
             LLNL-TR-636060

Advancing the Adoption of High
Performance Computing for Time
Domain Simulation

C. S. Woodward, S. Smith, S. Khaitan, L. Min, J.
D. McCalley

May 2, 2013



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



ABSTRACT

Time domain transient stability simulation of large interconnected power systems is becoming 
increasingly computationally intensive. With the addition of high levels of variable generation 
that can aggregately ramp over many hours, both the complexity and time horizon for which 
power system simulations will need to be conducted are increasing. Additionally, extended-term 
time domain simulation is required to analyze power system security when cascading events 
across the system span minutes or even hours. Analysis of these occurrences requires modeling 
power system dynamics over tens of minutes to many hours rather than tens of seconds.  Because 
of the required high computational intensity, there are presently no stability modeling/simulation 
platforms that combine the needed computational capabilities with the required power system 
models relevant for representing and analyzing the potential reliability implications of 
phenomena that occurs over both short- and extended-term dynamic timeframes.    

High Performance Computing (HPC), advanced computer and computational science are used 
widely within the government and in selected industry applications to solve important problems 
of high complexity, providing a factor from hundreds to millions times improvements in time-to-
solution over desktop computer solutions. In power engineering society, the applications of 
advanced computational methods are not yet vigorously pursued.  The present state of the art 
practice for utilities and ISOs regarding stability analysis is to conduct 10-20 second simulations 
for a limited number of contingencies for reduced order models of their systems. Even with these 
reduced order models simulations require 20-30 minutes of clock time to complete.  

This project focused on advancing the computing capabilities for time domain simulations. It
considered both shared and distributed memory parallelism, commonly used in modern HPC 
systems, applied to power system time domain simulations.  Work addressed the use of 
parallelism to improve throughput of a large contingency study.  The code used in this work was 
the Iowa State University’s Time Domain Power System Simulator (TDPSS) with the LLNL 
IDAS time integration package.  Findings indicated that parallelization over contingencies with 
MPI gives the best use of a truly high performance machine.  Thread-parallelism was also shown 
to be very effective in parallelizing runs over contingencies for small studies.  

Thread-parallelism with shared memory was also explored for parallelization within a single 
contingency analysis.  In particular, thread-parallelization of the vector kernel routines lying 
underneath the time integrator and nonlinear solver was tested.  While these vector routines 
showed significant speedup outside the time domain code, the simulations did not speed up much 
within the simulation.  Thread-parallelization of the sparse linear solve factorization step was 
also explored through use of the SuperLU_MT library.  With this thread-parallel linear solver, 
TDPSS showed some speedup for 2-4 threads.  However, each contingency did not speed up 
enough to improve throughput of a contingency study.  This finding was further tested by 



comparing the throughput of a contingency study where processing cores were used either with 
MPI or threads.  The fastest throughput always came with all MPI tasks and no threads.



CONTENTS

1 INTRODUCTION ..................................................................................................................1-1

2 TIME-DOMAIN SIMULATION SOFTWARE..........................................................................2-1

Time Domain Power System Simulator (TDPSS) ................................................................2-1

SUNDIALS/IDA ...................................................................................................................2-2

3 PARALLELIZATION OF TIME-DOMAIN SOFTWARE.........................................................3-1

Shared Memory Parallelization Using OpenMP and Pthreads.............................................3-1

Distributed Memory Parallelization Using MPI .....................................................................3-2

HPC systems ......................................................................................................................3-2

Ansel ..............................................................................................................................3-2

Sierra..............................................................................................................................3-2

Herd................................................................................................................................3-2

Cystorm ..........................................................................................................................3-2

Linux-cluster ...................................................................................................................3-3

Parallelization by contingency .............................................................................................3-3

Shared Memory Parallelization .......................................................................................3-3

Distributed Memory Parallelization..................................................................................3-4

Parallelization of a single contingency .................................................................................3-5

4 PERFORMANCE RESULTS ................................................................................................4-1

Test System ........................................................................................................................4-1

TDPSS Parallelization Over Contingencies Results ............................................................4-1

Results with OpenMP (Shared Memory Programming)...................................................4-1

Results with MPI .............................................................................................................4-3

Single Contingency Parallelization Results..........................................................................4-5

Vector Kernel Parallelization...........................................................................................4-5

Large Contingency Study................................................................................................4-7

Linear Solver Parallelization with SuperLU_MT ..............................................................4-7



Performance Results of Contingency Study Throughput .....................................................4-8

5 CONCLUSIONS AND FUTURE DIRECTIONS.....................................................................5-1

A APPENDIX..........................................................................................................................A-1

References......................................................................................................................... A-1

Presentations from this Project........................................................................................... A-1



LIST OF FIGURES

Figure 2-1 Hierarchical Design of the Parallel TDPSS Simulator..............................................2-2

Figure 3-1 Parallelization of contingency analysis using Pthread/OpenMP scheduler ..............3-4

Figure 3-2 Master-slave scheduling algorithm..........................................................................3-5

Figure 4-1 Speedup values using OpenMP parallelization and Pthreads parallelization...........4-2

Figure 4-2 Speedup values with master-slave scheduling........................................................4-4

Figure 4-3 Speedup values relative to 24 cores on Ansel with master-slave scheduling ..........4-5

Figure 4-4 Results of parallelizing the SUNDIALS vector kernel with openMP on the 
vector test suite using the LLNL Ansel system..................................................................4-6

Figure 4-5 Results of parallelizing the SUNDIALS vector kernel with openMP on the 
vector test suite using the LLNL Herd system.  Times shown are averages over six 
consecutive runs. .............................................................................................................4-6

Figure 4-6 Results of thread-parallelization of the vector kernel in TDPSS on the Ansel 
machine............................................................................................................................4-7

Figure 4-7 Results of SuperLU_MT linear solver thread parallelization with TDPSS on 
the LLNL Ansel system.  Average times are over 20 contingencies..................................4-8

