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RESULTS FROM PRIOR LDRD SUPPORT

The PI, Stephen Harley, has not previously been PI of an LDRD; however, Stephen provided analytical 

support for the multifunctional materials focus area of the Chemistry and Materials Science Directorate 

ER-LDRD (12-ERD-046) “Predicting Weapon headspace gas atmosphere.” The focus of this 

element was to develop a code capable of predicting weapon headspace atmosphere in support of aging 

assessment. Part of this research involved developing experimental and computational methodologies to 

assess the aging characteristics of these materials. Stephen aids in both the experimental design to obtain 

relevant parameters and the computational code generation.  This LDRD is ongoing and is in year 2, there 

are 3 publications currently being written and 1 has been accepted:

1. Harley, S. J.; Glascoe, E. A.; Maxwell, R. S., Thermodynamic Study on Dynamic Water Vapor 

Sorption in Sylgard-184. J Phys Chem B 2012, 116 (48), 14183-14190.



PROJECT DESCRIPTION

INTRODUCTION
Everyone is familiar with the elastic properties of a butyl rubber racket ball, bouncing freely

when thrown against a wall. People are similarly aware that when submerged in liquid N2 the 

same ball becomes brittle and hard, shattering when thrown against a wall.  This is a result of 

butyl rubber undergoing a phase transition as it crossed a critical temperature, Tg. While the 

thermal dependence of these phase transitions has been extensively explored, other state 

variables such as pressure have largely been ignored. However, this gap in our knowledge base 

does not indicate that pressure has no influence on the morphological state of polymers; rather, 

it’s simply been overlooked. Mechanical testing is the dominant method to characterize polymers 

up to approximately 1 MPa[1] and diamond anvil experiments span 1 GPa onward[2].   There is 

a clear gap in our knowledge base where pressure induced changes have not been explored.  

Phase transitions are not benign subtle variations in a polymer’s properties; rather they induce

drastic changes in the materials mechanical properties. Consequently, pressure induced 

crystallization could result in a polymeric part going out of spec.  Additionally network failure or 

unknown degradative mechanisms could arise.  At this point, we are looking at an entirely 

unexplored area of materials behavior.

Functional components based on Poly(siloxane) elastomers are ubiquitous in their use in the 

fields of engineering, aerospace, defense and the biomedical industries. And as such, this diverse 

class of material often find application in extreme environments of temper ature and/or pressure. 

While the effects of temperature on polysiloxanes has been well studied and their behavior is 

well understood, it is startling to note that we know practically nothing about this class of 

materials behavior or eventual fate at extreme pressures. Consequently no predictive estimate of 

the lifetime of failure of a polysiloxane material can be offered in the MPa-GPa region, where 

this critical knowledge gap lies. 

Figure 1: Schematic representation of our gap in testing capabilities for polymeric materials.



Nuclear Magnetic Resonance Spectroscopy (NMR) and Broadband Dielectrics Spectroscopy (BDS) are 

sensitive techniques to assess both the long and short range motions in polymeric materials.[3-9]  

Incorporation of high pressure probes to these spectroscopies has already been 

established in the solution state by the PI.[10-13]  In addition, a preliminary 

experiment on an model PDMS network did yield a sudden change in 

relaxation that could indicate a phase transition, see Fig. 2.  Further 

investigations were not pursued due to the lack of time available to the team.  

We have the materials, expertise, and equipment to start a rigorous scientific 

study, funding is sought to cover the time needed for this effort.

PROJECT PLAN
Objective 1:  Hardware Development

Currently we have two functional high pressure probes both adapted for NMR analysis.  The first 
is a large variable temperature probe having dimensions similar to typical NMR probes.  The 
probe circuit coil will need to be tuned to the desired frequency (400 MHz) and sized according 
to the samples geometry.  The PI does not envision any problems with this as the PI has over 8 
years of NMR hardware experience. This system has a maximum working pressure of 350 MPa.  
J. Lewicki (an expert in the field of applied polymer dielectric spectrometry) will support the
modification of this probe to accommodate compact, inter-digit electrodes and the circuits 
required to interface it with a broadband dielectric spectrometer, allowing dielectric reloxmetry 
data of materials of study to be acquired under pressure and in real time.      

Figure 3:  High pressure probe capable of reaching 350 MPa.

The second probe is a much more compact variant that allows for hydrostatic pressures up to 2 
GPa.  It has been pressure tested with an academic collaboration at UC Davis and NMR spectra 
for 29Si solution speciation has been taken.  As with the system above, circuit modifications to 
achieve a 400 MHz resonance does not present a challenge.  The team has significant experience 

Figure 2:  Preliminary 
results suggest pressure 
induced phase change at 
200 MPa.



with microcoil NMR and adaptation to dielectrics will be similar to the challenges mentioned 
above.  A safety note will need to be written to take spectra here under our existing IWS.

