¢

LAWRENCE
LIVERM ORE
NATIONAL
LABORATORY

LLNL-CONF-635761

Interaction-Based Load
Balancing in N-body Simulations

O. Pearce, T. Gamblin, M. Schulz, B. R. de
Supinski, N. M. Amato

April 25, 2013

Supercomputing
Denver, CO, United States
November 17, 2013 through November 22, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Interaction-Based Load Balancing
in N-body Simulations -

Olga Pearce*, Todd Gamblint, Bronis R. de Supinskit,
Martin Schulzf, Nancy M. Amato*

*Department of Computer Science and Engineering, Texas A&M University, College Station, TX, USA
{olga,amato}@cse.tamu.edu
TCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA
{olga,tgamblin,bronis,schulzm}@linl.gov

ABSTRACT

N-body methods compute interactions between particles. They rep-
resent an important class of simulations and are used in a wide
range of applications. A rich body of work focuses on scaling N-
body methods and typically includes load balancing mechanisms
that assign load approximately by assigning particles; we demon-
strate that they do not perform well at scale. We propose a de-
composition method that directly assigns the computation units in
N-body applications, particle interactions, to processes. We char-
acterize the distribution of interactions in space and use an adaptive
sampling approach to make the interaction-based decomposition
accurate and affordable while minimizing the communication re-
quired. We implement and evaluate our approach on a Barnes-Hut
algorithm and show that our method achieves a significant improve-
ment in load balance and consequently overall performance.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Performance attributes, Model-
ing techniques; 1.6.8 [Simulation and Modeling]: Types of Sim-
ulation—Parallel; D.1.3 [Programming Techniques]: Concurrent
Programming—~Parallel programming

Keywords

load balance, performance, modeling, simulation, framework

*This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344 (LLNL-CONF-635761).

1. INTRODUCTION

Problems in a variety of areas rely on N-body methods, including
astrophysics (galaxy formation, large-scale structure [38]), compu-
tational biology (protein folding [32]), chemistry (molecular struc-
ture, thermodynamics [23]), and molecular dynamics [33]. An
N-body application simulates the dynamic evolution of a system
of particles or bodies under the influence of physical forces. The
simulation computes the forces between the particles, or particle-
particle interactions. Because the direct-sum algorithm is O(n?) in
the number of particles, many large scale N-body simulations use
optimizations that may consider nearby particles individually but
treat distant particles as a single large particle; examples include the
Barnes—Hut method [4] or multipole expansion [34]. This can dra-
matically reduce the number of pairwise particle interactions that
must be computed.

As problems grow larger, simulations are scaled to larger super-
computers, and load imbalance becomes a larger impediment to
performance. While it may be reasonable to leave a handful of
cores idle, idling hundreds of thousands of processes results in
severe performance degradation, necessitating more precise load
balancing mechanisms at scale. Currently, many N-body simula-
tions use domain decomposition to divide the simulated particles
between processes; particle interactions are then computed by the
processes owning the particles. The typically used geometric space
decomposition provides an approximation for dividing work; we
show that this approximation becomes prohibitively imprecise at
scale.

‘We propose a load balancing that directly balances the computation
in the simulation, not the space. Particle interactions are the unit of
computation in N-body applications, whether computed directly or
through approximation methods, and therefore the units that need
to be balanced. Current approaches do not balance the particle in-
teractions directly because it would be prohibitively expensive to
balance O(n?) interactions within radius of interaction. However,
interaction density is variable and cannot be approximated by the
particle density, and physical proximity of the interacting particles
is important as each interaction computation requires knowledge
of these particles and, in turn, manipulates their positions and other
attributes.

Our approach is to use hypergraph partitioning to partition particle
interactions while also directly considering particle proximity. We
use interaction sampling and nearest-neighbor assignment to con-
trol the cost/accuracy tradeoff of our approach through adaptive

sample size and refinement.

We evaluate our approach by balancing a Barnes-Hut algorithm
and demonstrate significantly improved load balance and therefore
overall performance.

This paper makes the following contributions:

1. A new interaction-based decomposition method for N-body
simulations, using hypergraph partitioning to assign interac-
tions and particles to processes to balance the load and opti-
mize required communication;

2. Characterization of distribution of interactions in space as
power law;

3. A sampling approach exploiting nearest-neighbor assignment
to reduce cost;

4. An adaptive (hierarchical) sampling strategy to mitigate the
power law distribution of interactions in N-body simulations.

Section 2 summarizes traditional particle-based domain decompo-
sition and load balance correction methods for N-body applica-
tions. Section 3 describes our interaction-based domain decompo-
sition and load balancing method. Section 4 describes our adaptive
sampling approach to interactions. Section 5 will outline the algo-
rithm for load balancing interactions. We evaluate performance of
our approach in Section 6.

2. LIMITATIONS OF CONVENTIONAL N-
BODY LOAD BALANCING TECHNIQUES

Traditional domain decomposition methods in N-body applications
either distribute particles to processes, or decompose the space ge-
ometrically to assign all particles in a geometrical region to a pro-
cess. Techniques in this area include orthogonal recursive bisec-
tion [6, 38], oct-trees [31, 39], and fractiling [3]. Orthogonal re-
cursive bisection applies a binary decomposition recursively on the
domain to partition it into rectangles requiring equal computational
effort. Oct-tree methods use a spatial tree data structure to repre-
sent a system of N bodies in a hierarchical manner, and rely on
different methods to determine which nodes of the tree are close
enough to interact. Fractiling is a probabilistic analysis-based dy-
namic scheduling scheme that exploits the self-similarity properties
of fractals.