Figure 4-8 Results of SuperLU_MT linear solver thread parallelization with TDPSS on 
the LLNL Herd system......................................................................................................4-8

Figure 4-9 Ansel throughput study total runtime including I/O and problem setup ..................4-10

Figure 4-10 Ansel throughput study contingency time excluding all I/O and problem 
setup ..............................................................................................................................4-10

Figure 4-11 Herd throughput study total runtime including I/O and problem setup .................4-11

Figure 4-12 Herd throughput study contingency time excluding all I/O and problem setup.....4-11

Figure 4-13 Parallel efficiency plot of total runtime for Herd and Ansel using both MPI 
and SuperLU parallelization strategies. ..........................................................................4-12

Figure 4-14 Parallel efficiency plot of contingency only time excluding I/O and problem 
setup for Herd and Ansel using both MPI and SuperLU parallelization strategies...........4-13





LIST OF TABLES

Table 4-1 Simulation Clock Time (s) for Different Levels of Parallelization Using 
Pthreads and OpenMP.....................................................................................................4-2

Table 4-2 Parallelization Using MPI (MSS= Master-slave scheduling, P = number of 
cores) ...............................................................................................................................4-3

Table 4-3 Parallelization Using MPI on Ansel (MSS= Master-slave scheduling, P = 
number of cores) ..............................................................................................................4-4

Table 4-4 Average run times for 48 contingencies on Ansel varying numbers of MPI 
tasks and threads in the linear solver. ..............................................................................4-9

Table 4-5 Average run times for 32 contingencies on Herd varying numbers of MPI tasks 
and threads in the linear solver.........................................................................................4-9

Table 4-6 Average run times for 32 contingencies on Herd varying numbers of MPI tasks 
and threads in the linear solver.......................................................................................4-14





1-1

1
INTRODUCTION

Time domain transient stability simulation of large interconnected power systems is 
computationally intensive even for a standard 10-20 second simulation time horizon, and this 
computational burden limits the number of contingencies that can be analyzed within a given 
clock-time and with a given computing resource. This limitation is particularly constraining for 
on-line dynamic security assessment (DSA) because of the short time frame available.  The 
presence of organized markets that re-dispatch on 5-15 minute intervals and high levels of 
variable generation that can aggregately ramp over many hours dramatically increases both the 
complexity and time horizon for which power system simulations will need to be conducted. 
Additionally, extended-term time domain simulation is required to analyze power system 
security when cascading events across the system span minutes or even hours. Analysis of these 
occurrences requires modeling power system dynamics over tens of minutes to many hours 
rather than tens of seconds.

Presently, there are no stability modeling/simulation platforms that combine the needed 
computational capabilities with the required power system models relevant for representing and 
analyzing the potential reliability implications of phenomena that occurs over both short- and 
long-term dynamic timeframes up to 1 hour in an integrated manner.  Such a platform would 
require representation of protection and control actions, automatic generation control, boiler 
dynamics, variable renewable and load ramping, and remedial action schemes. The 
simulation/solution of such multi-scale dynamics over the time period of influence of these 
power system operational aspects has been too computationally intensive.  

High Performance Computing (HPC), advanced computer and computational science are used 
widely within the government and in selected industry applications to solve important problems 
of high complexity, providing a factor from hundreds to millions times improvements in time-to-
solution over desktop computer solutions. In disciplines such as aerospace, signal and image 
processing, and nuclear stockpile stewardship, the use of HPC is integral to the scientific and 
engineering approaches. In power systems engineering, the application of advanced 
computational methods are not vigorously pursued.  As Figure 1-1 shows [Top500:2012], power 
system applications lag significantly behind other industries in use of available computational 
methods.  The present state of the art practice for utilities and ISOs regarding stability analysis is 
to conduct 10-20 second simulations for a limited number of contingencies for reduced order 
models of their systems. Even with these reduced order models simulations require 20-30 
minutes of clock time to complete.  DOE Office of Electricity held a workshop “Computational 
Needs for the Next Generation Electric Grid” in April 2011 and brought together some of the 
Nation’s leading researchers and experts to identify computational challenges associated with the 
operation and planning of the electric power system. The workshop report [Eto:2011] envisioned 
that HPC would be helpful in a real-time mode where it is run following initiation of a severe 
disturbance to prevent a cascading blackout. It was also envisioned that HPC could play a heavy



Introduction

1-2

role in an offline study mode, continuously computing responses to many contingencies and 
storing preparatory corrective actions. 

Figure 1-1
Top500 HPC systems performance over last 15 years and existing computing capability for 
power system applications

This project leveraged recent advances in high performance computing as a platform to enable 
ultrafast short-term simulation (10-20 seconds) of large-scale power system dynamic models in a 
numerically stable and computationally affordable manner. This project considered both 
distributed and shared memory parallelization over contingencies and shared memory 
parallelization within a single contingency.



2-1

2
TIME-DOMAIN SIMULATION SOFTWARE

This research project combined the strengths of Iowa State University (ISU) for its work on 
developing time domain power system simulator and Lawrence Livermore National Laboratory 
for its work on high performance computing, scalable algorithms, and nonlinear solvers and 
differential equations expertise. This chapter describes the time domain power system simulator 
previously developed at ISU and utilized within this project.

Time Domain Power System Simulator (TDPSS)

In recent years, the increased demands of electricity have led to significant increase in the size 
and operational levels of modern power systems. This increase, however, has also presented 
challenges in modeling of power systems using simulation tools. Simulation is a widely used 
method for modeling power systems to enable developers to gain insights into system 
performance, and, due to the increased size of power systems, developers are forced to strike a 
fine balance between simulation speed and modeling detail. While detailed modeling is 
important for realistically studying system characteristics, simulation speed holds equal 
importance in obtaining meaningful conclusions within a reasonable time. In the absence of 
high-speed simulation tools, many design ideas for improving the power systems of tomorrow 
are being tested using inefficient simulators. Moreover, to allow realistic modeling in an 
incremental manner, simulators must be modular and easily extensible. However, existing 
simulators used within industry are commercial software packages which users cannot easily 
extend. Thus, the state-of-the-art in power systems calls for efficient simulators which allow 
realistic validation of design ideas. Towards this end TDPSS [Khaitan1:2012] has been
developed at Iowa State University (ISU) and further extensions are ongoing. 

