
LLNL-JRNL-639661

General Model of Conversion Efficiency
in Ultraintense Laser-Overdense Plasma
Interactions

M. C. Levy, S. C. Wilks, M. Tabak, M. G. Baring

June 21, 2013

Physics of Plasmas



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



General Model of Conversion Efficiency in Ultraintense

Laser-Overdense Plasma Interactions

Matthew C. Levy,1, 2 Scott C. Wilks,2 Max Tabak,2 and Matthew G. Baring1

1Department of Physics and Astronomy, MS

108, Rice University, Houston, Texas 77005, USA

2Lawrence Livermore National Laboratory, Livermore, California 94551, USA∗

(Dated: June 12, 2013)

Abstract

Particle coupling to the oscillatory and steady-state nonlinear force of an ultraintense laser is

studied through analytic modeling and particle-in-cell simulations. The complex interplay between

these absorption mechanisms – corresponding respectively to ’hot’ electrons and ’hole punching’

ions – is central to the viability of many ultraintense laser applications. Yet, analytic work to

date has focused only on limiting cases of this key problem. In this paper, we develop a fully-

relativistic model in 1-D treating both modes of ponderomotive light absorption on equitable

theoretical footing for the first time. Using this framework, analytic expressions for the conversion

efficiencies into hole punching ions and into hot electrons are derived. Self-consistent solutions

for the relativistically-correct hole punching velocity and the hot electron Lorentz factor are also

calculated. Excellent agreement between analytic predictions and particle-in-cell simulations is

demonstrated, and astrophysical analogies are highlighted.

∗Electronic address: levy11@llnl.gov
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I. INTRODUCTION

The interaction of ultraintense laser light (normalized vector potential a0 =

eEL/(mecωL) > 1) with matter is characterized by the nonlinear action of the light[1].

The laser ponderomotive force fL couples the incident photon flux into two primary ki-

netic modes: (1) ’hole boring’ or ’hole punching’ (hp) ions accelerated by the space-charge

force associated with electrons under the excursion of time-averaged field energy gradients

〈fL〉 ∼ ∇E2
L ; and (2) relativistic ’hot’ electrons excited by the oscillatory component of fL

at 2ωL. Optimizing the modes in which the photons are absorbed enables applications such

as compact GeV-scale particle accelerators[2], approaches to inertial confinement fusion[3]

(ICF), and medical proton oncology[4].

The complex interplay between the steady-state and oscillatory ponderomotive absorption

processes is central to the viability of many ultraintense laser applications. Yet, to date,

analytic models seeking to describe the interaction have only considered only limiting cases,

e.g., assuming unitary coupling into either the steady-state hole punching (hp) absorption

mode[1] or into the oscillatory mode[5].

In this paper, we develop a fully-relativistic 1-D analytic model treating both modes of

ponderomotive light absorption on equitable theoretical footing for the first time. Using

this framework, we derive analytic solutions for the (1) piston velocity, (2) hole punching

ion velocity, (3) hot electron Lorentz factor, (4) conversion efficiency into hole punching

ions, and (5) conversion efficiency into hot electrons. The model describes overdense plasma

interactions and is insensitive to laser polarization assuming that bulk ions are swept up

and fully reflected in the interaction. Excellent agreement between analytic predictions and

particle-in-cell simulations is demonstrated.

The kinematic approach undertaken here considers the distribution functions fs describ-

ing the exchange-mediating particles, i.e. those directly excited by the laser on the spatial

scale c/ωpe at the laser-plasma (LP) interface. The set s fully enumerates these popula-

tions, s ∈ {hole punching ions, hole punching electrons, hot electrons}; once the laser has

coupled into these particles, energy and momentum may then cascade into other species

in the plasma, e.g. drawing the return current[5] or generating positrons[6]. Now, in mo-

mentum space, fs = fs(p
k; 〈p0

s〉) where 〈p0
s〉 =

∫
p0fsdp

k (covariant notation is discussed

in section III). The task is thus to determine 〈p0
s〉 such that energy and momentum are
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conserved between the plasma and the laser driver.