Barnes—Hut [4] simulations [20, 40], a classical example of an N-
body algorithm, assigns individual particles to processes; to achieve
locality, the particles are partitioned geometrically or sorted by a
space-filling curve (e.g., Hilbert [12]) prior to being partitioned.
The interactions, the computationally intensive part of any N-body
simulation, are computed by the processes owning the particles
involved; a tiebreaker is employed to determine the computation
owner if the two particles involved in one interaction belong to dif-
ferent processes. Load balance is controlled by moving the par-
ticles between processes and with this indirectly affecting where
interactions are computed, rather than being able to control inter-
actions directly. Since the particles may move after each decompo-
sition, a new spatial partitioning or sorting of the particles may be
required prior to new rebalancing.

Other parallel N-body algorithms use spatial methods to decom-
pose the domain between processes; they assign a space defined

_ p

(b) ParaDiS

o

(a) ddeMD

Figure 1: Geometric Particle-Based Domain Decomposition

by a Voronoi cell (e.g., ddcMD [33], Figure 1(a)) or a prism (e.g.,
ParaDiS [10], Figure 1(b)) to each process. Each process is then
responsible for the subset of particles located in that space, and for
computing the associated interactions. As with Barnes-Hut, a tie-
breaker is used to compute interactions between particles spanning
partitions.

Load balancing methods for spatially decomposed N-body simu-
lations adjust the spatial decomposition in the simulation. They
estimate the load of a process based on the number of owned parti-
cles or timing calipers; process space boundaries are then shifted to
give each process less or more work. Algorithms with a geometric
decomposition employ many approximations; they can assume uni-
form work distribution within the space assigned to each process,
ignoring features in the simulation that may cause higher density
of work in some regions of the simulation space. They typically do
not consider individual units of work as they contribute to the load
and how the load changes when the boundaries are shifted. Further,
they do not take into account which of the interactions are com-
puted directly (using force calculation) vs. which are approximated
using a multipole method aggregating distant particles [21], which
is determined by proximity of particles in simulation space. Ge-
ometric decomposition may also have additional implementation-
specific spatial decomposition limitations (the space can only be
decomposed into spatial prisms or Voronoi cells), resulting in addi-
tional approximations.

In summary, both particle-based and geometric approximations in-
herently contain inaccuracies in their methods to control and thereby
balance the actual computational load. This can lead to significant
load imbalances, which will have a drastic impact on the scaling
properties of the algorithms.

3. A NEW APPROACH: INTERACTION-
BASED DECOMPOSITION

In order to overcome the limitations of traditional particle-based or
geometric approaches and to achieve a more precise load balance
that will allow us to scale to larger number of nodes efficiently, we
need to focus our load balance efforts on the interaction between
particles, since they are the unit of work in N-body simulations.
We therefore propose to assign interactions to processes directly
to have full control over the load balance of work units in the ap-
plication. For correctness of the simulation, interactions must be
assigned to processes uniquely (i.e., each interactions must be as-
signed to exactly one process), so our goal is twofold: devise a
method that assigns interactions (1) uniquely and (2) in a balanced
manner.

Figure 2: Particles {A-F} Shown as Spheres; n> Interactions
Shown as Squares

To accomplish this goal we start by representing the computation
in N-body simulations as a hypergraph with vertices represent-
ing interactions (work units) and hyperedges representing particles
(storage units). A hyperedge connects one or more vertices (inter-
actions) that need information about the particle for computation.
Figure 2 shows an example of such a hypergraph representing par-
ticles as spheres and interactions between them as squares. This
turns the load balancing problem into a hyper graph partitioning
problem with communication required for all cut hyperedges, i.e.,
all particles that are required by two or more particles.

Parallel applications frequently utilize ghost nodes when a copy of
remote data, in our case data of a particle, is needed; ghost nodes
require communication to update the ghost node when its original
has changed and/or to update the original when the ghost node has
been changed (pre- and post-timestep communication). While the
graph model counts each cut edge, the hypergraph model gives a
more accurate representation of communication cost (volume) of
the ghost nodes by counting a cut hyperedge to several vertices in
the same partition as a single cut; this is important for irregular
graphs [16] with non-uniform vertex degrees throughout the graph.
The hypergraph model works well in our case because the number
of interactions a particle is involved in is highly variable in N-body
problems, as we will show in Section 4.

As mentioned above, we use hypergraph partitioning to balance
the assignment of interactions to processes. Several hypergraph
partitioning libraries are available [14, 30]; in this work, we use
Zoltan’s hypergraph partitioner [15]. Formally, given a weighted
hypergraph H = (V, EH) where V' denotes a set of vertices and
EH denotes a set of hyperedges, hypergraph partitioning divides
vertices into k sets based on the following two objectives:

1. equal partitions: vertices are divided among processes such
that the sum of vertex weights on a process is approximately
equal for all processes.

2. minimized hyperedge cut: minimize the number of ghost
nodes required in the application by minimizing edge-cut,
the total weight of the edges, i.e., shared particles, cut by the
partitions.

After the partitioning process, we compute the assignment of par-
ticles to processes by assigning them where majority of their in-
teractions are assigned; this helps minimize the number of ghost
nodes required for the particles. Balanced assignment of particles
in addition to interactions could be another goal, but the problem of
balancing both vertices and hyperedges is a slightly different prob-
lem than the standard hypergraph partitioning problem and a good
solution is not yet available.

