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ABSTRACT
Co-location, where multiple jobs share compute nodes in
large-scale HPC systems, has been shown to increase aggre-
gate throughput and energy efficiency by 10 to 20%. How-
ever, system operators disallow co-location due to fair-pricing
concerns, i.e., a pricing mechanism that considers perfor-
mance interference from co-running jobs. In the current
pricing model, application execution time determines the
price, which results in unfair prices paid by the minority of
users whose jobs suffer from co-location.

This paper presents POPPA, a runtime system that en-
ables fair pricing by delivering precise online interference de-
tection and facilitates the adoption of supercomputers with
co-locations. POPPA leverages a novel shutter mechanism
– a cyclic, fine-grained interference sampling mechanism to
accurately deduce the interference between co-runners – to
provide unbiased pricing of jobs that share nodes. POPPA

is able to quantify inter-application interference within 4%
mean absolute error on a variety of co-located benchmark
and real scientific workloads.

Keywords
Online Pricing, Supercomputer Accounting, Resource Shar-
ing, Chip Multiprocessor, Contention

1. INTRODUCTION
Supercomputers typically have hundreds to thousands of

users and consist of tens to thousands of individual servers
connected over a high-speed optical interconnect. At any
one time, many users concurrently utilize the system. The
current approach has been to give each user a non-overlapping
set of compute nodes on which to run their application.
While this approach prevents jobs from different users from
clobbering one another, it leads to a missed performance op-
portunity. In fact, recent work has shown that co-location,
where a set of jobs from different users run on a shared
set of compute nodes, can increase mean application perfor-
mance and system energy efficiency by 20% by reducing con-
tention for shared resources in the memory subsystem and
inter-node network [38, 33, 20]. In addition, current archi-
tectural trends and exascale computing studies suggest that
the benefit of co-location is likely to increase. The studies
project that compute nodes will have hundreds to thousands
of cores [16]. For some applications, it may not be possible
to use all of these cores efficiently. In particular, 80% of all
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Figure 1: Performance of GTC, a plasma physics
code, when co-located with the applications on the
x-axis. The current pricing mechanism penalizes the
user for co-locating their job by charging them more
when their job is degraded more. The blue line is
the mean fair price.

XSEDE jobs use less than 512 cores [11, 45], which means
co-location will likely be necessary to utilize all of a node’s
cores.

Co-location seems inevitable for larger jobs as well. Pro-
jected scaling trends suggest an increase in the number of
cores per node that out paces increases in memory band-
width and cache capacity, which will reduce the resources
available per core. To mitigate contention, resource-hungry
jobs will have to be spread out over more compute nodes
and paired with resource-light jobs to maintain high system
utilization [20].

Although co-location is beneficial to performance and en-
ergy efficiency, it also creates a new set of challenges, one
of which is fair pricing. Fair pricing is a concern because
although there is a net benefit from co-location, some pair-
ing can cause one of the applications to slow down. When
this happens, we argue that the user should be discounted.
However, if we apply the current state of practice (SOP) in
HPC infrastructures, where users are billed proportionally
to the time to execute their job, we find there is gross in-
equity – users whose jobs degrade pay more to run their jobs
than when co-location is absent and users whose jobs speed
up pay less.

Figure 1 illustrates the challenge. Under the current state
of practice, a user running GTC[41], a plasma physics code,



pays 60% more when co-located with LAMMPS[3], a molec-
ular dynamics code, versus AMG[15, 1], a parallel algebraic
multigrid solver. To remedy this problem, we suggest dis-
counting a user based on the interference caused by the other
co-running applications. The greater the interference, the
greater the discount. The green bars show one such scheme.
Because co-location increases machine throughput per unit
time, these discounts can be viewed as passing the efficiency
savings from co-location back to the end user when their
expectation of service is violated.

Although the concept of progressive discounts is simple,
the realization of such a policy on real systems poses a
number of practical challenges. In particular, a fair pric-
ing model of this nature requires precisely quantifying the
interference due to shared resource contention. While there
has been significant research into predicting cross-core in-
terference, many of the techniques make heavy use of static
profiling or have been tailored to specific machines or ap-
plications [42, 25, 26]. Even though this work has yielded
considerable insight into the problem of shared resource con-
tention, we argue that in practice, it is not practical for
precise pricing on a real HPC cluster. In this domain, static
profiling and machine- or application-specific approaches are
not suitable as jobs may run very shortly after submission
and their characterizations may not be known a priori. Al-
though application profiling may enrich the solution space,
we note that altering even a single input parameter for an
application can vastly change its characteristics. For exam-
ple, doubling a single array dimension can often radically
transform an application’s sensitivity to and aggressiveness
on the memory subsystem. Thus, an instantaneous and dy-
namic mechanism is needed to continuously monitor and
quantify the interference jobs suffer to drive precise pricing.

In addition to be being dynamic and precise, the funda-
mental pricing mechanism must also be lightweight. The
underlying pricing agent has to be mostly invisible to the
application and therefore must have a negligible overhead,
below the system noise threshold. These objectives lead us
to the two key insights of the work – only a software system
that uses empirical, online tests is suitable for this prob-
lem domain, and such an approach must be agnostic to the
underlying software and hardware.