Figure 4:  High pressure probe capable of reaching 2GPa.

Objective 1 Key Deliverables:
Year 1:  Adapt hardware to interface with our spectrometers

Year 2:  Continue with maintenance and implement changes as needed.

Objective 2:  Demonstrate ability to monitor phase changes

The co-PI has significant experience in synthetically producing model PDMS networks and has 
optimized the formulation chemistry.  We will use these networks as the focus of our 
investigation.  The benefit of these networks is a control in the physical chemistry.  This is to say 
we can understand any bulk morphological changes as a direct result of the PDMS undergoing a 
phase transition thereby decoupling the effects of fillers typically encountered in commercial 
formulations.  This allows us to understand possible phase transitions from a fundamental 
scientific perspective.

Figure 5:  Example of a model PDMS network where the cure chemistry has been optimized.

These model networks spanning both above and below the entanglement molecular weight of 
PDMS will be cast into appropriate sample containers and inserted into the high pressure vessels.  
Pressure will be varied systematically from approximately 100 kPa to 2 GPa and evidence for 
phase transitions will be monitored with the aforementioned spectroscopies.  In dielectric 
spectroscopy a sudden shift in the α and β relaxation frequencies would be indicative of a phase 



transition.  In NMR spectroscopy the relaxation properties of the PDMS will be investigated with 
a combination of classic inversion recovery and CPMG pulse sequences as well as more 
advanced multiple quantum experiments.  It is well established that the relaxation properties of 
the material are directly related to the motional dynamics of the material.[14]  Therefore any 
drastic stiffening or softening of the material (indicative of a phase change) would be clearly 
visible in these spectroscopies.

The one possible source for failure in these experiments is the lack of any phase change in the 
span of pressures investigated.  However, we have preliminary evidence (Fig. 2) that indeed 
there will be.

Objective 2 Key Deliverables:
Year 1:  Test ideal network with NMR

Year 2:  Test ideal network with Dielectrics and compare

Objective 3:  Interpret data towards broader implications in other materials

Model networks provide an excellent foundation for our understanding of pressure related 
morphological changes.  However, these model materials not have the necessary mechanical 
properties for commercial implementation. Fillers are often added to achieve desired mechanical 
properties.  As part of phase two of this project model networks will be synthetically produced 
will varying levels of filler loading.  Then these materials will be subjected to the procedures 
outlined in objective 2 and shifts in phase changes will be sought.  

This data will directly aid in the tailoring of materials to be more resistant to pressure changes.

Objective 3 Key Deliverables:
Year 1:  N/A

Year 2:  Test more complex networks 

MANAGEMENT PLAN
Principal Investigator Stephen Harley has extensive experience leading small teams in high 
pressure research will have direct responsibility for ensuring that goals, deliverables and 
milestones are met throughout the course of the project. S. Harley will also be technical lead in 
the use, modification of the high pressure equipment and will be scientific lead on NMR 
spectroscopy.  James Lewicki will be responsible for the synthesis the model networks and lead 
the dielectric spectroscopy effort.  Evaluation of all data will be done as a group, communication 
with the team will occur primarily through regularly scheduled project meetings to discuss 
project status and results and facilitate the integration of the computational and experimental 
aspects of the project.  We will obtain valuable peer review through publication of results in 
scientific journals and presentations at conferences, well as other national scientific venues.

We anticipate that the initial results obtained with internal LDRD investment will serve as a 
foundation upon which we will transition to sponsor funds to expand to a much larger 



investigation of materials pertinent to the mission of the lab.  This capability will be broadly 
applicable to any solid or liquid and will provide increased understanding of how materials 
behave in this little understood pressure region. With the fundamental understanding of the 
chemistry that governs pressure induced phase transitions, a better selection of materials to 
mitigate unwanted morphological changes can be made.

DISSEMINATION
This work will be published in peer review journals and presented at professional conferences.

SUMMARY
Poly(dimethylsiloxane) elastomers are ubiquitous in their application as key components in a 
range of (often extreme) environments. and as such, they often experience pressures in a region 
where we do not understand their physical response and therefore can offer no predictive 
estimate of lifetime of failure . We are proposing a fundamental scientific investigation of the 
pressure induced morphological changes in model PDMS networks.  Both NMR and BDS 
spectroscopies will be used to interrogate pressure induced changes and meaningful phase 
relations will be sought.  The addition of filler to the networks will be used as an attempt to 
engineer the network to be more resistant to pressure changes.  We have the equipment, model 
networks and expertise to start this project immediately; funding is sought as an investment in 
our time allocation.
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