above the 75% quantile. This is even more so for VHI at the 90th percentile threshold (figure not 

shown). It should be emphasized, however, that a low value of VHI (or VHI75) does not necessarily 

imply the absence of simulated precipitation, but only that the models are simulating amounts below 

the local threshold (here, the 75th percentile) of the GPCP reference observations. The results of 

both the VHI and QBt analyses confirm that there are biases in climate simulations of precipitation at 



    
 

higher quantiles, implying that more effort should be focused on improving precipitation physics in 

climate models, so as to more realistically simulate extreme values.  

As an alternative to model physics improvements, bias adjustment algorithms have been 

developed to bring climate simulations closer to observational reference data [e.g., Li et al., 2010; 

Christensen et al., 2008; Haerter et al., 2011; Dosio and Paruolo, 2011; Xu et al., 2012]. 

Bias-adjustment of global model simulations is necessary in order to supply more realistic estimates 

of precipitation (or other climate variables) to regional-scale models that can assess the impacts of 

climate on hydrology or agriculture, for example. The most common approach involves the removal 

of the mean-field bias of climate simulations relative to a given observed data set. Figure 5 plots 

global average global bias values of all 35 evaluated CMIP5 models for the thresholds of t=0 (all 

data), t=75% (QB75) and t=90% (QB90) percentiles of observations, both before and after removal of 

the mean-field bias. The models are sorted based on their overall bias values for better visualization. 

Here the mean-field bias is removed by multiplying the inverse of Equation (1) by the original 

CMIP5 simulations. Considering all the data, the models exhibit global-average biases B between 

0.75 to 1.25 (solid black line in Figure 5), and after mean-field adjustment, this overall bias can be 

removed (dashed black line in Figure 5). However, while the mean-field bias adjustment eliminates 

the overall bias, the figure indicates that this adjustment does not necessarily reduce the bias 

associated with a particular high or low quantile. Figure 5 instead confirms that a simple mean-field 

bias adjustment only marginally reduces such quantile biases.  

In order to compare the spatial patterns of bias after mean-field bias adjustment, Figure 6 

displays QB75 after removing the mean-field bias of model simulations with respect to GPCP data 

(the bias-adjusted version of Figure 2). One can see that, while some improvements in QB can be 

achieved through such adjustment, this is not the case over several areas such as portions of 



Australia, Africa, Eurasia, and North America. Thus, on average, CMIP5 models underestimate high 

quantiles of precipitation even after mean-field bias adjustment. This result underscores the 

importance of developing more sophisticated precipitation bias-adjustment techniques, such as 

Watanabe et al. [2012] and Mehrotra and Sharma [2012], that go beyond consideration of only the 

mean statistics.  

Figure 7 displays the globally averaged VHI, VHI75 and VHI90 of climate model simulations 

against GPCP data before and after removal of the mean-field bias. The models are ranked on the 

x-axis based on their overall VHI for better visualization. Similar to the case of QB, it is seen that 

VHI values drop substantially as the threshold increases, but that the mean-field bias adjustment 

significantly improves the VHI of the ensemble median. Unlike the bias metrics of Figure 5, the VHI 

values of the ensemble median in Figure 7 are consistently higher than those of the ensemble mean.  

Figure 8 displays the spatial patterns of VHI75 of climate model simulations against GPCP 

data after mean-field bias removal (i.e. Figure 8 depicts results similar to those shown in Figure 4, 

but after bias adjustment). Compared with Figure 4, the VHI values in Figure 8 improve over certain 

areas, such as the United States, Amazonia, and Southeast Asia. In these regions, models such as 

FGOALS_g2_hist, GFDL_ESM2M_hist, CESM1-BGC_esm and MIROC show high (~ 1) values 

of VHI75. Overall, the VHI75 values of the ensemble mean and median are superior to those of 

individual models.     

4. Summary and Conclusions  

Reliable estimates of precipitation are essential for both research and practical applications. 