In this paper, we present such a solution: Persistent On-
line Precise Pricing Agent (POPPA). POPPA is a lightweight
runtime system that utilizes a cyclic, fine-grain, interference
sampling mechanism to accurately deduce the interference
between co-runners. The key design feature of POPPA is a
dynamic contention detection technique we call shuttering.
For brief periods of execution, POPPA pauses all applications
but one and measures how the selected application’s perfor-
mance changes versus running co-located. From the dispar-
ity between the application’s rate of forward progress made
while running co-located versus shuttered, POPPA is able to
precisely determine the impact of interference resulting from
co-location and use these measurements to drive fair pricing
for all user jobs.

The contributions of this work are as follows:

• We introduce POPPA, a lightweight, workload and ma-
chine agnostic runtime system that enables fair pricing
for HPC clusters. POPPA functions entirely in soft-
ware, requires no changes to system stack in current
HPC clusters, and is readily deployable.

• We present the design of precise shuttering, a mecha-
nism for the precise online measurement of the perfor-
mance impact of cross-core interference. Our precise
shutter approach functions dynamically and requires
no a priori knowledge or profiling of the applications.

• We present a new pricing model for HPC clusters based
on POPPA to provide fair pricing to users.

• We provide a thorough evaluation of POPPA’s efficacy
and robustness as the central accounting mechanism
on HPC clusters with a mix of MPI benchmarks and
real workloads.

POPPA predicts co-located application runtime with 4%
mean absolute error. Using POPPA, we are able to discount
the average user by 9.5% and deliver a pricing distribution
that almost exactly matches that of an omniscient oracle.

2. BACKGROUND AND MOTIVATION
In order to better understand why fair pricing is of such

importance, we must first explore the current state of prac-
tice in accounting on supercomputers. We start by examin-
ing the accounting and allocation model found in the United
States Department of Energy Office of Science INCITE pro-
gram [12] and the National Science Foundation XSEDE pro-
gram [11], two of the largest U.S. programs that provide re-
sources to the general HPC research community. Each of
these programs facilitates access to a number of large scale
computing infrastructures. To successfully obtain an alloca-
tion, researchers submit grant proposals and, after reviews,
are awarded time on those systems as a finite number of
service units (SUs). When a user runs a job on a sys-
tem, they deplete their bank of SUs at a rate proportional
to the length of their programs’ execution and the number
of compute nodes that they request.

In this model, users need strong guarantees that the value
of an SU will not be negatively affected by other users’
jobs running on the same computing resources. On the
other hand, supercomputer administrators care about user
satisfaction and are incentivized to provide users with the
best possible experience because individual supercomputing
centers are awarded funds largely based on the success and
popularity of their facilities. Consequently, we observe that
throughout all levels of the funding ladder, fair pric-
ing and accounting are crucial concerns. Regardless
of what mechanisms are implemented to improve supercom-
puter performance, energy efficiency or fault tolerance, they
must not pervert the fairness of the pricing scheme.

2.1 MPI Programming Model
Most large scale scientific applications utilize the Message

Passing Interface (MPI) as the core abstraction to facilitate
workload distribution across a cluster. Two main character-
istics of MPI programs are as follows:

1) Single Program Multiple Data (SPMD): MPI
processes execute the same static program binary and use
ranks to dictate communication patterns as well as which
blocks of code get executed by different processes. While this
allows for a large amount of potential diversity between pro-
cesses, in practice most MPI programs are Single Program
Multiple Data (SPMD). All processes execute the same core
algorithm on different data. Thus within an MPI program,



all the processes have high similarity, e.g., they all compete
for the same resources.

2) Tightly coupled communication synchronization:
The vast majority of MPI programs exhibit tightly coupled
communication synchronization. Because of this tight syn-
chronization, processes must execute in relative lock-step. If
a process reaches an explicit or implicit barrier before the
other necessary parties, it must wait until all others make
similar progress before proceeding.

2.2 Co-location of MPI programs
When we reason about the nature of MPI programs, it

quickly becomes evident that executing a single MPI pro-
gram across a private set of compute nodes is an inefficient
use of system resources. The homogeneity between MPI pro-
cesses and the fact that they are tightly coupled mean that
many processes will execute the same program regions with
high concurrency. When this happens, there is high risk for
resource contention and performance degradation – homoge-
neous processes have high propensity to evict one another’s
data in the shared last level cache (LLC), saturate off-chip
bandwidth to main memory, and cause a backlog of messages
for internode communication.

Previous research shows that homogeneous MPI processes
can degrade one another’s performance by more than 2x [20,
38]. In addition, these works show that introducing hetero-
geneity in workloads by co-locating multiple MPI programs
on disjoint cores can drastically improve performance and
energy efficiency. In fact, both studies find that aggregate
throughput increases by 12 to 23% on average over the cur-
rent state of practice, and [20] shows that system energy
efficiency increases by 11 to 22%.

In conclusion, given the high cost of large supercomput-
ers and the great performance and efficiency benefit of co-
location, it is essential that we provide fair pricing mecha-
nisms to make co-location practical.

3. POPPA OVERVIEW
In this section, we present the overview of the Persis-

tent Online Precise Pricing Agent (POPPA) framework. Our
primary design objective for POPPA is to provide accurate
performance interference estimates for parallel applications
with negligible overhead. As shown in Figure 2, POPPA con-
sists of a main monitoring agent called the Controller and a
series of Execution Managers.