Algorithm 1 Interaction Sampling

Input. H = (V, Ef) (graph of particles and interactions)
1: for V Particle e; € particles do

2: H'.insert(e;)

3: numSampled = max(1,s X |V;|), where V; < interactions of e;
4: for 0 < j < numSampled do

5: v} < sample v; € V;

6: H"insert(v;)

7: end for

8: end for

4. SAMPLING INTERACTION GRAPH

An exact partitioning approach would consider a hypergraph of
O(n) particles and O(n?) interactions within the interaction ra-
dius, which would to lead a prohibitively large graph both in terms
of storage and time to part ion. However, considering each individ-
ual interaction is unnecessary, as the distribution of computation
load is tied directly to the variation in interaction density. We can
therefore use a potentially small subset of the data as input to out
partitioner, as long as we can maintain the density variations in the
simulated space. We achieve this by applying a sampling approach.

In particular, we create a sampled hypergraph H' = (V', E¥ ,) as
a subgraph of the interaction hypergraph H maintaining the follow-
ing properties:

1. H’ contains all hyperedges (particles) from H, i.e., all parti-
cles remain represented (V' = V);

2. Vh' € EH', Ji vertices v’ € H’ such that v’ is connected to
h', where i > 1, i.e., the sampled graph contains at least one
vertex (interaction) per hyperedge (particle), which ensures
preservation of spatial proximity information in the graph;

3. Ve' € B, Jiand avertex v’ € H’ such that v’ is connected
to e’ withi = |[v'| = s X |v| (with s being the sampling ra-
tio), i.e., the number of sampled vertices v’ is proportional
to the number of vertices v connected to A in the original
graph; this ensures that the work (interactions) in the appli-
cation is fairly represented and the partitioner is tasked with
partitioning work units of similar granularity.

Algorithm 1 outlines the steps of our sampling approach.

Once we complete the sampled subgraph we use the same hyper-
graph partitioning approach as described in Section 3 to assign
the sampled interactions to processes, followed by a reconstruction
of the complete, deterministic assignment of non-sampled interac-
tions. The latter is achieved by assigning each interaction that was
not part of the sample to the same process as its nearest sampled
interaction. For this to be possible we assign each interaction a co-
ordinate in space matching the centroid of all of the involved (two
or more) particles, as shown in Figure 2.

All particle’s sampled interactions are designated as centers of Voronoi

cells (shown as black dots in Figure 3(a)). Each sampled interac-
tion is the representative for all the interactions in its neighborhood,
defined as the sample’s Voronoi cell; the sample’s weight is the
number of interactions the sample represents. Since the weighted
sample is a vertex in our hypergraph, when a partitioner assigns a
weighted sample to a process, all of the interactions in the corre-
sponding Voronoi cell are also assigned to that process. Multiple

(a) Sampled Interactions De- (b) Adaptive Sampling:
fine Voronoi Cell Decomposi- Multi-Layer Voronoi Cell
tion Decomposition

Figure 3: Interaction Sampling Strategy

Voronoi cells can be assigned to each process, and the sample rate
becomes a direct method for controlling the accuracy/cost tradeoff
of the granularity of the decomposition. To assign a non-sampled
interaction to a process, we first find its nearest neighbor among
the sampled interactions, and assign the non-sampled interaction to
the same process as the sampled one. Note that if a single sample
represents the interactions of a particle, all of the particle’s interac-
tions effectively belong to a single Voronoi cell, allowing us to skip
the nearest neighbor calculation for this common case.

It has been shown that in complex systems consisting of many in-
teracting elements, the dynamical process results in power law dis-
tribution of activity of the elements [17]. Specifically, in N-body
simulations, interaction density asymptotically follows a power law
distribution. Thus our random sampling leads to Voronoi cells
whose density follows a power law distribution and can be fitted
to a gamma distribution:

P(z) = — =~z le™® (0

where k is a shape parameter, © is a scale parameter, and I'(k)
is the gamma function evaluated at k. While the parameters of the
gamma distribution representing Voronoi cell density (or weights of
sampled interactions) vary in the examples we have considered, the
important characteristic to note is the thin long tail of the distribu-
tion as shown in Figure 4, which implies that a very small number
of the samples we take may represent a large portion of the interac-
tions. These samples become the disproportionately heavy vertices
in the graph we partition, and are treated as indivisible units of
work by the partitioner. This limits the partitioner’s ability to load
balance effectively.

—— Gamma distribution (© = 5, k = 0.2)

Frequency

2 4

Sample Weight

Figure 4: Gamma Distribution Probability Density Function

Algorithm 2 Sampling-based Interaction Load Balancer

p < # processes, n <# particles, m <—# interactions,
s < # sampled interactions per particle (s ~ % x % sampled),
HG < hypergraph (V < interactions, HE < particles)

Step Cost

n

1: Add particles as hyperedges to hypergraph HG O(;)

2: Build list of interactions per particle incurred

3: Sample vertices (interactions) and add to HG O(S%)

4: Per particle, build kd-tree +— samples o (% s log(s))
5: Use kd-tree: assign interactions to samples o (% log(s))
6: Partition HG: assign samples to processes o (% log %)
7: Redistribute particles, samples, ghosts incurred

8: Build list of interactions per particle incurred

9

: Per particle, build kd-tree <— samples
10: Use kd-tree: interaction — sample — process

O(™ s log(s))
O(™ 10g(s))

This problem can be thought of as under-sampling. However, uni-
formly increasing the sample rate will not correct the power law
distribution of sample weights. Therefore, we apply an adaptive
sampling strategy to increase the number of samples in areas with
high density. Voronoi cells representing heavy samples are subse-
quently split into more Voronoi cells, as shown in Figure 3(b). To
not affect the Voronoi decomposition of the surrounding cells, we
have chosen a layered approach, where only the space in the cell
being refined is considered when applying a new Voronoi decom-
position.