To enable the user to achieve a fine balance between modeling accuracy and simulation speed, 
TDPSS provides different models of power system components and also different numerical 
algorithms, namely nonlinear solvers, linear solvers, and time integrators [Khaitan1:2012].  The 
LLNL’s SUNDIALS/IDAS solver [Hindmarsh:2005] has been integrated in the TDPSS code for 
the solution of differential-algebraic equations (DAEs). TDPSS has been designed using object-
oriented programming (OOP) methodology and thus, it enables structural correspondence 
between the physical components (e.g. generators, buses etc.) and the classes of the simulation 
model. TDPSS provides a modular simulation framework which allows easy extension of 
simulator functionalities. For handling different critical events, TDPSS uses an event-driven 
simulation approach and thus, it can handle arbitrary combinations of faults in different 
components. The output of TDPSS is provided in a format which can be used with most plotting 
programs (e.g.  MATLAB, gnuplot, and matplotlib) to allow data plotting and visualization. 
Through use of TDPSS, the time domain response of state variables, such as rotor angle and bus 
voltage, can be studied. By using a well-chosen simulation platform and efficient numerical 
algorithms, TDPSS achieves high simulation speed.



Time-domain simulation software

2-2

TDPSS is designed to be a parallel time domain power simulator via a hierarchical structure that 
allows for parallelization by contingency as well as parallelization within the DAE solver for 
each contingency (the latter is primarily done via the linear equation solver and vector kernel 
operations). Figure 2-1 illustrates the hierarchical design of the parallel TDPSS, where each of 
the elements P1, P2,… and p1, p2,… represent a separate processor or thread capable of 
handling its own computation. In this project, we have explored both parallelization by 
contingency and parallelization within a single contingency. 

Figure 2-1
Hierarchical Design of the Parallel TDPSS Simulator

SUNDIALS/IDA

This project used the LLNL SUite of Nonlinear and DIfferential/ALgebraic equation Solvers 
(SUNDIALS) [Hindmarsh:2005], and the IDA package in particular, to provide the time 
integrator for the DAE systems employed in TDPSS.  IDA provides first through fifth order 
multistep implicit integration through BDF methods.  Users can provide absolute and relative 
tolerances for the integration variables, and IDA chooses both the integration order and time step 
size to provide the most efficient integration possible meeting the error criteria specified through 
these tolerances.  Nonlinear systems are solved through a Newton’s method.  The SUNDIALS 
codes are publically available, supported through the DOE SciDAC program, and have been 



Time-domain simulation software

2-3

used worldwide in numerous application areas, including power systems modeling.  Extensive 
information about the package is available at: 
https://computation.llnl.gov/casc/sundials/main.html.





3-1

3
PARALLELIZATION OF TIME-DOMAIN SOFTWARE

Parallel computers use multiple processing cores to conduct more than one computation at a 
time.  Multiple processors are co-located with memory in order to provide fast, local access for 
limited amounts of data.  Simulation codes must be written in ways to exploit local memory and 
processor interconnections to efficiently reduce computation time.  This project looked at 
parallelization of time domain simulations using two approaches, distributed memory 
parallelization and shared memory parallelization.

Shared memory parallelization allows multiple processing cores to work on information stored in 
a common shared memory, while distributed memory parallelization allows processing cores to 
work on local information but then exchange information with other cores explicitly.  State-of-
the-art machines currently use both paradigms in their architecture providing a hierarchical view 
of computing on the machine.

This project considered both distributed and shared memory parallelization over contingencies 
and shared memory parallelization within a single contingency.

Shared Memory Parallelization Using OpenMP and Pthreads

Within a shared memory CPU, computation is performed by “threads,” and all threads share the 
same memory address space. In addition, threads can have their own private (local) data. Care 
must be taken to ensure that computations do not overwrite data in shared memory in ways that 
would invalidate other processing threads using that same data.  Many paradigms exist for 
programming with threads.  This project considered the two most common ones, openMP and 
pthreads.

OpenMP (open multiprocessing) provides a set of compiler directives, callable runtime library 
routines and environment variables that extend C/C++ to express shared memory parallelism.  
OpenMP follows a fork/join execution model, where the master thread forks a specified number 
of slave threads and a task is divided among them. The threads are allocated to different cores in 
runtime and run concurrently. The fork/join execution model enables parallelization at loop-level 
without decomposition of the data structures.

Pthreads: The Pthread libraries provide a thread Application Programmer Interface (API) for 
C/C++. To use Pthreads, the code should be specifically written for this API, which means that 
the code should include Pthreads header files and call Pthreads-specific functions. Pthreads allow 
a programmer to spawn a new concurrent process flow. Compared to “forking” or spawning a 
new process, pthreads require less overhead since the operating system does not initialize a new
system virtual memory space and environment for the process. Moreover, with Pthreads, the 
synchronization between different threads can be more efficiently done, than using the forking 
method.



Parallelization of time-domain software

3-2

Distributed Memory Parallelization Using MPI

In distributed memory parallel computing, each processing core uses only memory that is 
considered private.  When information is needed that is controlled by another processing 
element, that information must be explicitly passed.  While many paradigms are available for 
thread-parallelism within shared memory machines, there are fewer available for distributed 
memory.  In particular, the parallel distributed memory industry agreed on a standard Message 
Passing Interface (MPI), and most distributed memory machines are delivered with an 
implementation of MPI.

HPC systems

This project explored performance of the TDPSS code on three of LLNL’s and two of ISU’s 
high performance systems.  These different machines were chosen as they exhibit different
architectures and would allow testing of thread and MPI performance under varying conditions.  