Execution Manager: Each Execution Manager is re-
sponsible for launching and overseeing the entire execution
of a parallel application on a given machine. The Execu-
tion Managers read from the central job queue and select
the next job to run according to the job priority and its re-
source needs. An Execution Manager launches the selected
job and attaches a performance monitoring context (PMC)
to the job. The PMC monitors the job performance by read-
ing and evaluating appropriate hardware performance coun-
ters. During execution, the Execution Manager updates and
reports the current status and performance data of the job
to the Controller.

Controller: The Controller is the main component of
POPPA. Its principle responsibility is to conduct shutter-
ing, a mechanism to measure and quantify the performance
interference among the co-running applications. In essence,
the Controller periodically pauses each application for a very
short period and monitors the performance impact of paus-
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Figure 2: Interaction between POPPA components
and other entities

ing one application on all other active applications. The
performance impact indicates the potential interference the
paused application has been inflicting on other applications.
The Controller probes the PMCs of each active job to ac-
quire the performance data and logs it. The shuttering of
each application happens very rarely and thus incurs min-
imum overhead. We will present more details of the shut-
tering mechanism including our algorithms and policies in
Section 5 and evaluate its accuracy and overhead in Section
8.

Figure 2 presents how POPPA can be used for pricing.
After execution of a job has completed, the Pricer thread
analyzes the raw performance data logged by the Controller
and quantifies the performance interference and degrada-
tion. More details of the analysis and pricing are presented
in Sections 4 and 6. Based on the quantification, the Pricer
produces the price to be charged and propagates it to the
Account Manager, which then deducts the price from the
user’s bank of SUs.

4. PRICING MODEL
In this section, we discuss the key issues related to pricing

and accounting on current supercomputers and extend those
notions to a supercomputer with job co-locations.

4.1 Pricing Without Co-location
For purposes of this discussion, assume that a user wants

to run a job i on a supercomputer and that Pi denotes the
price that the user is charged for running i.

In present day systems, Pi is given by Equation 1, where
L is a rate constant in terms of service units per core per
time quanta, Ci is the number of cores that a job uses in
whole compute node increments, and Ti is the run time of
the program.

Pi = L ∗ Ci ∗ Ti (1)

From this equation, we can see that the price variable Pi

is linearly proportional to both the cores variable Ci and the
time variable Ti.

4.2 Pricing With Co-location
In this section, we propose how one could modify the ex-

isting pricing model to more fairly price applications when



co-locations are present. In particular, if we have a job i that
is co-located with a set of jobs J we want a formula that will

produce a reasonable price P
co(J)
i , which takes into account

all potential interference from any application in J . To this
end, we replace L with a rate function F , yielding Equation
2, where F : R× R→ R. T solo

i is the runtime when the job

i gets all compute nodes to itself and T
co(J)
i is the run time

of the job i when i is co-located with the set J of other jobs.

P
co(J)
i = F (T solo

i , T
co(J)
i ) ∗ Ci ∗ T solo

i (2)

Ideally, F is monotonically non-increasing so that the more
degradation an application suffers from co-location, the more
the user is discounted. For the purposes of this paper, we
assume utility is proportional to 1 minus the degradation.
Thus if we equate utility to fairness, then we select F such
that users are charged at a rate proportional to the degra-
dation that each of their jobs experiences due to contention

from co-runners. Thus if D
co(J)
i is the degradation, then we

want P
co(J)
i = (1 − Dco(J)

i ) ∗ P solo
i . Thus we define F as

follows:

F (T solo
i , T

co(J)
i ) = L ∗ T solo

i

T
co(J)
i

= L ∗ (1−Dco(J)
i ) (3)

By substituting Equation 3 into Equation 2 we see that
we achieve the specific pricing model shown in Equation 4.

P
co(J)
i = L ∗ T solo

i

T
co(J)
i

∗ Ci ∗ T solo
i (4)

While Equation 4 is good for the user, we acknowledge
that it is an idealistic model. Its simplicity makes it easy
for end users to understand; however, we note other factors
such as resource manager queue wait times, job priority,
workload composition, the ratio of each shared resource a job
consumes, machine architecture, and scheduling policy, i.e.
capability versus capacity are also important factors when
determining a fair price. Thus supercomputing facilities will
have to decide what value of F makes sense for each of their
systems.

5. PRECISE SHUTTER MECHANISM
As previously mentioned, POPPA’s chief design objective

is to produce fair prices with high precision, low overhead,
and without the need for a priori knowledge. To achieve
these goals we have designed precise shuttering, an online
co-runner interference masking approach. Essentially, the
precise shuttering mechanism functions by alternating an
application’s execution environment between one where co-
runners are executing and another where they are effectively
absent.

Figure 3 shows shuttering in action on two applications A
and B that are co-located. The shuttering algorithm alter-
nates between execution regions where A and B co-execute,
A executes while B sleeps, A and B co-execute, and B exe-
cutes while A sleeps. We repeat this pattern throughout the
execution of the programs.

To gain insight from shuttering, we must measure the per-
formance of application before, after, and during shutter re-
gions. During each shutter of duration S, we leverage hard-
ware performance monitors via libpfm4 [7, 27] to measure
the instructions per cycle of the sole non-sleeping applica-
tion. To infer the degradation due to co-runners, we also

Program A Program B

Execution 
Time

KEY

Paired Execution

Paired + IPC Measure

Solo + IPC Measure

Shutter Period

Figure 3: An example of shuttering in action on two
separate jobs

measure the instructions per cycle (IPC) of all active appli-
cations S microseconds before the shutter and S microsec-
onds directly after it.