Note that because the number of heavy samples is small, our adap-
tive sampling strategy allows us to achieve a more uniform dis-
tribution of sample weights while only increasing the number of
samples slightly. The (red) shaded area under the tail of the gamma
distribution pdf in Figure 4 depicts the number of samples that are
larger than 2y; the size of samples that should be refined is a pa-
rameter in our implementation, and we have studied its impact on
the cost/accuracy tradeoff. In Section 6, we will discuss the impact
of the sample size and the adaptive sampling strategy on the sample
weight distribution and balancing quality.

S. AN INTERACTION-BASED LOAD BAL-
ANCER FOR BARNES-HUT

Using the interaction-based decomposition described in Section 3
and the sampling approach described in Section 4, we have a com-
plete approach to load balancing interactions in N-body applica-
tions, which we implement in a Barnes-Hut simulation code to
demonstrate the efficiency of our techniques. The approach is fully
general, though, and could be equally integrated into any other N-
body simulation framework.

5.1 Putting all Steps Together

Algorithm 2 outlines our complete approach. First, we add all par-
ticles to the hypergraph as hyperedges (line 1), and then build a list
of interactions and assign a coordinate to each interaction, either by
choosing one of the involved particles’s coordinates, or taking the
centroid of all of the involved particles (two or more particles) (line
2). Second, we take a uniform random sample of these interaction
(line 3) and build a nearest-neighbor tree (kd-tree) per particle from
the samples (line 4); each sample defines a Voronoi cell. Third, we
use the nearest-neighbor tree to count the non-sampled interactions
that fall into each Voronoi cell (line 5), adaptively refine the sample
if necessary, and add them to the hypergraph, weighted with their
corresponding counts. We utilize a partitioner to assign the sampled

interactions to processes in a balanced manner (line 6) and assign
particles to processes by majority rule.The application redistributes
the particles and the sampled interactions, sets up the ghost nodes
(line 7), and builds the interaction list again (line 8). For each par-
ticle, we build a nearest-neighbor tree of the local samples (line 9)
and use it to assign the non-sampled interactions (line 10).

Table 2 also lists the costs associated with each step. ‘Incurred’
cost means that the application will already do this step regardless
of the load balancing approach, the other costs are additional to the
application and must be carefully considered. The costs associated
with the nearest-neighbor tree and the partitioner are determined by
the size and the variability of the sample set, as is the quality of the
resulting partitioning.

As we will show in Section 6, the cost of our scheme can be di-
vided into the cost of sampling the graph and computing the sam-
ple weights, and the cost of partitioning. It is important to note that
the cost of sampling is relative to the number of interactions each
particle is involved in; if a particle is only involved in a small num-
ber of interactions which are then represented by a single sample,
the cost of building the nearest-neighbor tree and classifying the
non-sampled interactions is O(1).

We use the nearest-neighbor implementation from CGAL [2] for
the nearest neighbor computation; other implementations or range
queries are possible alternatives to consider in future work to re-
duce the cost. Further, when the number of samples in the tree
is small, a linear traversal of an array of samples is faster than
pointer jumping through the tree, despite being O(s) rather than

O(log(s)).

[\

Figure 5: Octree in Barnes-Hut Benchmark

5.2 Interaction Partitioning to Barnes-Hut

We apply our method to a Barnes-Hut simulation code. Barnes-
Hut’s force-calculation algorithm uses an octree to approximately
compute the force that the n particles in the system have on each
other (e.g., through gravity). The n leaves of the octree are the in-
dividual particles, while the internal nodes summarize information
about the particles contained in the subtree (i.e., combined mass
and center of gravity), which effectively partitions the volume hi-
erarchically around the n particles into successively smaller cells.
While a precise computation would have to consider O(n?) inter-
actions, the Barnes-Hut algorithm uses the summary information
contained at each level of the hierarchy to approximate interactions
for far away particles: particles that interact with other particles
in nearby cells are computed directly, while for interactions with

Algorithm 3 Pseudocode for Barnes-Hut

Input. particles <— /* read input */;
1: for int step = 0; step < maxTimestep; step++ do

2: Octree octree = new Octree();
3: for V particle p € bodies do

4. octree.Insert(p);

5: end for

6: for V Subtrees s € octree do

7. s.ComputeCombinedMass();
8: s.ComputeCenterOfGravity();
9: end for

10: for V Particle p € bodies do
11: b.ComputeForce(octree);
12: end for

13: for V Particle p € bodies do
14: b.Advance();

15: end for

16: end for

Algorithm 4 Pseudocode for Barnes-Hut ComputeForce()
Input. Particle p;

1: stack.PushBack(root);

2: while !stack.empty() do

3: OctreeNode node = stack.PopBack();
4: if distance(p,node) > threshold /* node is far */ then
5: ComputeForce(p, node);

6: else

7: for V child € node.children() do
8: if child is leaf then

9: ComputeForce(p, child);

10: else

11: stack.PushBack(child);

12: end if

13: end for

14: endif

15: end while

cells that are sufficiently far away, it suffices to perform only one
force computation with the cell instead of performing one calcula-
tion with each body in the cell. Overall, this results in O(n log(n))
complexity. For example, consider the two-dimensional hierarchi-
cal subdivision of space in Figure 5. The algorithm will check the
distance to the red cell’s center of gravity (red circle); because the
distance is not large (red arrow), interactions with all the bodies in
the red cell will be computed (black arrows). Because the center
of the blue cell (blue circle) is far enough, only the interaction with
the center will be computed (blue arrow, a single computation), and
the actual bodies will not be considered (dashed arrows).