Ansel

The LLNL Ansel system is a Linux cluster machine configured for moderately sized parallel 
jobs.  It has 296 batch nodes with 2 Intel Xeon EP X5660 (Westmere) CPUs with 6 cores each.  
Each node includes 24 GB of memory.  Nodes are connected with an InfiniBand QDR high-
speed interconnect.  This machine was used as it represents a standard Linux cluster, although 
the InfiniBand interconnect is faster than what a typical company may be able to purchase.  This 
was the principle machine used for the project.   

Sierra

The LLNL Sierra system is a Linux cluster machine configured for large parallel jobs.  It has 
1,856 batch nodes with 2 Intel Xeon EP X5660 CPU’s with 6 cores each.   Each node has 24 GB 
of memory.   Nodes are connected with an InfiniBand QDR high-speed interconnect.  Although 
similar to Ansel, this machine was also used in this project to provide support for a very large 
contingency throughput study.

Herd

The LLNL Herd system is a test system with large memory nodes.  It has 4 batch nodes each 
with 32 cores contained in an AMD Opteron 6128 CPU with 512 GB of memory per node.  
Nodes are connected with an InfiniBand QDR high-speed interconnect.  The Herd machine was 
of interest to this project since it contains nodes with many cores allowing testing of thread 
parallelization performance when many cores are interacting with memory at the same time. 

Cystorm

The ISU Cystorm system consists of 396 dual quad core nodes with AMD processors distributed 
through 12 racks. There is 8GB memory per node and nodes are connected with DDR infinband 
interconnect with 3:1 oversubscription.



Parallelization of time-domain software

3-3

Linux-cluster

The ISU Linux-cluster is a multicore x86 64-bit server with the Linux RedHat 5.9 operating 
system. The server has 24 Intel 32nm Xeon X5650 cores with each core operating at 2.67GHz 
frequency. The server has 12MB cache and 48GB memory.

Parallelization by contingency

We have used two different programming paradigms for parallelization which we discussed
below.
A. Shared Memory Parallelization using Pthreads and OpenMP
B. Distributed Memory Parallelization using MPI

Shared Memory Parallelization

For parallelization of contingency analysis over multicore processors, we utilize two different 
static schedulers, one uses OpenMP, and the other uses Pthreads. All the contingencies that are 
required to be analyzed are available (or known) at the beginning of the process. At any point in 
the process, the remaining contingencies are distributed on the available threads, spawned or 
created by the scheduler, such that they receive a nearly equal number of tasks. To reduce the 
overhead of thread creation and destruction; threads are only created once, and then are assigned 
multiple tasks. This process is illustrated in Figure 3-1. 



Parallelization of time-domain software

3-4

Figure 3-1
Parallelization of contingency analysis using Pthread/OpenMP scheduler

Distributed Memory Parallelization

To fully utilize the computing resources of available parallel processors, effective scheduling 
techniques are required [Khaitan: 2012]. For achieving load-balancing, we use a master slave 
dynamic scheduling algorithm [Khaitan: 2012]. The master slave scheduling algorithm employs 
two kinds of nodes, namely master nodes and slave nodes. The master schedules the tasks on the 
slave nodes, and on finishing a task, the slaves request the master for allocation of new tasks.  



Parallelization of time-domain software

3-5

Figure 3-2 shows the pseudo code for a master slave scheduling algorithm.

Figure 3-2
Master-slave scheduling algorithm

Parallelization of a single contingency

There are very large models being used today. For example, the Midwest ISO (MISO) uses a 
model for on-line analysis (in its energy management system) having 13,200 buses and 1,260 
generation units, while its planning model has approximately 62,000 buses and 5,000 generators. 
When the numbers of buses and generators reach this level, each contingency simulation requires 
significant clock-time.  In addition, each contingency simulation will require more memory.  For
very large problem sizes, memory can be a limiting factor. For example, the number of
contingency simulations that can be accommodated in memory can be less than the number of 
processing cores on a node.  In these cases, shared memory parallelization of each contingency is 
attractive  in order to obtain the full benefit of multiple processing cores on each node of the 
parallel machine.

This project implemented shared memory parallelization of a single contingency in two ways.  
First, parallelization of the main data structure used to hold the state variables was implemented.  
Second, a thread-parallel sparse direct linear solver was utilized within the TDPSS code.  The 



Parallelization of time-domain software

3-6

main goal of this effort was to assess whether throughput of a contingency study could be 
improved by running fewer full contingencies at a time using a shared memory space and thread 
parallelization of each contingency.  

The main data structure holding problem unknowns within the SUNDIALS IDAS time integrator 
and nonlinear solver is a vector, and routines are applied to vectors throughout the integrator and 
nonlinear solve process.  These routines, often called the vector kernel, add, subtract, take 
reduction operations such as norms and dot products, and perform other operations on vectors.  
As part of this project, an openMP parallelized version of the IDAS vector kernel was utilized
and speedups using this kernel were assessed on multicore machines at LLNL.  This kernel was 
then interfaced with TDPSS and further tests were done to assess whether threading the vector 
kernel provided benefit.

In addition, the SuperLU_MT threaded sparse direct linear solver library was interfaced to IDAS 
and then to TDPSS and tested.  The SuperLU_MT library, developed at LBNL, applies a 
threaded version of a sparse LU factorization algorithm using supernodes for solving large, 
sparse linear systems [Li:2005, Li:1999].  The threading was done using multiple paradigms, and 
this project explored both the openMP and pthreads capabilities.  The openMP code failed on the 
LLNL systems.  The failure was repeated on the LBNL systems, and LLNL personnel are 
working with the SuperLU_MT developers to remedy the issue.  In the meantime, the pthreads 
version of SuperLU_MT was tested.

Results of testing the developments described in this chapter are provided in Chapter 4.