Since we are primarily concerned in how performance changes
with the presence or absence of contention, we only need to
monitor the performance during small windows around shut-
ters. We also perform each shutter infrequently to minimize
the perturbation of application execution. We also param-
eterize the rate of shutter samples to control its overhead.
As we show in this work, frequent shutters are not required
to produce an accurate predictive model.

Algorithm 1 Measure(i, S, K)

1: Initialize array perfValue of length |A[i]|
2: for k = 0 to K − 1 do
3: for each thread t in A[i] do
4: perfValue[t] = ReadCounters(t)
5: end for
6: Sleep for S µs
7: for each thread t in A[i] do
8: perfDict[t].append(ReadCounters(t)-perfValue[t])
9: end for

10: end for

Algorithm 2 Shutter Core(j, S, K)

1: for i = 0 to |A| − 1, where i 6= j do
2: for each thread t that is part of A[i] do
3: Pause t
4: end for
5: end for
6: Measure(j, S, K)
7: for i = 0 to |A| − 1, where i 6= j do
8: for each thread t that is part of A[i] do
9: Resume t

10: perfDict[t].append(NAN)
11: end for
12: end for

5.1 Algorithms
In this section, we present the logic of the shutter mech-

anism, whose core parts are shown in Algorithms 1, 2 and
3. Below we define a list of common data structures and
constants used by the algorithms:

• A, an array of co-located applications



Algorithm 3 POPPA Core

1: j = 0
2: while true do
3: for i = 0 to |A| − 1 do
4: Measure(i, S, K)
5: end for
6: Shutter(j, S, K)
7: for i = 0 to |A| − 1 do
8: Measure(i, S, K)
9: end for

10: j = (j + 1) mod |A|
11: Sleep Pµs
12: end while

• perfDict, a lookup table that stores the measured IPC
values of each application

• K, the number of measurements to make in a row –
while we could make only a single measurement per re-
gion, making more allows for more sophisticated post-
processing

• S, the length of the each measurement in µs

• P , the length of time between groups of measurements,
i.e. the normal execution period, in µs

The core routine is Algorithm 3. At each iteration, we first
measure the IPC of each application while co-located (lines
3-5). We then shutter application j by calling Shutter Core
(line 6), which subsequently calls Measure to measure the
IPC while j is running alone. After that, we measure the
IPC of all applications and increment j (lines 7-10). Then
the shutter component of POPPA goes to sleep for Pµs of
normal execution (line 11). Since POPPA is persistent, this
process repeats continually as applications end and new ap-
plications enter the application pool.

5.2 Tuning the Shutter Mechanism
The shutter implementation presents a number of chal-

lenges. In particular, the selecting the correct granularity
to shutter at is key to accurately quantifying interference
without noticeably adding to it. The first parameter is the
gap between shutters P . As P is decreased, the amount of
time that the POPPA is active increases, consequently also
increasing overhead. Since utilization in supercomputers is
often above 95%, we assume that each core has an applica-
tion thread assigned to it. Due to this fact, POPPA must
time slice with application threads. If POPPA is active for
x% of a single core’s execution time, then assuming POPPA

threads do not migrate, one of the co-running applications
is likely to suffer at least a x% hit to performance due to
synchronization between processes.

Since the POPPA runtime inevitably has overhead, we ex-
perimented with conducting round-robin migration of the
POPPA threads to distribute the performance impact of time
slicing across all application threads; however, we deter-
mined that a better solution was to select values for K,
P and S that make POPPA’s CPU utilization very low, as
migration is not guaranteed to be fine enough to mitigate
the effect of time slicing.

Another important parameter is the duration of a shutter.
In our implementation, this quantity was equal to the base
cost of doing a shutter on 8 MPI processes, approximately

120 to 200µs (see Figure 4 in Section 8.1), plus K ∗S, where
K ∗ S is the product of the number of consecutive measure-
ments and the length of each such measurement. During
a shutter, the paused application makes no progress, thus
keeping shutter duration very short relative to P was a pri-
mary concern.

An unexpected find relating to the shutter mechanism was
that in certain circumstances, POPPA actually slightly im-
proved the performance of co-located applications. The rea-
son is that if an application experiences high performance
degradation during certain regions of execution due to a co-
runner, then pausing that co-running can more than double
the performance. If this happens in the right places, the
application can actually receive a performance boost even
though it is paused for equally long periods.

6. ESTIMATING DEGRADATION
In this section, we present our method for linking the raw

data that POPPA produces to the actual prices we charge.

6.1 Idealized Model for Degradation
Our pricing model assumes that for an application i, we

know the degradation D
co(J)
i that i suffers as a result of co-

location with a set J of applications. In our pricing model

discussion, we formulated 1 − Dco(J)
i as

Tsolo
i

T
co(J)
i

. While this

gives us a precise way to calculate degradation, POPPA can-
not directly measure T solo

i . Thus, we modify the formula-
tion such that it is amenable to the IPC data that POPPA

produces.
On modern chip multiprocessors, if one is given an execu-

tion time in seconds, one can convert this to a value in clock
cycles. Thus if we know the clock ticks per second, we can
write the performance of i normalized to running alone as

the ratio of clock cycles Csolo
i and C

co(J)
i (see below).