‘We created a distributed version of Barnes-Hut [4] based on a shared
memory implementation from the Lonestar suite in Galois [11, 28].
Our code is in C++ and communicates with MPI; it allows redistri-
bution between timesteps and enables assignment of each particle
to any process. Pseudocode is presented in Algorithm 3. To in-
tegrate our approach, we extract the particle interactions from the
octree data structure and use it to generate our hypergraph. Once
partitioned, we use the result of the hypergraph partitioner to deter-
mine the new load distribution.

6. PERFORMANCE EVALUATION

For our experiments, we use a Linux cluster with 1,856 compute
nodes, each consisting of two Hex-core Intel Xeon EP X5660 pro-
cessors running at 2.8 GHz, for a total of twelve cores per node and
22,272 cores total. All nodes are connected by QDR Infiniband.
We use gee 4.4.7 and MVAPICH v0.99 on top of CHAOS [1], an
HPC variant of RedHat Enterprise Linux (RHEL), running at Linux

\ \
—o— 0.4% sample
4 || —m— 0.4% sample, oversampled n
—o— 0.8% sample
—+— 0.8% sample, oversampled
g 3 l
g
g
E 2f -
R
1 [-
0 [-
| | |
128 512 2,048
Processes

Figure 10: Effect of Interaction Oversampling on Resulting
Partitioner Imbalance

kernel version 2.6.32.

All following experiments use a problem with 32K particles, which
we strong scale from 8 to 2,048 processes (which represents the
largest partition we could run on). We chose this problem since it
is the largest problem that can fit into memory for 8 processes and
hence provides us with the most realistic input at larger scales. Fur-
ther, we chose strong scaling, since reproducing density variations
for weak scaling is difficult. Only with strong scaling we can guar-
antee that the problem solved is the same one at any scale and all
data points are comparable.

6.1 Sampling and the Power Law Distribution
In this Section, we demonstrate that density variations in N-body
problems follow a power law distribution. We show how different
approaches to sampling can lead to a more uniform representation
of the sampled density, and therefore to better partitions of work.

The number of interactions computed per particle is highly vari-
able, as seen in Figure 6. Additionally, the density of interactions
follows a power law, as described in Section 4. If sampled uni-
formly, the distribution of the number of interactions each sample
represents also follows a power law, as shown in Figure 7. This
level of variability makes it extremely difficult to partition the sam-
ples; intuitively, a sample that represents many interactions will be
placed on a single process, and may make that process overloaded.

To mitigate the density properties inherent in N-body simulations,
we use a proportional per-particle sampling, where each particle is
represented by at least one sample to ensure full connectivity in the
sampled data, and particle interactions are sampled proportionally
to the number of interactions each particle is involved in, as de-
scribed in Section 4, Algorithm 1. Figure 8 shows that proportional
sampling provides a better distribution, but still does not result in
a power law distribution of sample weights, as the particles inter-
acting most are now represented by proportionally more sampled
interactions.

To compensate, we used a oversampled proportional per-particle
sampling approach. In it, we took a larger sample and discarded
the samples representing too few interactions; the proximity of the

I I T T
507+O.l%sample e |
—=— 0.2% sample | , --*"" B
40 [-| —— 0.4% sample |~ |
—+— 0.8% sample
g 30 |-| - #- Particle-Based .
2 ’
E I |
= 20 yy
IS8
10 |- s
0 |
| | | | |
8 32 128 512 2,048

Processes

Figure 11: Imbalance (Strong Scaling, 32K Particles)

interactions formerly represented by the discarded samples was re-
calculated. Figure 9 shows that oversampling and selecting the bet-
ter samples results in a tighter distribution of how many interactions
each sample represents.

Figure 10 compares how the two approaches to sampling impact
partition quality; because oversampling changes the distribution of
sample weights, it results in better partition quality. Roughly, over-
sampling can achieve the same partitioning quality as doubling the
sample size, and because it keeps the graph size the same, the load
balancing cost remains the same.

Additionally, the imbalance goes up with the number of processes
in Figure 10. This is due to strong scaling, and the fact that at larger
scale each process has fewer interactions to compute and there are
fewer samples to partition between processes. Since the number of
samples directly impacts the cost of our load balancing method, us-
ing a sampling approach that results in more uniform distribution of
sample weights becomes of increasing importance on higher pro-
cess counts.

6.2 Load Balancing Quality

We first evaluate the quality of our load balancing approach for
different sampling rates compared to a traditional particle based
approach. Figure 11 shows the imbalance, i.e., maximum load mi-
nus average load divided by average load, for our experiments. We
see that, while imbalance of the application using a particle-based
method grows quickly, our direct interaction assignment scheme
is able to achieve much lower levels of imbalance. Because our
method is sampling based, accuracy becomes a function of number
of samples, or the indivisible units assigned to processes. When
the sample is too small, quality partitioning is difficult to achieve.
However, we can see that even a very modest sample sizes of under
1% of all interactions allows for quality partitions.

6.3 Scaling Behavior of the Load Balancer
Next we study the performance or cost of our balancing approach
itself. For this we split the time spent in the load balancer into its
three main components, the time needed for the partitioner itself,
for the counting of interactions, and the exchange of samples. The
speedups of the three phases for various sample rates are shown in
Figures 12,13, and 13 respectively.