CMIP5 climate simulations provide both historical simulations and future projections of climate 

variables. Numerous studies have highlighted that climate simulations are subject to various biases 



    
 

and uncertainties (e.g., Brekke and Barsugli [2012]). The objective of this study is to cross-validate 

CMIP5 historical simulations of precipitation relative to GPCP reference data, quantifying model 

pattern discrepancies (VHI metric) and biases (B and QB metrics) for both entire data distributions 

and their upper tails. It is acknowledged that observational data sets, like model simulations, are also 

subject to uncertainties, including systematic and random sampling errors [AghaKouchak et al., 

2012]; over land, however, the GPCP data set is bias-adjusted using thousands of rain gauges [Adler 

et al., 2003], and hence it should serve as an a suitable reference for evaluation of continental 

precipitation in climate models.  

From the results of the Volumetric Hit Index (VHI) pattern analysis of the total monthly 

precipitation amounts, it is found that most CMIP5 simulations are in fairly good agreement with 

GPCP observations in many areas, but model replication of observed precipitation patterns over 

deserts and certain sub-continental regions (e.g. northern Eurasia, central Australia) is 

problematical. The VHI of the multi-model ensemble mean and median also are found to be superior 

to most CMIP5 model simulations overall.  

Analyses of total biases (B) in CMIP5 simulations reveal that most models overestimate 

precipitation in regions of steep topography, while underestimating it leeward of the mountains, as 

well as over many other arid regions. Moreover, while most climate model simulations show low B 

values over Europe, there are considerable inter-model variations in bias over Australia and 

Amazonia.  

At high quantiles (> 75% and > 90%) of the distribution of monthly precipitation, the 

Quantile Bias (QB) analyses indicate that CMIP5 simulations show more glaring discrepancies in 

precipitation amounts with respect to the GPCP satellite observations. While continuing to 

overestimate precipitation in regions of steep topography, the models generally underestimate it in 



tropical locations such as Amazonia, central Africa, and southern Asia, as well as in broad swaths of 

the extra-tropics such as Australia, the arid regions of northern Africa and central Asia, and northern 

China, Russia, and Canada.  

At high precipitation quantiles also, the CMIP5 models show substantially reduced 

agreement with the patterns of the GPCP reference data (e.g., the VHI75 metric for precipitation 

above the 75 % quantile << VHI over the entire distribution). Except over North America, 

Amazonia, and central Africa, most CMIP5 simulations are lacking in predictive skill (VHI75 ~ 0) for 

the higher tail of the precipitation distribution. Note, however, that a low VHI75 does not necessarily 

imply the absence of locally simulated precipitation, only that its amount falls below the given 

reference data’s threshold value. In addition, the ensemble-mean and median precipitation at the 

higher quantiles are found to be superior to the individual climate model simulations when evaluated 

by the VHI75, and VHI90 pattern measures, but not by the the QB75 and QB90 bias metrics. 

  
These results thus suggest that, while today’s climate model simulations are generally in 

agreement with satellite-based gauge-adjusted estimates of total monthly precipitation in many 

areas, they presently are not well-suited for simulating upper quantiles of the precipitation 

distribution. Such distribution errors, which have persisted across CMIP phases [e.g. Dai ,2006; Sun 

et al., 2007; Stephenson et al. , 2010; Sillmann et al., 2013], are often characterized by a general 

tendency for the models to precipitate too frequently in light amounts, but too rarely in the intense 

downbursts that are occasionally observed. In focusing on the upper tails of the precipitation 

distributions, the present study reveals such model intensity errors in a particularly stark way (e.g. in 

Figures 2 and 4).   

The persistence of these upper-tail errors in all the evaluated CMIP5 simulations is indicative 



    
 

of the presence of general deficiencies in the models. For instance, these systematic precipitation 

distribution errors do not seem to be very sensitive to inter-model differences in horizontal 

resolution (e.g. the MRI-ESM1_esm model, with a 160x320 grid, does not clearly outperform other 

coarser-resolution models in Table 1). Substantive differences in error structure also are not 

apparent between the “_esm” historical simulations with prescribed CO2 emissions and those with 

prescribed CO2 concentrations. Thus, it is likely that these systematic precipitation errors are due 

more to general model shortcomings in representing the dynamics or physics of climatic phenomena 

than to inter-model differences in greenhouse forcings or horizontal resolution.   

 
For example, an ongoing preoccupation of model developers is to improve sub-grid scale 

parameterizations of convection, since precipitation errors tend to be especially large in the tropics 

[e.g. IPCC, 2007]. It is perhaps less widely appreciated that intense precipitation also often 

originates in frontal systems [Catto et al., 2012; Pfahl and Wernli, 2012] and that representative 

climate models tend to underestimate these extra-tropical precipitation events in spite of current 

abilities to adequately simulate the interaction of dynamics and moisture at model grid scale [Catto 

et al. , 2010, 2013].  