Perfnorm
i = 1−Dco(J)

i =
Csolo

i

C
co(J)
i

(5)

Additionally, if we assume i to be a truly serial program,
then it is the case that i’s dynamic instructions Ii do not

change. Thus Isoloi = I
co(J)
i , and consequently we can trans-

form Equation 5 into a ratio of IPCs by multiplying by
I
co(J)
i

Isoloi

, yielding the following:

Perfnorm
i =

IPCsolo
i

IPC
co(J)
i

(6)

6.2 Known Challenges with Parallel Programs
For parallel programs, however, it turns out that Equa-

tion 6 is often imprecise. Many parallel programs contain
mutexes, semaphores, and other locking mechanisms to en-
force program correctness by preventing data races. When a
load imbalance occurs, that is, one parallel process advances
faster than its siblings, these locking mechanisms can distort
both the dynamic instruction count as well as the measured
clock cycles.

With MPI, this issue is quite prevalent. If a communica-
tion routine is implemented as blocking, then it is common
practice to have the thread that initiated the routine to poll
for a certain number of cycles and then sleep. During this
polling period, the thread executes a while loop where it



continually tests whether the communication operation has
completed. If the thread fails to finish the communication
operation within a certain interval, it is put to sleep and
signaled to wake up when the operation is completed. Be-
cause contention and background noise on the system can
cause this polling period to change in duration, the number
of dynamic instructions attributed to these communication
regions is variable. With MVAPICH2, the MPI-2 imple-
mentation, the maximum polling period can be adjusted.
While we were tempted to disable polling, we knew that
doing so would be disadvantageous. In particular, polling
greatly increases individual application performance because
the blocking thread avoids the performance hit associated
with going to sleep and waking back up, and it can proceed
as soon as communication has finished. Thus, we decided
to keep the parameters that maximized performance even
though it made precise prediction more challenging.

6.3 Filtering
Even though Equation 6 is imprecise in the presence of

variable execution, we find that in practice, it is still suffi-
cient for producing reasonable degradation estimates. We
also assume that the average over the N IPC samples that
we collect is roughly equivalent to the actual average IPC
during shutters (IPCsolo

i ) and during normal paired execu-
tion (IPCco

i ). These assumptions are presented below in
Equations 7 and 8.

Perfnorm
i ≈ IPCsolo

i

IPC
co(J)
i

(7)

IPCsolo
i ≈

∑Nsolo
i

j=0 IPCsolo
i,j

Nsolo
i

and IPCco
i ≈

∑Nco
i

j=0 IPC
co
i,j

Nco
i

(8)
POPPA gives us data in the form of a stream of blocks

of IPC measurements, each consisting of K IPC measure-
ments just before a shutter, K measurements during a shut-
ter, and K afterwords. We denote this stream of blocks as
B and the lth such block as Bl; within each block Bl, the K
IPC values in Bl before the shutter is denoted asIPCbefore

l ,

the K IPC values during a shutter as IPCduring
l , and the

K IPC values after a shutter as IPCafter
l . Thus Bl =

(IPCbefore
l , IPCduring

l , IPCafter
l ). Using this notation, we

present the filtering algorithm (Algorithm 4) that allows us
to increase the precision of the performance estimate.

Algorithm 4 Filtered Prediction(IPC Tuples B)

1: Initialize IPCco and IPCsolo to 0
2: for each (IPCbefore

l , IPCduring
l , IPCafter

l ) in B do

3: if |IPCbefore
l − IPCafter

l | < δ and IPCbefore
l <

IPCduring
l and IPCafter

l < IPCduring
l then

4: IPCco+ = 0.5(IPCbefore
l + IPCafter

l )

5: IPCsolo+ = IPCduring

6: end if
7: Return ( IPCsolo−IPCco)

IPCso

8: end for

Algorithm 4 aims to reduce noise from sampling IPC. It
removes groups of IPC values where the IPC during a shutter
is not greater than the IPC directly before and after. Since a

shutter can only relieve shared resource contention, the IPC
during a shutter should always exceed the IPC before and
after a shutter. The second mechanism, which states that
the absolute difference in IPC before and after cannot exceed
δ works to ensure that clusters that cross phase boundaries
are removed. We empirically determined δ = 0.05 to be a
reasonable value.

7. EXPERIMENTAL SETUP
This section describes our methodology. We ran our ex-

periments on the Gordon Supercomputer [32, 49]. Each
node is dual-socket. For each socket, there is an 8-core Intel
EM64T Xeon E5 (Sandy Bridge) processor. The CPU fre-
quency is 2.6Ghz, and each core has a private 32KB instruc-
tion and data L1 caches, a private 256KB L2 cache, and each
socket has 20MB of L3. There are 64GB of DRAM. Com-
pute nodes run CentOS linux with kernel version 2.6.32. The
interconnect is QDR InfiniBand with 8GB/s of bidirectional
bandwidth, and the topology is 3D torus of switches [10,
56]. Our applications and benchmarks are shown in the ta-
ble that follows. These benchmarks and applications encom-
pass a wide variety of scientific domains such as subatomic
particle physics [5], plasma physics [41], molecular dynam-
ics [3], ocean modeling [2], computational fluid dynamics [6,
8], shock hydrodynamics [36], finite element methods [4]
along with various other numerical methods that are of high
interest to the HPC community. We also note that GTC and
MILC, in particular, use a substantial number of dedicated
allocation hours on many leadership class machines.