This paper is structured as follows: section II provides a brief review of existing analytic

absorption models. In section III, an overview of the approach undertaken here is discussed,

and sections IV and V establish the foundations of the model. Section VI calculates the

solutions for 〈p0
s〉, and section VII derives the conversion efficiencies into hole punching ions

and into hot electrons. In section VIII, the analytic results are compared to particle-in-cell

simulations. Finally, section IX discusses important analogies to astrophysical scenarios,

and concluding remarks are given in section X.

II. BACKGROUND

The task of understanding the critical interface exchange processes for a0 > 1 LPI

amounts to understanding the partitioning of the laser energy and momentum into hot

electrons and hole punching ions. Yet, to date, a general framework treating both popu-

lations on equitable theoretical footing has not been developed. The model of momentum

conservation between an ultraintense laser and an overdense plasma was described by Wilks

et al.[1], which derived the hole punching velocity by balancing the laser momentum flux

with that of the hole punching ions. Yet, in this model the hot electrons were not accounted

for, nor was energy conservation considered. Naumova et al.[7] extended this framework for

relativistic hole punching ions and taking into account energy flux conservation.

This work considered full laser light reflection from the electron density peak bounding

the radiation pressure-induced separation layer at the critical interface. In this context,

the energy transfered to the plasma is that which is lost in the red-shifting of the reflected

light, with an effective reflection coefficient[7] given by the relativistic doppler formula R =

(1 − up/c)/(1 + up/c). This energy is assumed to be coupled with 100% efficiency into the

punching ions. In the nonrelativistic limit, the energy absorbed by the ions is then simply

1−R ' 2up/c, consistent with the simple estimate of Wilks & Kruer[8]. To the extent the

laser piston structure is maintained with unit coupling into ions, recent measurements of

the specular doppler shift[9] represent a 1 : 1 measurement of the ion conversion efficiency.

In considering the fast electrons, Haines et al.[5] developed a ’black box’ model conserving

both energy and momentum in the interaction, in a manner analogous to the Rankine-

Hugoniot shock relations. Yet, this model took into account only the contributions from the
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hot electrons. More recently, Ping et al.[9] put forward a model that includes both the hot

electron and hole punching ions; however, this model is constrained to the limit where the

hole punching ions exchange momentum but not energy with the laser.

In the following sections, we present a novel analytic model extending this framework by

allowing energetically significant aborption into both the steady-state and oscillatory modes

for the first time. In Section VIII, results from the model are compared to and shown to be

in good agreement with particle-in-cell simulations.

III. COUPLING OF ULTRAINTENSE LASER LIGHT TO AN OVERDENSE

PLASMA

We consider the steady-state laser-plasma interaction at the coupling stage in the labora-

tory frame. Consider the small volume at the laser-plasma interface comprising a few c/ωpe

in a axial extent, depicted schematically in Fig. 1. The laser is incident on the volume

from the left and excites plasma particles which leave the volume on the right-hand side.

All particles in the region are assumed to interact with the laser and may be accelerated

relativistically by coupling into either the oscillatory or steady-state absorption mode. The

total electron density is ne, which may take on any value that is relativistically-opaque to

the laser light[10]. Ions in the interface are assumed to have uniform charge state Z given

by the quasi-neutrality condition, ni = ne/Z.

Absorption of ultraintense laser light by an overdense plasma amounts, in effect, to the

coupling between an incident photon flux and particles comprising the moving plasma in-

terface. It follows that we consider only plasma particles that mediate the energy and

momentum exchange, i.e. those directly excited by the laser on the spatial scale c/ωpe at

the laser-plasma (LP) interface. The set s fully enumerates these populations,

s ∈ {hp ions, hp electrons, hot electrons} (1)

where in the following sections each species will be refered to by its numeric index. Once

the laser has coupled into these populations, energy and momentum may then cascade into

other species in the plasma. An important example of this is the collective plasma excitation

of a return current in order to neutralize the fast electron current[5].