4-1

4
PERFORMANCE RESULTS

The ISU team has verified the accuracy of the TDPSS software against two commonly available 
commercial software packages, DSA Tools (TSAT) and PSSE through a previous research 
project [Khaitan1:2012]. These results also provided insights into the working of the simulators 
and enabled us to estimate the modeling error. In this project, we focus on the performance tests 
of different parallelizations over contingencies and within a single contingency using a model 
obtained from  PJM and modified to facilitate testing using the software/hardware systems 
described in the last chapter.

Test System 

This project employed test problems developed by modifying a data set received from PJM.  The 
modified PJM system has 13,029 buses, 431 generators, 12,488 branches and 5,950 loads. 
Modifications were made to account for modeling limitations within TDPSS, e.g., some 
generator dynamic models not available within TDPSS were replaced with models that were
available. As a result, the modified data represents each generator with a GENROU model. This 
means each generator is represented with a round rotor and three windings per axis, resulting in a
12-equation machine model. Each generator is also represented with an exciter (IEEET1) model 
(4 equations) and a governor (TGOV1) model (3 equations), so that each generation unit 
contributes a total of 19 equations. The total number of variables for the modified PJM system is 
approximately 58,000. Another large test system was developed at ISU starting from the 
modified PJM system through the addition of a number of buses, generators, loads and circuits. 
The large system has 26,058 buses, 862 generators, 25,007 branches and 11,900 loads. The 
number of variables is approximately 110,000.

TDPSS Parallelization Over Contingencies Results

In what follows, we present performance results obtained using parallelization. We also report 
speedup which is defined as 

(1, )
( , )

( , )

T C
S P C

T P C
                                                ………………………………………………(1)

Here ( , )S P C shows the speedup using P processing cores (or threads) with C contingencies. 

(1, )T C and ( , )T P C show the computation (clock) time using serial execution and P cores (or 

threads), respectively.

Results with OpenMP (Shared Memory Programming)

We use the 58,000 unknown modified PJM test system described above and investigated the 
benefits of shared memory parallelization nover contingencies. Results in this section were 



Performance results

4-2

obtained on the ISU Linux-cluster described in Section 3.  Table 4-1 shows the simulation clock 
time with OpenMP and Pthread schedulers, respectively, and Figure 4-1 shows the speedup 
values using both OpenMP and Pthread schedulers.

Table 4-1
Simulation Clock Time (s) for Different Levels of Parallelization Using Pthreads and 
OpenMP

Simulation Clock Time (seconds)

Serial 2 Threads 4 Threads 8 Threads 16 Threads

No. Cont. Serial Ptrd OMP Ptrd OMP Ptrd OMP Ptrd OMP

256 5,343 2,650 2,659 1,353 1,337 701 707 388 393

512 10,689 5,265 5,312 2,677 2,720 1,398 1,426 774 770

1,024 21,442 10,566 10,589 5,366 5,357 2,802 2,818 1,529 1,522

From the table and figure, it is clear that both the parallelization methods scale well with the 
number of threads and provide a large performance advantage over serial computation.  In fact, 
nearly ideal speedups are seen from these results. Further, the speedup values of the two methods 
are quite similar which shows that both methods can be effectively used for parallelization of 
contingency analysis in power systems.

Figure 4-1
Speedup values using OpenMP parallelization and Pthreads parallelization



Performance results

4-3

Results with MPI 

Table 4-2 and Error! Reference source not found.Error! Reference source not found. show
execution time (s) and speedup for master-slave based scheduling with 8 processors as the 
baseline on the ISU Cystorm machine.  Here we see better than ideal speedups.  The reason for 
the high speedup values is that with master-slave scheduling, the master is using a core for the 
scheduling and does not contribute work.  For example, for 8 processors, the number of slave 
(worker) processors is 7, and with 64 processors, the number of slave processors is 63. Hence, 
going from 8 processors to 64 processors, the scaling of the number of slave processors is 63/7 = 
9, which is more than 8.

Table 4-2
Parallelization Using MPI (MSS= Master-slave scheduling, P = number of cores)

Simulation Clock Time (seconds)

No. Cont. P=8 P=16 P=32 P=64

10,000 18,408 8,595 3,954 1,951

20,000 35,183 16,369 7,970 3,919

30,000 52,789 24,508 12,082 5,895

40,000 69,483 32,138 15,588 7,663

50,000 87,631 41,047 19,856 9,658



Performance results

4-4

Figure 4-2
Speedup values with master-slave scheduling

Table 4-3 shows the execution time (s) for the master-slave scheduler on the Ansel machine.   
The scheduler on Ansel did not permit jobs to execute long enough to complete a single node (12 
core) run, so we used a 24-core run as baseline.

Table 4-3
Parallelization Using MPI on Ansel (MSS= Master-slave scheduling, P = number of cores)

Simulation Clock Time (seconds)

No. Cont. P=24 P=48 P=96 P=192 P=384 P=768

50,000 23,826 11,842 5,922 2,978 1,514 784

Figure 4-3 shows the speedup for master-slave based scheduling with this baseline on the Ansel 
machine.  Here we see near ideal speedups out to 768 cores (the largest tested on Ansel).  These 
results and those from the Cystorm machine show that pararllelism over contingencies is a very 
effective way to utilize a parallel machine for contingency analysis.  Both shared memory and 
MPI distributed memory showed this parallelization approach to be efficient.



Performance results

4-5

Figure 4-3
Speedup values relative to 24 cores on Ansel with master-slave scheduling

Single Contingency Parallelization Results

While the parallelization over contingencies is very effective, there may be situations where a 
processing node may not have enough memory to fit a full contingency for each core.  In these 
cases, we may better able to utilize a parallel machine by parallelizing within a contingency as 
well as over the contingencies.  To do this, we considered parallelization of the vector kernel 
routines as well as the sparse linear factorization.