Benchmarks, Miniapps and Applications

Swim [9], ADVECT3D [51], pcubed [39]
NAS Parallel Benchmarks: CG, FT, LU, MG [14, 47]
Lulesh [36], MiniGhost [4], MiniFE [4], NekBone [6, 8]
GTC [41], LAMMPS [3], MILC [5], POP [2]

We compile GTC, LAMMPS, MILC, POP, CG, FT, LU
and MG with GNU compilers version 4.7 and MVAPICH2
version 1.7. LULESH, MiniGhost, MiniFE, and NekBone
are compiled with PGI compilers version 11.9 and OpenMPI
version 1.6.

In our experiments, we co-locate two 8 task MPI appli-
cations together on the same set of sockets. Each socket
has half its cores run one application and the other half run
the other. Applications co-run together for a minimum of 5
iterations of both applications. As soon as one application
ends, we immediately restart it. Data collection stops once
both applications have completed 5 iterations.

8. EVALUATION
In this section, we evaluate the accuracy, overhead, and

the pricing fairness of POPPA.

8.1 Quantifying POPPA’s Base Overhead
In this section, we quantify the minimum time to execute

components within the main loop of the POPPA daemon.
The main loop consists of the three core operations of Al-
gorithm 3 –measuring the IPC of the application just prior
to the shutter, issuing the shutter and measuring the IPC of
the application during that window, and measuring the IPC
of the application immediately following the shutter.
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Figure 4: This figure shows the breakdown of base
overhead to execute a single iteration of POPPA’s
core algorithm. Reading PMC values dominates to-
tal time.

For these experiments, we co-locate two MPI benchmarks,
an auto-generated loop from the pcubed benchmark suite
and a busy loop, called the NULL co-runner, that runs for
the duration of the pcubed loop.

In POPPA, we set all of the sleep parameters to 0, so we
can measure the minimum execution time for all subcompo-
nents of the loop. During each iteration of the main loop,
we measure its total execution time, the time to measure the
IPC both before and after the shutter, the total execution
time of the shutter, the time to send the SIGSTOP and SIG-

CONT signals, and the time to make the IPC measurements
during the shutter.

Figure 4 presents the results. On the x-axis we vary the
number of threads in each job. So 4 corresponds to four
pcubed tasks bound to cores 0, 2, 4, and 6 and four busy

loop tasks bound to cores 1, 3, 5, and 7. The y-axis shows
the total time in µs to execute the main loop. When study-
ing this figure, several interesting trends emerge. Not sur-
prisingly, adding more threads increases the minimum loop
execution time. Execution time is dominated by IPC mea-
surement in the form of calls to libpfm, particularly those
outside the shutter region. In fact, we spend about 4x as
much time measuring the IPC in the shutter region com-
pared to outside the shutter region. This difference in over-
head results from 1) we only measure active threads, which
is an optimization decision that we made, so the overhead to
read the performance counters doubles outside of a shutter,
and 2) we make two sets of IPC measurements outside of
a shutter (before and after) versus a single set of measure-
ments during one.

We see that the mean time to shutter does not exceed
130µs and the mean time to execute the main loop does not
exceed 500µs. Thus, our mechanism is fine grained enough
to measure the IPC at sub-millisecond intervals for thread
counts that are representative of contemporary multi-socket
systems.

In addition to the minimum delays incurs by shuttering,
we quantify the effect of enlarging the amount of time spent
in a shutter. For this experiment, we fix the sleep time at
the end of the main loop, P (see Section 5.1), to 200,000µs
and increase the shutter duration, S (see Section 5.1), mul-
tiplicatively by factors of 2 from 200µs to 409,600µs. We
co-run the NPBs with the busy loop NULL. Since NULL
generates no interference, any dilation in runtime is a direct
result of increasing the shutter window. Figure 5 presents
the results.

 80

 90

 100

 110

 120

 130

 140

 150

 256  1024  4096  16384  65536  262144

E
xe

cu
tio

n 
T

im
e 

(s
)

IPC Measurement Time (us)

CG-FIT
FT-FIT
LU-FIT

MG-FIT
CG-NULL
FT-NULL
LU-NULL

MG-NULL

Figure 5: This figure shows the relative overhead of
expanding the duration of a shutter.

All four benchmarks exhibit a similar trend. When S is
small relative to P , the overhead is small but as the ratio S :
P increases, so does the overhead. However, the overhead
begins to flatten out as S approaches and exceeds the value
of P .

We need to formulate an analytical model for the overhead
that a pricing shutter creates for an arbitrary co-located
pool of n jobs. To do so, we examine the overhead from
n consecutive shutters. Over the course of n shutters, each
job will run in isolation once and sleep n − 1 times while a
single other job enjoys the privilege. Each such shutter has
duration S. Thus each job will sleep for (n− 1) ∗S seconds.

The total time for n iterations of the main loop of the
daemon is also important for the analysis. Measuring the
IPC before, during and after a shutter is 3S, as each takes S
time. After this, the daemon sleeps P seconds. This pattern
is cyclic, so the combined time is n ∗ (3S + P ). Equation 9
shows ratio of sleep time to total time.

Z(S, P ) =
sleep time

total time
=

(n− 1) ∗ S
n ∗ (3S + P )

(9)

The model for the execution time of the jobs in Figure 5
is shown below:

T (S, P ) = Ti ∗
1

1− Z(S, P )
= Ti ∗

n ∗ (3S + P )

2nS + nP + S
(10)

When we examine the model fit to the data in Figure
5, we observe that CG-FIT, FT-FIT, LU-FIT, MG-FIT almost
exactly predict the actual overhead of the shutter for all S
in {200∗2kµs|1 <= k <= 12} and a fixed P of 200ms. This
model incorporates S, P, and T; if we know any two of these
quantities, we can solve for the other.