An underestimation or incorrect placement of intense tropical and extra-tropical 

precipitation is also clearly displayed by the CMIP5 simulations analyzed in the present study (e.g. 

in Figures 2 and 4). Such ubiquitous precipitation errors suggest that improvements, not only in 

model convective parameterizations, but also in their representation of sub-grid scale cloud 

microphysical processes that regulate droplet auto-conversion, accretion, and through-fall [Lebsock 

et al., 2013; Van Weverberg et al., 2013], may be essential for better simulation of the observed 

global precipitation distributions.  

Once such enhancements of model physics are in place, increases in model resolution are 



also likely to contribute to more realistic simulation of precipitation [Wehner et al., 2010; Champion 

et al, 2011]. This may be especially true in mountainous regions, where an accurate representation of 

the interaction of complex dynamics and steep moisture gradients is difficult to achieve solely 

through parameterization [e.g. Ghan et al., 2002; Qian et al., 2010].  

Finally, this study demonstrates that, while a simple mean-field bias removal enhances the 

overall B and VHI values, it does not yield much improvement at high quantiles (i.e., QB75, QB90, 

VHI75, and VHI90). Thus, for purposes of climatic impacts studies, it is important to develop more 

sophisticated techniques for adjusting the upper-tail biases of global precipitation simulations in 

order to better replicate observed extreme values.  
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Figure 8. Volumetric Hit Index for t = 75th percentile (VHI75, with optimal value = 1) after 

bias-adjustment of selected CMIP5 precipitation simulations, all with respect to GPCP observations.  

 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1 – CMIP5 climate models and summary statistics of global Bias (B) and Volumetric Hit 

Index (VHI) before and after mean-field bias adjustment (after bias adjustment B=1 for all models). 

Optimal values of these metrics are all equal to 1. 

Climate Models 
Original Data  After Bias 

Adjustment 
B VHl  VHl 

BCC-CSM1-1 0.97 0.71  0.79 
CanESM2_esm 0.76 0.66  0.76 
CanESM2 0.77 0.66  0.76 
CCSM4 1.08 0.78  0.81 
CESM1-BGC_esm 1.06 0.78  0.81 
CESM1-CAM5 0.94 0.72  0.79 
CESM1-WACCM 1.04 0.73  0.79 
CNRM-CM5 0.90 0.71  0.79 
CSIRO-ACCESS1-0 0.91 0.73  0.79 
CSIRO-Mk3-6-0 0.93 0.69  0.77 
FGOALS-g2 1.10 0.78  0.81 
FGOALS-s2 0.83 0.67  0.76 
GFDL-CM3 0.92 0.72  0.79 
GFDL-ESM2G_esm 1.04 0.73  0.78 
GFDL-ESM2M_esm 1.05 0.73  0.78 
GFDL-ESM2M 1.06 0.74  0.78 
GISS-E2-H 0.96 0.69  0.78 
GISS-E2-R 0.96 0.71  0.79 
HadGEM2-CC 0.88 0.71  0.78 
HadGEM2-ES_esm 0.91 0.73  0.79 
HadGEM2-ES 0.90 0.72  0.78 
INMCM4_esm 0.93 0.74  0.80 
IPSL-CM5A-LR_esm 0.77 0.67  0.77 
IPSL-CM5A-LR 0.77 0.67  0.77 
IPSL-CM5A-MR 0.79 0.68  0.77 
IPSL-CM5B-LR 0.83 0.62  0.74 
MIROC5 0.99 0.73  0.79 
MIROC-ESM_esm 1.14 0.78  0.81 
MIROC-ESM 1.17 0.78  0.82 
MPI-ESM-LR_esm 1.15 0.78  0.82 
MPI-ESM-P 0.88 0.72  0.79 
MRI-CGCM3 0.88 0.73  0.79 
MRI-ESM1_esm 0.84 0.68  0.77 
NorESM1-M 0.85 0.69  0.77 
Ensemble Mean 0.89 0.69  0.87 
Ensemble Median 0.85 0.76  0.84 

 
 