Vector Kernel Parallelization

The first thread-parallelization we considered was to apply openMP to the vector kernel for the 
SUNDIALS IDAS package and test the benefits of parallelization of the data structure under the 
time integrator and nonlinear solver.  Once the openMP-parallel vector kernel was in place, we 
ran it on our vector kernel test suite six times in succession.  Runs were done six times since the 
variation in run times could be significant.  Average times are reported in Figure 4-4, and we see 
that run times increased with a vector length of 1,000.  Speedups were attained, however, with 
even a vector length of 10,000 using 2-4 threads indicating that we expect to see some speedup 
with TDPSS as long as we run with at least 10,000 unknowns.  Note that run times increase with 
5 or more threads for vectors of 10,000.  In this case we see that the work per thread is so little 
that parallelizing with that many threads does not make up for the overhead of spawning the 
threads and separating the work among them.  With vectors of 100,000 we see clear speedup up 
to 12 threads using all 12 cores on the node.  The greatest speedup is with 2-6 threads.  Clearly, 
we would expect more speedup using this vector kernel with TDPSS on problems of 100,000 or 
more unknowns.

0.00

20.00

40.00

24 48 96 192 384 768

Sp
e

e
d

u
p

 V
al

u
e

Number of Cores

Speedup Values for 50000 Contigencies



Performance results

4-6

Figure 4-4
Results of parallelizing the SUNDIALS vector kernel with openMP on the vector test suite 
using the LLNL Ansel system.

Figure 4-5 shows results of thread-parallelization using the LLNL Herd system.  Recall that the 
shared memory on a node is larger for Herd than Ansel, but there are 32 cores on the node.  Here 
we see a slowdown after 10 threads even for vectors of length 100,000.  This earlier slowdown is 
likely due to a slower bus to memory.  As more threads are trying to access data in the shared 
memory, there is contention on the bus that supplies data to the processing cores.  From these 
results, we expect that the bus on Herd is slower than on Ansel.  Note that even at vector lengths 
of 100,000, a significant speedup is seen with threading with 2-7 threads.

Figure 4-5
Results of parallelizing the SUNDIALS vector kernel with openMP on the vector test suite 
using the LLNL Herd system.  Times shown are averages over six consecutive runs.

We next tested this vector kernel in the TDPSS code.  Figure 4-6 shows results of using the 
openMP vector kernel with TDPSS on the 58,000 unknown problem on the Ansel system.  Note 
that the variations in runtimes were quite high, and the averages over 20 runs are shown with and 

0.00000

0.00200

0.00400

0.00600

0.00800

0.01000

0.01200

0.01400

0 2 4 6 8 10 12 14

T
im

e
 (

s)

Number of OpenMP threads

Ansel Vector Kernel
1000
10000
100000

0.00000

0.00500

0.01000

0.01500

0.02000

0.02500

0 5 10 15 20 25 30 35

T
im

e 
(s

)

Number of OpenMP threads

Herd Vector Kernel
1000

10000

100000



Performance results

4-7

without the max over the 20 run times.  In general, for even numbers of threads, we see a benefit 
of the threaded vector kernel, with greatest benefit at 4 threads.  Overall, however, these results 
show little benefit from threading the kernel.  Based on preliminary profiling results, we suspect 
that not enough time is spent in the vector kernel routines to result in significant gain from their 
parallelization.

Figure 4-6
Results of thread-parallelization of the vector kernel in TDPSS on the Ansel machine.

Large Contingency Study

As a final test of TDPSS at very large scale an experiment with 1 million contingencies was run 
on the Sierra machine.  Using 1024 nodes with a total of 12,288 cores the solution time was 26 
minutes.  The sum of the contingencies times is 138 days. 

Linear Solver Parallelization with SuperLU_MT

We next consider the potential benefit of threading the linear solver.  For this, the SUNDIALS 
interface to the SuperLU_MT package from LBNL was interfaced with TDPSS.  SuperLU_MT 
is a DOE SciDAC program-funded package (like SUNDIALS) and has been tuned to work well 
on multicore computer architectures.  SuperLU_MT implements a thread-parallel sparse direct 
linear factorization.  The LU solve itself is not threaded.  The COLAMD reordering method was 
applied to the Jacobian matrix through SuperLU_MT as that reordering has been shown to be 
very effective in circuit simulation problems [Davis:2004].  

Figure 4-7 shows results of applying 1-12 threads for the linear solver factorization for the 
58,000 unknown problem on Ansel.  Average run times are given for 20 contingencies run 
consecutively.  Here we see a clear benefit with employing 2-4 cores using threads.  Above 4 we 
see that the overhead associated with spawning the threads and separating the work overwhelms 
any benefit from the extra parallelism.  We expect that a bigger problem would benefit more 
from the parallelism.



Performance results

4-8

Figure 4-7
Results of SuperLU_MT linear solver thread parallelization with TDPSS on the LLNL Ansel 
system.  Average times are over 20 contingencies.

Figure 4-8 shows results of a similar study on Herd.  Here 32 contingencies were run 4 times to 
give the average values seen.  We note two significant run time outliers that affected average 
values.  Here, the average without the maximum value is more indicative of run times.  Again, 
we see a clear benefit from employing 2-4 threads.  Above those numbers, the amount of work 
on each thread does not justify the overhead of threading.

Figure 4-8
Results of SuperLU_MT linear solver thread parallelization with TDPSS on the LLNL Herd 
system.

Performance Results of Contingency Study Throughput

We next looked at whether threading the linear solver would be likely to improve throughput for 
a contingency study.  Table 4-4 shows runtimes for a 48-contingency study on the LLNL Ansel 
system.  We started with 12 MPI tasks each running on a single processing core, so that all 12 
were running on a single node at once.  This was done 4 times to run all 48 contingencies.  We 



Performance results

4-9

next used 6 MPI tasks each running with two threads on two processing cores so that 6 
contingencies ran at a time, and this was done 8 times.  Continuing this way, we last ran 1 MPI 
task with 12 threads each running on a single processing core to utilize all 12 cores on a node 
and doing this 48 times.  Each one of these cases was repeated 4 times to allow for variation in 
run times.  Reported results are averages over the 4 runs of each study.  Results show that the 
fastest times for the 48 contingency study were with 12 MPI tasks.  However, 6 MPIs tasks each 
with two threads was not that much slower.  For problems too large to fit many contingencies 
into a node memory, we might expect that not all 12 contingencies would fit in memory and that 
memory contention would cause 1 MPI task per core to be too slow.