Thus administrators can decide on a system by system
basis what is exactly an acceptable amount of degradation
due to the pricing shutter and choose values of S and P
accordingly.

8.2 Determining the Sampling Rate
In this section, we evaluate the precision and overhead of

the POPPA daemon for different shutter lengths (S values)
while keeping P fixed to 200ms. We saw in the previous
section, that the overhead due to the shuttering mechanism
has an upper bound given by Equation 10. Using this equa-
tion, we selected values of S that made sense: 200, 400, 800,
1600, 3200, 6400, 12800, and 25600µs.

We ran two sets of pairwise experiments. In the first, we
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Figure 6: CG
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Figure 7: FT
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Figure 8: LU
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Figure 9: MG

These figures show the precision of both the unfiltered and filtered predictions for the NPBs paired with
ADVECT3D-256. The blue line is the degradation to NPBs from co-location, and solid yellow is with the
daemon running. Hatched green and solid black are the degradation predictions with and without filtering.
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Figure 10: CG
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Figure 11: FT
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Figure 12: LU
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Figure 13: MG

These figures show the precision of the filtered and unfiltered predictors at predicting CG, FT, LU and MG’s
degradation from co-running with Swim-150.

co-located the NAS parallel benchmarks with a contentious
co-runner (ADVECT3D with a grid size of 2563) and in
the other we co-scheduled the NPBs with a moderately con-
tentious co-runner (Swim with a grid dimension of 1503).
Figures 6, 7, 8, and 9 show the performance prediction ac-
curacy of the POPPA daemon for CG, FT, LU, and MG when
they are co-located with ADVECT3D. Both the accuracy of
the unfiltered and filtered predictors are shown. For clarity,
we opt not to present the results for 400, 1600 and 6400µs.

In this set of experiments, we are able to very accurately
predict the contention with negligible overhead. Filtering
improves prediction performance. Our predictors have the
largest error for FT. S = 200µs gives the highest accuracy,
but as S increases, so does the error. This error results
from FT ’s very fine grain phases, which coarser granularity
shutters have trouble capturing.

Figures 10, 11, 12, and 13 show the prediction accuracy
for the NPBs paired with Swim. Again, our prediction ac-
curacy is very precise. In this case, we note that the filtered
prediction is sometimes overly zealous when predicting con-
tention. However, this result is unsurprising given that fil-
tering removes clusters of IPC measurements where the IPC
measured during a shutter does not exceed the IPC directly
before and after.

A contrasting finding between the experiments with AD-
VECT3D and Swim concerns daemon overhead as a func-
tion of S. In the experiments with ADVECT3D, overhead is
flat regardless of S whereas it sharply increases with Swim.
This divergence is caused by the fact that ADVECT3D is
configured to be contentious whereas Swim is not. During a
shutter, the lone running application receives a respite from
the contention generated by the other application. In the
case of the NPBs with the ADVECT3D, this causes each
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Figure 14: Overhead of POPPA on NAS benchmarks
co-located with ADVECT-256

NPB to speed up by approximately 2x, which offsets the
lost throughput from sleeping during alternate shutters. By
contrast, Swim degrades each NPB by at most 15%, so the
time spent sleeping cannot be masked.

These experiments show that the shutter duration S is
largely irrelevant for accuracy. Thus when selecting S, it
makes sense to select a value that induces minimal overhead
and run time variation. Figures 14 and 15 present both the
daemon’s overhead and its distribution for the surveyed val-
ues of S. In Figure 14, regardless of the value of S, overhead
due to the pricing shutter never exceeds 2%. However, in
Figure 15, this value is as high as 5%, which is clearly too
costly. S = 3200 delivers an overhead of less than 1% and
with the smallest variation. For this reason, we use S =
3200µs for the remainder of our experiments.

8.3 Pairwise Evaluation
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Figure 16: Accuracy on benchmarks and real apps
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Figure 17: Degradation of benchmarks and real apps
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Figure 15: Overhead of POPPA on NAS benchmarks
co-located with Swim-150

In this section, we evaluate the precision of POPPA on
pairwise co-locations. Since our filtered prediction was bet-
ter in aggregate in our previous experiments, we apply that
prediction mechanism rather than the simple one. We run
co-schedules of all possible combinations of our 12 bench-
marks and real applications.

Figure 16 shows the accuracy of our filtered predictor at
quantifying degradation. The x-axis lists the names of the
benchmarks, and the y-axis the co-runners. Individual cells
present the percentage difference in predicted run time ver-
sus actual, where negative values represent under prediction
and positive values over prediction. The top row “mean”
presents the mean absolute error across the apps, and the
right most column “mean” presents the mean absolute error
that an application creates in the prediction accuracy for
the other codes.

Figure 17 presents the degradation of each application as
a percentage of run time relative to running with the NULL
co-runner, i.e half the cores vacant on each socket. The top
row presents the mean degradation of each scientific code
on the x-axis and the right most column presents the mean
degradation each application on the y-axis causes to its co-
runners.