The evolution of particle distribution functions fs(x
µ, pµ) in equation (1) is determined
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by the Boltzmann-Vlasov equation,(
dxµ

dτ

∂

∂xµ
+
dpk

dτ

∂

∂pk

)
fs(x

µ, pµ) = 0 (2)

where τ is the proper time[11]. The Minkowski tensor ηµν has signature (−1, 1, 1, 1); the

greek sub- and super-scripts represent tensor indices µ ∈ {0, 1, 2, 3}; the latin indices k ∈

{1, 2, 3} run over the spatial subset; the s subscript is reserved for particle species and for

clarity will be distinguished from tensor indices where necessary. Collisional coupling is

assumed to be negligible and the characteristics of equation (2) are given by,

dxµ

dτ
=
pµ

ms

,
dpk

dτ
= − qs

ms

F kµpµ (3)

where the momentum characteristic includes spatial components due to the mass-shell

restriction[11]. In equations (2) and (3), qs is the electric charge, ms is the rest mass

and F µν represents the field strength tensors.

The approach undertaken in this paper considers the parameters of fs that satisfy con-

servation of energy and momentum between the ultraintense photon flux and relativistic

particle fluxes excited in the plasma, e.g. moments of equation (2). In momentum space,

fs = fs(p
k; 〈p0

s〉) where 〈p0
s〉 =

∫
p0fsdp

k. We thus seek to determine 〈p0
s〉 for the hp particles

and hot electrons.

For the former population, we note that the ’laser piston’[7] is characterized by the strong

electrostatic potential generated by the steady-state component of the laser ponderomotive

force[12],

fL = ∇
(
ncr
ne
a2

0

)
mec

2 (4)

where ne is the electron density in the laser-plasma interface. As the piston propagates into

the target, we assume that background particles are swept up and fully reflected[1, 7, 13, 14].

Electrons reflect from the piston head while ions are pulled in by the potential and reflect

from ions bounding the piston on the downstream side. Electrons and ions are both reflected

at the same velocity, ui. As such, we assume they are adequately represented in momentum

space as drifting Maxwellian distributions of the same form,

fsn(v) =
nn√
2π

√
mn

Tn
e−

mn(v−ui)
2

2Tn , n ∈ {1, 2} (5)

where, related to equation (1), fs1 represents the hole punching ion distribution and fs2

represents the hole punching electron distribution. mn is the mass, nn is the reflected
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particle density and Tn is the temperature of population sn. The strong light pressure

driving the piston through equation (4) can accelerate the particles to ’mildly’ relativistic

energies with ui/c ∼ 0.1. We assume that each distribution is cold so that 1/2mnu
2
i � Tn,

consistent with the particle-in-cell simulation results. More accurately, however, the ’saddle

point’ approximation of the Juttner distribution should be employed[15].

If the phase offset ∆φ between the laser electric field components is not precisely π/2,

fL also contains an oscillatory term that nonadiabatically accelerates ’strongly’ relativistic

electrons[12]. These ’hot’ electrons are well-characterized by a Maxwell-Juttner distribution,

fs3(γ) =
nh
Θ

γ2
√

1− γ−2

K2 (1/Θ)
e−γ/Θ (6)

where nh is the hot electron density, γ is the Lorentz factor, Θ = Th/(mec
2), Th is the

temperature and K2 is the modified Bessel function of the second kind.

In the following sections we seek to determine the parameters 〈p0
s〉 of fs that satisfy energy

and momentum conservation between the ultraintense laser and plasma.

IV. RELATION BETWEEN THE PISTON AND HOLE PUNCHING VELOCI-

TIES

In a time-averaged sense, ultraintense LPI at the critical density ncr = meω
2
L/(4πe

2)

interface are characterized by the generation of a radiation pressure separation layer, com-

prised of electrons swept out by the laser fields, resulting in regions of charge compression

and depletion. Ions are pulled along through the generation of a strong ambipolar force field,

with the entire ’laser piston’ structure propagating into the bulk target at the piston veloc-

ity up. Particle mass density is conserved as the piston sweeps up and reflects background

electrons and ions. From this, the relation between the piston velocity up and reflected ion

velocity ui can be obtained.