Table 4-4
Average run times for 48 contingencies on Ansel varying numbers of MPI tasks and 
threads in the linear solver.

MPI Tasks Pthreads Run time (s)

12 1 97

6 2 102

4 3 134

3 4 179

2 6 230

1 12 451

Table 4-5 shows results from a similar study on the LLNL Herd system.  Here we used a 32-
contingency study and ran that 4 times with each configuration.  Again, the fastest times are with 
a single MPI task per core and no threading.  

Table 4-5
Average run times for 32 contingencies on Herd varying numbers of MPI tasks and threads 
in the linear solver.

MPI Tasks Pthreads Run time (s)

32 1 72

16 2 94

8 4 119

4 8 195

2 16 394

1 32 601

We next looked at the throughput issue for the larger of the modified PJM systems.  Recall that 
this one had about 110,000 unknowns.  Figure 4-9 shows runtimes for a 12-contingency study on 
the LLNL Ansel system.  In order to eliminate load imbalance effects on timings, the same 
contingency was repeatedly solved in this experiment.  The experiments were replicated 4 times,
and the average time is shown.  This throughput time is compared with running the same 12 
replicated contingencies using multiple threads in SuperLU_MT in order to determine which 



Performance results

4-10

parallelization strategy is more effective.  Run times for just the contingency solve isolated from 
the initial file I/O and problem setup is shown in Figure 4-10.   Comparing the two graphs it is 
clear that overall running multiple contingencies is still more effective than parallelizing over a 
single contingency through SuperLU_MT.  Running many instances at the same time is 
suffering from an I/O bottleneck as seen by the poor scaling of the total runtime compared with 
CPU only contingency times.

Figure 4-9
Ansel throughput study total runtime including I/O and problem setup

Figure 4-10
Ansel throughput study contingency time excluding all I/O and problem setup

Figure 4-11 and Figure 4-12 show the total runtime and contingency only time for a similar 
experiment on the Herd machine which has 32 cores.   Again running contingencies in parallel 
yields better throughput than parallelizing within a single contingency execution.  Herd did not 

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14

Ti
m

e
 (

s)

Number Of Cores

Ansel Total Runtime
Large Problem

12 Contigencies

Ansel MPI

Ansel SuperLU 
Pthreads

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0 2 4 6 8 10 12 14

Ti
m

e
 (s

)

Number Of Cores

Ansel Contigency Time
Large Problem

12 Contigencies

Ansel MPI

Ansel SuperLU 
Pthreads



Performance results

4-11

exhibit as much impact from many simultaneous processes reading the problem from disk as was 
seen on Ansel.

Figure 4-11
Herd throughput study total runtime including I/O and problem setup

Figure 4-12
Herd throughput study contingency time excluding all I/O and problem setup

To further illustrate scaling properties, the parallel efficiency was computed and shown in Figure 
4-13 and Figure 4-14 for total runtime and the contingency only time.   Parallel efficiency is 
defined as [Fox:1998],

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

0 5 10 15 20 25 30 35

T
im

e
 (

s)

Number Of Cores

Herd Total Runtime
Large Problem

32 Contigencies

Herd MPI

Herd SuperLU Pthreads

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

0 5 10 15 20 25 30 35

T
im

e 
(s

)

Number Of Cores

Herd Contigency Time
Large Problem

32 Contigencies

Herd MPI



Performance results

4-12

�� =
��

���
,   

where � is the number of cores, ��is the sequential time, and �� is the time on � cores.  A value 
of 1.0 represents perfect scaling.

The Herd architecture is scaling the computational portion of the application very well, 
maintaining 90% efficiency at 32 cores. Super linear speedup effects are likely caused by 
increased caches when multiple processors are in use.   The total runtime efficiency is clearly not 
scaling on either architecture due to I/O bandwidth limitations.  SuperLU_MT is showing very 
similar scaling on both architectures.

Figure 4-13
Parallel efficiency plot of total runtime for Herd and Ansel using both MPI and SuperLU 
parallelization strategies.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35

P
ar

al
le

l E
ff

ic
ie

n
cy

Number Of Cores

Ansel and Herd Parallel Efficiency
Total Runtime
Large Problem

Ansel MPI

Ansel SuperLU Pthreads

Herd MPI

Herd SuperLU Pthreads



Performance results

4-13

Figure 4-14
Parallel efficiency plot of contingency only time excluding I/O and problem setup for Herd 
and Ansel using both MPI and SuperLU parallelization strategies.

Given the overall performance benefit of running multiple contingencies simultaneously and the 
observed impact of limited I/O bandwidth as more and more parallel tasks are run, a potentially 
useful strategy would be to combine multiple MPI tasks and SuperLU_MT threaded parallelism.   
<table> shows the results of combinations of MPI tasks and threads on Herd.   SuperLU 
threading was not observed to help.    Note that on Herd the fastest time was using 16 MPI tasks 
and no SuperLU_MT threads for the total runtime.   If I/O is discounted 32 MPI tasks performed 
the best.  These results show that we have reached a point where MPI tasks were not improving 
performance.  In theory this would be an ideal place to start threading as the I/O is no longer 
scaling so more instances just adds to contention without increasing throughput.   Adding 
threading would not increase startup I/O, and we would expect it to increase throughput at this 
point.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35

P
ar

al
le

l E
ff

ic
ie

n
cy

Number Of Cores

Ansel and Herd Parallel Efficiency
Contigency Time
Large Problem

Ansel MPI

Ansel SuperLU Pthreads

Herd MPI

Herd SuperLU Pthreads



Performance results

4-14

Table 4-6
Average run times for 32 contingencies on Herd varying numbers of MPI tasks and threads 
in the linear solver.