30

Frequency

500

Number of Interactions per Particle

1,000 1,500 2,000 2,500 3,000

Figure 6: Distribution of Number of Interactions per Particle

300

200

Frequency

100

500

Number of Interactions per Sample

1,000

1,500 2,000

oy '
g 10' |- +*® -
ES 5 e]
3 B]
= - € o) 1
- - @0 |
L am |
- g
109 |- Comm
L | | | |]

103 1031 1032 1033 1034

Number of Interactions per Sample

Figure 7: Distribution of Number of Interactions per Sample
with Random Sampling

300

200

Frequency

100

| |
1,500 2,000

500

Number of Interactions per Sample

1,000

Figure 8: Distribution of Number of Interactions per Sample Figure 9: Distribution of Number of Interactions per Sample

with Per-Particle Sampling

Figure 12 shows that the graph partitioner we are using (Zoltan)
does not scale well in our strong scaling case because graph par-
titioning at scale is a challenging problem. This is a well known
problem, but can be remedied. Since our method is sampling based
and our graph only contains a small portion of the interactions, it
is feasible to gather this graph onto a smaller number of processes
for partitioning, and then scatter the results. This allows us to pick
the optimal partitioner runtime independent of the size of the ap-
plication scale, resulting in overall reduced runtime. However, this
scheme is not implemented, yet, and will be added in our final pa-
per.

The other two phases, which are direct parts of our new algorithm,
on the other hand, show almost linear scaling. Figure 13 shows that
the nearest-neighbor computation scales, except when the number
of samples is so small that there is not much work left per process;
this is not a concern as this coincides with a sample too small to
achieve accuracy in balancing. Similar, in Figure 14, we see that the

with Per-Particle Oversampling

exchange of non-local interactions scales well with only minimal
degradations at large scale and for large sample sizes.

6.4 Application Performance

As the final set of experiments, we evaluate the impact of our load
balancer onto application performance. Figure 15 shows percent
improvement over particle-based balancing, where the times used
for our method include the force calculation time as well as the cost
of our algorithm. Note that while our method improves the perfor-
mance in all cases, there is a degradation in percent improvement
at scale; this is due mainly to the increasing cost of the partitioner
which can be mitigated as previously discussed. Also, the lowest
levels of sampling do not offer the balance accuracy to offset the
cost of load balancing, while sample rates of 0.2% provides a rea-
sonable overall balance between partitioning cost and load balance.

The total times of the same experiments are shown in Figure 16
as a log-log plot. It shows that our interaction-based balancer with

Speedup

Speedup

Speedup

10

3.16

—e— 0.1% sample
—m— 0.2% sample
—o— 0.4% sample
—+— 0.8% sample

8 32

|
128

Processes

|
512

|
2,048

Figure 12: Performance of Hypergraph Partitioner

1,000

100

10

Figure 13: Performance of Interaction Counting

1,000

100

10

Figure 14

—e— (0.1% sample
—m— 0.2% sample
—e— 0.4% sample
—+— 0.8% sample
Ideal

- .-

|
128

Processes

|
512

|
2,048

—e— 0.1% sample
—m— 0.2% sample
—o— 0.4% sample
—+— 0.8% sample

- .- Ideal

|
128

Processes

|
512

: Performance of Sample Exchange

|
2,048

% Faster

Time (sec)

40

30

20

10

—o— 0.1% sample
—m— 0.2% sample
—o— 0.4% sample
—+— 0.8% sample

8 32

128

Processes

512 2,048

Figure 15: % Faster (Strong Scaling, 32K Particles)

102

10!

—o—
.
e
—k—
——

0.1% sample
0.2% sample
0.4% sample
0.8% sample
Particle-Based

|
128

|
512

Processes

| N
2,048

Figure 16: Total Time (Strong Scaling, 32K Particles)

Q

=

=

= 1

e

g L

a L —

g 0.8 - — — - i
5] = 1 . L
<] =H =
et L

Q

g 06 i
e

5

m

e

2 0.4 i
<

e

5

2 0.2 [0 Computation Time

i1 . [.
£ [0 Sampling Cost

8 O Partitioning (Zoltan)

.E 0 I N N
= 8 32 128 512 2,048
(]

e Processes

Figure 17: Performance of Computation and Interaction-Based
Balancer Relative to Particle-Based Balanced Computation Us-
ing 0.8% Sample

sufficient sampling performs the best and clearly outperforms the
particle-based balancer.

Figure 17 shows the cost of the interaction-based method and the
computation time as compared to the particle-based-balanced com-
putation time. Note that the cost of our algorithm stays relatively
flat, while the increase is due to the graph partitioner. Also not that
even more improvement of computation time is achievable as we
scale up.

Finally we show the aggregated runtime across all processors split
into compute time (Figure 18) and overhead of our load balancer 19
(same size bars show same overall compute time across all pro-
cesses and hence perfect scaling). The overhead numbers show
again the limited scalability of the partitioner itself, especially at
larger sampling sizes, which we can eliminate as discussed above.
For the compute times, however, we see that our load balancer
achieves an almost even load distribution across all scales, resulting
in only minimal increases in compute times at larger scales.

7. RELATED WORK

‘We have discussed related work on traditional N-body applications
in Section 2. In addition, work related to our approach includes
applications and frameworks using geometric and graph-based load
balancing methods, partitioners, and work-stealing.