By integrating over equation (2) the continuity equation is obtained,

∂Γµs
∂xµ

= 0, Γµs =
n′s
ms

P µ
s (7)

where n′s is the Lorentz-invariant proper density of species s[11]. The fluid four-momentum

P µ
s = γsmsc (1,Vs/c) is defined as,

P µ
s =

1

ns

∫
pµ fs dpk (8)
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where the Lorentz factor γs = (1−Vs ·Vs/c
2)−1/2. The particle density ns is given by,

ns =

∫
fs dpk (9)

For a frame moving at velocity u relative to Vs, invariance of electric charge and equation

(7) give the relation, ns = γ(u) n′s where γ(u) = (1− u2/c2)−1/2.

We evaluate equation (7) by changing coordinates to the rest frame of the piston. Quan-

tities in this frame are denoted using a superscript (′p). For the laboratory frame velocity

u, the appropriate Lorentz transformation is given by,

u(′p) =
u− up

1− u · up/c2
(10)

In this frame, the interaction is steady-state and longitudinal particle conservation may be

expressed,

−Mniup +Mniu
(′p)
i = 0 (11)

where ni is the ion density in the laser-plasma interface, up is the piston velocity and u
(′p)
i is

the axial velocity of the reflected ions in the piston frame. Note that equation (11) represents

particle conservation for both the hole punching electrons and ions, as M = Mi + Zme.

From equation (11) it follows immediately that u
(′p)
i = up. Transforming back to the

laboratory frame gives the hole punching ion axial velocity,

ui =
2up

1 + (up/c)2
(12)

consistent with Wilks et al.[1] in the nonrelativistic limit.

We now introduce the relativistic ’hot’ electron beam into this framework. This is possible

due to the separation of velocity scales associated with the oscillatory and steady-state

components of the nonlinear force. As was suggested by Ping et al.[9], the plasma return

current neutralizes the electron beam at a rate much faster than the piston velocity, i.e.

uh/up � 1 where uh ' c is the hot electron axial velocity. The interaction is thus steady-

state on the piston timescale, such that the electron density as ’seen’ by the piston is

unmodified. Particle number conservation for the hot electrons may then be written,

meneur +menhuh = 0 (13)
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where ur = −(nh/ne)uh is the return current velocity, i.e. a statement of the plasma

neutralization of the hot electron beam current. The interplay between the laser light and

the plasma near the critical interface is illustrated schematically in Fig. 1.

In the framework of the usual two-temperature fit to the electron dN/dE energy

spectrum[8], the steady-state nonlinear force may be considered as corresponding to the

low-energy component of the electron spectrum, and the oscillatory component as corre-

sponding to the high-energy component. While the hot electrons may play a significant role

energetically due to their relativistic γ-factor, in general it is expected that nh/ne � 1, as in-

spection of the electron energy spectrum from a typical experiment or simulation shows that

the majority of the number of electrons in the system fall into the lower-energy component.

V. POYNTING THEOREM FOR ULTRAINTENSE LIGHT

Once the laser has excited populations s, their evolution is determined through conser-

vation of phase volume given by equation (2). The parameters 〈p0
s〉 of fs are determined by

the four-divergence of the electromagnetic stress-energy tensor T µν ,

∂T µν

∂xν
+ ηµk

dpk
dτ

= 0 (14)

where the characteristic is given in equation (3) and the stress-energy tensor is,

T µν =
1

4π

(
F µαF ν

α −
1

4
ηµνFασF

ασ

)
(15)

where ηµν is the metric tensor and F µν is the field strength tensor as above.

In this section, we will evaluate the four conservation laws implied by equation (14) in

Euclidean space. This approach allows us to highlight effects related to the relativistic

particle fluxes central to ultraintense laser-plasma interactions.

Consider the electromagnetic energy density Ue in the box shown in Fig. 1. The Poynting

theorem stipulates that,

−∂Ue
∂t

= ∇ · Se +
∑
s

Js · E (16)

where Se is the electromagnetic Poynting flux and Js is the spatial component of the current

four-vector,

Jµs =
qsn
′
s

ms

P µ
s (17)
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and P µ
s is given by equation (8).