MPI Tasks
SuperLU_MT

Pthreads

Total Run

Time (s)

Contingency 
Time (s)

32 1 302 48

16 2 267 106

16 1 247 86

8 4 294 162

4 8 446 314

2 16 842 711

1 32 1,504 1,374



5-1

5
CONCLUSIONS AND FUTURE DIRECTIONS

This project considered both shared and distributed memory parallelism applied to power system 
time domain simulations.  Work addressed the use of parallelism to improve throughput of a 
large contingency study.  Findings indicated that parallelization over contingencies with MPI 
gives the best use of a truly high performance machine.  This result is expected since running 
multiple contingencies concurrently is embarrassingly parallel.  Thread-parallelism was also 
shown to be very effective in parallelizing runs over contingencies.  However, this approach will 
be limited in the number of processing cores that can be used at a single time.  The limitation is 
due to the ability to schedule only with shared memory and hence only the number of cores 
sharing a memory can be used. However, hybrid approaches making use of both shared and 
distributed memory parallelism over contingencies could certainly be considered and developed 
in the future.

Thread-parallelism with shared memory was also explored for parallelization within a single 
contingency.  In particular, thread-parallelization of the vector kernel routines lying underneath 
the time integrator and nonlinear solver was tested.  While these vector routines showed 
significant speedup outside the time domain code, the simulations did not speed up much with 
the parallel vector routines.  This result is due to the fact that the vector routines account for only 
a small percentage of the run time for the time domain simulation.

Lastly, we considered parallelization of the sparse linear solve factorization step through use of 
the SuperLU_MT library.  With this thread-parallel linear solver, TDPSS showed some speedup 
for 2-4 threads.  However, each contingency did not speed up enough to improve throughput of a 
contingency study.  This finding was further tested by comparing the throughput of a 
contingency study where processing cores were used either with MPI or threads.  The fastest 
throughput always came with all MPI tasks and no threads.

One reason for this finding is that by parallelizing over contingencies, the entire solution process 
is parallelized.  With threading of the linear solve, only the solve factorization is parallelized.  A 
particularly promising area of future work would be to implement a fully distributed memory 
parallelization of each contingency and examine the throughput of using some MPI tasks to 
parallelize within a contingency.  This line of research would include development of effective 
distributed memory parallel linear solvers.  One particular solver class amenable to large, parallel 
runs are iterative Krylov methods, and future work will investigate effective approaches for 
using these methods in time domain simulations.

When the industry moves toward high-performance extended-term time domain simulation, 
future work on variable time step control scheme for time integration will be needed to speed up 
the simulation. From power system modeling perspective, future work will be needed to develop 
models that capture long-term dynamics including but not limited to Automatic Generation 
Control, boiler dynamics, wind/solar ramping, and protection and control.





A-1

A
APPENDIX

References

[Davis:2004] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng, “A Column Approximate 
Minimum Degree Ordering Algorithm,”  ACM Trans. on Math. Software, 30, 2004, pp. 353-376.

[Eto:2011] J. Eto and R. J. Thomas, “Computational Needs for the Next Generation Electric Grid 
proceeding”, April 19-20, 2011. Available on line: 
http://www.doe.gov/sites/prod/files/FINAL_CompNeeds_Proceedings2011.pdf

[Fox:1998]   G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, AND D. Walker, Solving 
Problems on Concurrent Processors, Volume 1, Prentice-Hall, Englewood Cliffs, NJ.

[Hindmarsh:2005]  A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. 
Shumaker, and C. S. Woodward, “SUNDIALS: Suite of Nonlinear and Differential/Algebraic 
Equation Solvers,” ACM Trans. on Math. Software, 31(3), (2005), pp. 363 - 396.

[Khaitan :2012] S. Khaitan and J. McCalley, “Dynamic load balancing and scheduling for 
parallel power system dynamic contingency analysis,” High Performance Computing in Power 
and Energy Systems, (2012), pp. 189–209.

[Khaitan1 :2012] S. K. Khaitan and J. D. McCalley, "High Performance Computing for Power 
System Dynamic Simulation," High Performance Computing in Power and Energy Systems, 
POWSYS. Springer, 2012, pp. 43–69.

[Li:1999] X. S. Li, J. W. Demmel, J. R. Gilbert, L. Grigori, M. Shao, and I. Yamazaki “SuperLU 
Users' Guide,” Lawrence Berkeley National Laboratory Tech. Report, LBNL-44289, Sept. 1999, 
available at: \url{http://crd.lbl.gov/~xiaoye/SuperLU/.

[Li:2005] X. S. Li, “An Overview of SuperLU: Algorithms, Implementation, and User 
Interface,” ACM Trans. on Math. Software, 31, 2005, pp. 302-325.

[Top500:2012]  Top500 HPC systems projected performance development. Available on line: 
http://www.top500.org/statistics/perfdevel/

Presentations from this Project

Khaitan, S. “Outlook for Parallel Computing in Electric Power Industry” invited PSerc 
seminar, March 19, 2013.
http://mediasite.engr.wisc.edu/Mediasite/Viewer/?peid=7b9f3be51b424d27b9dfa31276be5a3b1d



Appendix

A-2

L. Min, “Practical Experiences with High Power Computing in Power System Applications”, the 
10th i-PCGRID workshop (Innovations in Protection and Control for Greater Reliability 
Infrastructure Development), San Francisco, CA, USA, March 26-28, 2013.

Woodward, C. S., “Accelerated Fixed Point Methods and Other Advances in SUNDIALS,” an 
invited mini-symposium lecture to the SIAM Conference on Computational Science and 
Engineering, Boston, MA, Feb. 27, 2013.