Other types of scientific applications employ geometric load bal-
ancers. SAMRALI [41] is a structured AMR application that orders
boxes according to their spatial location by placing a Morton space
filling curve [25] through the box centroids to increase the likeli-
hood that the neighboring patches will reside on the same processor
after load balancing; a geometric balancer in this case makes sense
since the boxes are the work units to be explicitly balanced. PLUM
[8, 26, 27] is a load balancing framework for adaptive grid applica-
tions; it is capable of using any partitioning algorithms and assists
in efficient processor assignment and remapping of the computa-
tion. DRAMA [5] is a dynamic load balancing library for finite

Time (ms)

Time (ms)

1.5

0.5

200

150

100

50

Figure 19: Aggregate Cost of Our Algorithm

10"

0o 1%

Oo 2%
HIOo 4%

I 8%

I B Particle-based

T T
32 128 512
Processes

Figure 18: Aggregate Computation Tim

T
2,048

DH [IH DH HH Il

Il

T T T
32 128 512
Processes

\
2,048

element methods that includes geometric and graph partitioning
algorithms. Its repartitioning modules include iterative pairwise
load balancing, recursive coordinate bisection (RCB), and using
ParMetis and Jostle underneath. Since DRAMA specializes on finite
element methods, it includes cost functions to account for work and
communication associated specifically with elements and nodes in
the finite element mesh.

An alternative to geometric methods are partitioners that work with
mesh or graph representation of computation, i.e., ParMetis [29,
30], Jostle [35, 36, 37], and Zoltan [14, 15], Zoltan also includes a
suite of geometric and graph partitioning algorithms, such as recur-
sive coordinate bisection, recursive inertial bisection, refinement
tree-based partitioning, oct-tree partitioning, ParMetis and Jostle.
In the graph representation, graph vertices represent computation
while graph edges represent communication. In a hypergraph, ver-
tices represent computation and hyperedges represent communica-
tion. While the tools in these libraries are powerful, a key respon-
sibility placed on the user is coming up with the appropriate rep-
resentation for their application to allow the partitioners to balance
the units while being aware of the constraints. Hypergraph parti-
tioning can be used for solving many balancing problems, i.e., LU
factorization [22].

Overdecomposition and work-stealing are yet another way to load
balance scientific applications. Charm++ [7, 9] requires the pro-
grammer to express the decomposition (of data and work) into a
large number of objects and assigns tasks to processes. Charm++
migrates tasks between processor queues based on runtime mea-
surements anda suite of greedy strategies, refinement strategies,
and graph-based strategies. ADLB [24] is an Asynchronous Dy-
namic Load Balancing software library designed for instantaneous
load balancing via work-stealing. Similarly, Cilk [13, 18, 19] im-
plements work stealing in its runtime system for task load balanc-
ing. Overdecomposition, scheduling and work-stealing work only
for the types of applications where the computation can be decom-
posed into independent objects; since many of the applications do
not work this way, a more general approach is necessary.

8. CONCLUSION

We have developed a methodology for explicitly balancing inter-
actions in N-body applications. We characterized the distribution
of interactions in N-body applications as power law, and presented
a sampling approach that allows a deterministic representation of
a large number of interactions both accurately and affordably. We
applied hypergraph partitioning to achieve accuracy in load balanc-
ing while minimizing the communication required in the applica-
tion. We evaluated our approach on a Barnes-Hut algorithm and
showed significant performance improvement.

9. REFERENCES

[1] chaos-release: Linux distribution for high performance
computing. http://code.google.com/p/chaos-
release/wiki/CHAOS_Description.

[2] CcAL, Computational Geometry Algorithms Library.
http://www.cgal.org.

[3] I. Banicescu and S. Flynn Hummel. Balancing processor
loads and exploiting data locality in N-body simulations. In
ACM/IEEE Conf. on Supercomputing, 1995.

[4] J. Barnes and P. Hut. A hierarchical O(N log N)
force-calculation algorithm. Nature, 324:446-449, 1986.

[5] A.Basermann, J. Clinckemaillie, T. Coupez, J. Fingberg,

H. Digonnet, R. Ducloux, J. M. Gratien, U. Hartmann,

G. Lonsdale, B. Maerten, D. Roose, and C. Walshaw.
Dynamic load-balancing of finite element applications with
the DRAMA library. Applied Mathematical Modelling,
25(2), 2000.

[6] M. J. Berger and S. H. Bokhari. A partitioning strategy for

nonuniform problems on multiprocessors. IEEE

Transactions on Computers, 1987.

A. Bhatelé, L. V. Kalé, and S. Kumar. Dynamic topology

aware load balancing algorithms for MD applications. In

ACM SIGARCH Intl. Conf. on Supercomputing, 2009.

R. Biswas, L. Oliker, S. K. Das, and D. Harvey. Portable

parallel programming for the dynamic load balancing of

unstructured grid applications. In IEEE Intl. Symposium on

Parallel Processing, volume 0, 1999.

[9] R. K. Brunner and L. V. Kalé. Handling application-induced
load imbalance using parallel objects. Par. and Distr. Comp.
for Symbolic and Irregular Applications, 2000.

[10] V. Bulatov, W. Cai, J. Fier, M. Hiratani, G. Hommes,

T. Pierce, M. Tang, M. Rhee, K. Yates, and T. Arsenlis.
Scalable line dynamics in ParaDiS. In Supercomp., 2004.

[11] M. Burtscher and K. Pingali. An efficient CUDA
implementation of the tree-based barnes hut n-body
algorithm. In GPU Computing Gems Emerald Edition, 2011.