If we study Figures 16 and 17 in concert, a number of
interesting trends emerge. POPPA does well at quantifying

degradation for the all pairings consisting exclusively of our
real applications, GTC, LAMMPS, MILC, and POP. Our
mean absolute error is 2.5% and absolute error never exceeds
5.8%. We accurately characterize both ends of the spec-
trum. We predict high degradation for MILC paired with
itself and we neither significantly under predict or over pre-
dict for pairings with low mutual contention such as GTC-
LAMMPS and LAMMPS-POP. For pairings of real apps
with benchmarks, the prediction accuracy is generally quite
good except for when MILC is co-located with MiniFE and
FT.

For our proxy apps LULESH, MiniFE, MiniGhost and
NekProxy (NekBone), the results are more mixed. We are
able to predict their performance with a mean absolute er-
ror of 3.8%. MiniFE is a particularly interesting because in
many cases we over predict the degradation for its co-runner
(8.2%). This over prediction is an artifact of the filtering al-
gorithm. When we use our unfiltered predictor, we over pre-
dict by at most 1.5% for MiniFE’s co-runners. MiniGhost,
by contrast causes us to under predict contention for some
of its co-runners.

On the NPBs, our prediction error is slightly higher. If
we exclude FT, our mean absolute prediction error is within
5.3%. FT however, poses challenges both for its prediction
and applications it is co-located with. In both cases, we un-
der predict the actual degradation. This under prediction
is due to the duration S of the shutter. If we reexamine
Figure 7, we observe that S = 200µs yields the highest ac-
curacy when FT is co-located with a contentious co-runner.
We also observe in Figure 11 that out of the possible values
for S, S = 3200µs prognosticates the lowest contention. On
the whole, our system is generous and tends towards mod-
estly under predicting contention. Our mean absolute error
across all pairings is 4.0%.

8.4 Pricing Fairness
In this section, we show POPPA’s pricing fairness versus

the state-of-practice and the oracle. Figure 18 shows the
distribution of relative SUs charged for each application us-
ing the different pricing schemes. On average, the state-of-
practice would charge users 14% more as result of co-locating
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Figure 18: Shown here are the benchmarks and the price paid normalized to running solo with half the cores
idle. For each benchmark, the first box plot shows the relative price using the state-of-practice, the second
shows it using POPPA, and the third shows the oracle fair price distribution.

their jobs. Jobs that degrade more, pay more. POPPA on
the other hand discounts users by an average of 9.5%, which
is very close to the 11.5% discount that the oracle would
offer.

When we examine the minimum and maximum relative
SUs charged, we also see favorable results for POPPA. The
max normalized price paid by a user using POPPA’s counsel
is 99.1% of the spread baseline versus the oracle’s 99.8%.
Constrast this with the state-of-practice, where a user can
pay up to 62% more as a result of cross-application inter-
ference. The maximum discount given by POPPA is 39.6%,
which also closely mirrors the oracle’s 38.3%.

If we consider the impact of these discounts, we find they
are entirely tenable. Recall that the job striping study [20]
found that co-locating MPI benchmarks at scale increased
mean system throughput by 12 to 23%. Thus discounting
users by a mean 9.5% does not inflate the purchasing power
of SUs, and so SU allocation need not be changed.

9. RELATED WORK
The explosion of cloud computing has brought pricing to

the forefront of research. There are a number of works that
investigate pricing or identify pricing as a key issue for large
scale grid and cloud infrastructures [13, 61, 48, 53]. Our
work differs from these works in that we address the pricing
issue in supercomputers with co-locations. To the best of
our knowledge, our work is the first to explore this problem
space.

Although this work addresses challenges related to fair
pricing, it shares similarities with research that addresses
identifying and mitigating contention in multicore systems.
Early work on simultaneous multi-threading processors in-
vestigated co-scheduling of heterogeneous threads [54, 55,
21] as a way to reduce contention.

Cross core contention has also been extensively studied [22,
63, 44, 43]. A mechanism similar to the pricing shutter is
explored in [44] but differs in that it is in the commerical
data center space and in that it focuses on L3 miss rates
with and without the presence of contention.

Another solution to mitigating contention has been cache
partitioning both in software and in hardware [46, 57, 52,
23]. Core fusion is another architectural solution that helps
reduce the cross core contention problem by dynamically
combining simpler cores into larger cores [34, 58]. Others
have examined using scheduling to mitigate contention [62,
29, 28, 18, 17] and [50, 59] investigate scheduling consider-
ations in mapreduce environments.

There have also been studies that evaluate the effective-
ness of analytical and statistical models to solve problems
related to contention [40, 60, 24, 31]. The computational
complexity, heuristics and approximation algorithms for op-
timal multiprocessor scheduling are explored in [30, 19, 37,
35].

10. CONCLUSION
We have provided a mechanism to enable fair pricing on

HPC systems, one of the fundamental road blocks to enable
node sharing on HPC systems. By employing POPPA, we
can accurately measure performance degradation across a
range of MPI applications. Using this data, we price users
in a fashion that approaches the optimal fairness provided
by the oracle, and our mean absolute prediction error is 4%
across all combinations of 12 application codes.

POPPA is not a definitive solution to the pricing problem
but a key part of a more holistic solution. Going forward,
the development of additional, light-weight techniques for
application introspection will become essential. By harness-
ing this dynamic information, further optimization opportu-
nities will arise. By combining these solutions, the road to
exascale supercomputers looks bright.

bledsoe2
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