As the light becomes ultraintense, the kinetic energy associated with the relativistic parti-

cle flux becomes significant. To elucidate this effect, the term in equation (16) corresponding

to the work done against the Lorentz force can be written as,∑
s

Js · E =
∂Um
∂t

+∇ · Sm (18)

where Um is the ’mechanical’ energy density in the box. Sm is the mechanical Poynting

vector corresponding to a sum over the particle energy flux density,

Sm =
∑
s

P k
s

γsms

(
P 0
s c−msc

2
)
ns (19)

A form of Poynting’s theorem useful to ultraintense laser interactions is obtained by

substituting equations (18-19) into (16),

∂U

∂t
+∇ ·

(
Se + Sm

)
= 0 (20)

where U = Ue + Um is the total energy density in the region. Equation (20) states that in

a steady-state interaction for the region in Fig. 1, the sink in the electromagnetic Poynting

flux must be balanced by a source of kinetic particle flux.

It is straight forward to derive an analogous conservation law for the vector momentum

flux density,

∂p

∂t
+∇ ·

(
Pe + Pm

)
= 0 (21)

where Pe and Pm are second rank tensors describing the flow of electromagnetic and me-

chanical momentum flux, and p is the total momentum density in the box in Fig. 1.

We conclude this section by commenting on the dynamical nature of the laser-plasma

interface. The fact the interface is in motion in the laboratory frame plays an important

role in satisfying equations (20-21). In general, an electromagnetic flux through a surface

moving at velocity up becomes,

Se →
(

1− up
c

)
Se , Pe →

(
1− up

c

)
Pe (22)

In the next section, these conservation laws will be applied to determine the properties

of fs for the exchange-mediating particle populations in equation (1).
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VI. FULLY-RELATIVISTIC MODEL OF ULTRAINTENSE LASER LIGHT AB-

SORPTION

Using the tools in the preceeding sections, we now develop a model of ultraintense laser

light absorption by an overdense plasma. For the first time, both hot electrons and hole

punching particles are described relativistically and exchange both energy and momentum

with the laser.

We consider the steady-state laser-plasma interaction at the coupling stage in the lab-

oratory frame. The ensemble average momentum and kinetic energy for each population

excited by the laser are given by,

〈ps〉 = P k
s (23)

〈Es〉 = P 0
s c−msc

2 (24)

The brackets are employed to emphasize that equations (23-24) represent ensemble average

quantities.

Over time interval dt, the total energy and momentum coupled by the laser into the

particles in equation (1) is simply,

dEs = Ns d〈Es〉+ 〈Es〉 dNs

dps = Ns d〈ps〉+ 〈ps〉 dNs (25)

where Ns is the particle number and ergodicity implies that d〈Es〉 and d〈ps〉 are zero.

The number of ions accelerated by the laser piston over dt is,

dNs1 = niup dA dt (26)

where dA = 2πrdr for a uniform laser spot of radius r. As in previous sections, ni is the ion

density in the interface and up is the piston velocity. By equation (11), the number of hole

punching electrons excited over dt is dNs2 = [Z × equation (26)].

The ensemble average particle energy and momentum can be related to the laser-plasma

kinematic exchange using equations (5, 19-21, 23-26). The 1-D momentum and energy flux

associated with the hole punching particles can be calculated as,

Psn =
dpn

dA dt
= 〈pn〉 upnn

Fsn =
dEn

dA dt
= 〈En〉 upnn , n ∈ {1, 2} (27)
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where Psn (Fsn) is the momentum (energy) flux. As in the previous sections, ns1 = ni, ns2 =

Zni.

On the other hand, the number of hot electrons dNs3 excited by the oscillatory component

of the laser over dt is not directly related to the piston dynamics. As noted in equation (13),

particle number is conserved in the interaction with the plasma return current on a timescale

fast compared to up. From equations (6) and (23-24) we can assume that the hot electron

momentum and energy flux densities are given by,

Ps3 = γhnhmeu
2
h, Fs3 = (γh − 1)uhnhmec

2 (28)

where uh ' c is the hot electron axial velocity. In contrast to ns1 and ns2 , nh is an ansatz for

the hot electron density. In taking the kinematic form of equation (28), no assumptions are

made with respect to the hot electron dynamical motion[5]. γh corresponds to the ensemble

average hot electron Lorentz factor; brackets have been omitted for simplicity of notation.