[12] A.R. Butz. Convergence with Hilbert’s space filling curve.
Journ. of Computer & System Sciences, 3(2):128—-146, 1969.

[13] R. B. Christopher, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: An efficient
multithreaded runtime system. Journal of Parallel and
Distributed Computing, 1995.

[14] K. Devine, E. Boman, R. Heaphy, B. Hendrickson,

J. Teresco, J. Faik, J. Flaherty, and L. Gervasio. New
challanges in dynamic load balancing. Applied Numerical
Mathematics, 52(2-3), 2005.

[15] K. Devine, B. Hendrickson, E. Boman, M. St. John, and
C. Vaughan. Design of dynamic load-balancing tools for
parallel applications. In ACM SIGARCH Intl. Conf. on
Supercomputing, 2000.

[16] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling,
and U. V. Catalyiirek. Parallel hypergraph partitioning for
scientific computing. In /IEEE Intl. Parallel and Distributed
Processing Symposium (IPDPS), 2006.

[17] Z. Eisler, 1. Bartos, and J. Kertesz. Fluctuation scaling in
complex systems: Taylor’s law and beyond. Advances in
Physics, 57(1):89-142, 2008.

[18] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin.
Reducers and other cilk++ hyperobjects. In ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA °09,
2009.

[19] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language. In
ACM SIGPLAN Conf. on Programming Language Design
and Implementation, volume 33, 1998.

[20] P. Gibbon, R. Speck, A. Karmakar, L. Arnold, W. Frings,
B. Berberich, D. Reiter, and M. Masandek. Progress in
mesh-free plasma simulation with parallel tree codes. I[EEE
Transactions on Plasma Science, 38(9):2367-2376, 2010.

[21] L. Greengard and V. Rokhlin. A Fast Algorithm for Particle
Simulations. Journal of Computational Physics,
135:280-292, 1987.

[22] L. Grigori, E. G. Boman, S. Donfack, and T. A. Davis.

[7

—

[8

—

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Hypergraph-based unsymmetric nested dissection ordering
for sparse lu factorization. SIAM J. Scientific Computing,
32(6):3426-3446, 2010.

N. Komatsu, T. Kiwata, and S. Kimura. Thermodynamic
properties of an evaporation process in self-gravitating
n-body systems. Phys. Rev. E, 82, Aug 2010.

E. L. Lusk, S. C. Pieper, and R. M. Butler. More scalability,
less pain: A simple programming model and its
implementation for extreme computing.
http://www.cs.mtsu.edu/ rbutler/adlb/.

G. Morton. A computer oriented geodetic data base and a
new technique in file sequencing. IBM tech report, 1966.

L. Oliker and R. Biswas. Efficient load balancing and data
remapping for adaptive grid calculations. In ACM
Symposium on Parallel Algorithms and Architectures, 1997.
L. Oliker and R. Biswas. PLUM: parallel load balancing for
adaptive unstructured meshes. Journal of Parallel and Distr.
Computing, 1998.

K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A.
Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich,
M. Méndez-Lojo, D. Prountzos, and X. Sui. The tao of
parallelism in algorithms. In Programming Language Design
and Implementation (PLDI), 2011.

K. Schloegel, G. Karypis, and V. Kumar. Parallel multilevel
algorithms for multi-constraint graph partitioning. In Intl.
Euro-Par Conf. on Parallel Processing, 2000.

K. Schloegel, G. Karypis, and V. Kumar. A unified algorithm
for load-balancing adaptive scientific simulations. In
ACM/IEEE Conf. on Supercomputing, 2000.

J. P. Singh, C. Holt, J. L. Hennessy, and A. Gupta. A parallel
adaptive fast multipole method. In Supercomputing, 1993.
C. D. Snow, E. J. Sorin, Y. M. Rhee, and V. S. Pande. How
well can simulation predict protein folding kinetics and
thermodynamics? volume 34, pages 43-69, 2005.

F. Streitz, J. Glosli, M. Patel, B. Chan, R. Yates,

B. de Supinski, J. Sexton, and J. Gunnels. Simulating
solidification in metals at high pressure: The drive to
petascale computing. J. of Physics: Conf. Series, 46, 2006.
K. S. Thorne. Multipole expansions of gravitational
radiation. Reviews of Modern Physics, 52:299-340, 1980.
C. Walshaw and M. Cross. Parallel optimisation algorxithms
for multilevel mesh partitioning. Parallel Computing, 2000.
C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic
graph partitioning for adaptive unstructured meshes. Journal
of Parallel and Distributed Computing, 47(2), 1997.

C. Walshaw, M. Cross, and K. McManus. Multiphase mesh
partitioning. Applied Mathematical Modelling, 25(2), 2000.
M. S. Warren and J. K. Salmon. Astrophysical N-body
simulations using hierarchical tree data structures. In Conf.
on Supercomputing, 1992.

M. S. Warren and J. K. Salmon. A parallel hashed oct-tree
N-body algorithm. In Conf. on Supercomputing, 1993.

M. Winkel, R. Speck, H. Hiibner, L. Arnold, R. Krause, and
P. Gibbon. A massively parallel, multi-disciplinary
Barnes-Hut tree code for extreme-scale N-body simulations.
Computer Physics Communications, 183(4):880-889, 2012.
A. M. Wissink, D. Hysom, and R. D. Hornung. Enhancing
scalability of parallel structured AMR calculations. In ACM
SIGARCH Intl. Conf. on Supercomputing, 2003.