Equations (27-28) constitute the mechanical Poynting flux Sm in equation (20). Inte-

grating over the volume of the box in Fig. 1 and invoking the Divergence theorem gives,

1

Ab

∫ ∫
Sm · dAb = −

∑
s

Fs (29)

as the particle flux leaves the region on the right side. Here Ab is the area of the surface

bounding the box, with vector direction normal to the surface.

Noting equation (22), the laser Poynting flux in equation (20) in integral form can be

written,

1

Ab

∫ ∫
Se · dAb =

(
1− up

c

)
(1−R) IL (30)

where IL is the laser intensity reaching the overdense surface andR is the fraction of reflected

irradiance. Using equations (29) and (30), the fully-relativistic energy flux conservation

equation can be expressed,

(1−R) (1− βp) IL = (γh − 1)menhc
3 + (γi − 1)Mniβpc

3 (31)

where M = Mi + Zme as in the preceding sections, βp = up/c is the dimensionless piston

velocity, ui is given by equation (12) and γi = (1 + β2
p)/(1 − β2

p). The first term on the

right-hand side of equation (31) represents coupling of the ultraintense laser light into the

oscillatory mode of the nonlinear force, and the second term corresponds to coupling into the

11



steady-state mode, the kinetic manifestion of which is the bulk electrons and ions reflected

from the piston. The fast electron current neutralization described by [(e/me) × equation

(13)] represents a collective response of the plasma to the beam. As noted above, the energy

driving the return current is extracted from the beam itself and thus does not factor into

the coupling equations.

Similarly, momentum flux conservation from equation (21) can be expressed,

(1 +R) (1− βp)
IL
c

= γhmenhc
2 + γiβpMniuic (32)

where equations (27) and (28) have been used.

Full reflection of background particles implies that the radiation pressure layer remains

essentially depleted of electrons. It is thus clear that the fast electrons must be primarily

generated at supercritical densities and may be shielded by the bulk target electrons from

the full ponderomotive potential. As such, it is emphasized that γh does not a priori follow

the ponderomotive scaling[1], i.e. γh 6= (1 + a2
0)1/2, but rather may be self-consistently

determined through equations (32-31).

Employing the relation 2IL/c = mencra
2
0c

2, equations (32) and (31) may be reformulated

as,

(1− βp) (1 +R) =
γh
β2

0

me

M

nh
ni

+
1

β2
0

2β2
p

1− β2
p

(33)

(1− βp) (1−R) =
(γh − 1)

β2
0

me

M

nh
ni

+
βp
β2

0

(
1 + β2

p

1− β2
p

− 1

)
(34)

where β0 is the dimensionless shock velocity scale,

β0 =

(
IL

niMic3

)1/2

=

(
Zme

2Mi

ncr
ne

)1/2

a0 (35)

As β0 becomes closer to unity, it no longer closely approximates the actual piston velocity

βp. For simplicity of notation, we adopt the convention that linear light with normalized

potential a0 has identical energy density to circular light of a0/
√

2.

{γh, βp} parameterize fs and thus determine the LP equilibrium condition. Problemati-

cally, however, equations (34-33) make evident the additional degree of freedom associated

with the hot electrons , nh. We treat this by defining,

ρh ≡
ρh∑
ρ

=
Zme

M

nh
ne

(36)
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where ρh represents the relative mass density in the interaction region coupled into the

oscillatory mode. While the electrons may play a significant role energetically due to the

relativistic γ-factor, equation (36) shows that ρh � 1, as the maximum value of ρh ∼ Zme/M

as nh/ne ∼ 1.

Solutions to equations (33-34) can now be obtained using a series expansion. To zeroth

order in ρh,

βp = β0

(
R

1 +Rβ2
0

)1/2

(37)

Equation (37) represents the fully-relativistic hole punching velocity, taking into account

both oscillatory hot electron generation and steady-state acceleration of background particles

by the laser piston. This expression is valid for overdense laser-plasma interactions while

background ions are fully-reflected by the laser light, independent of the laser polarization

and fraction of reflected light R. The parametric instabilities associated with relativistic

light interacting with an underdense plasma represent additional vectors through which the

light may couple to the plasma, and have been shown to lead to the formation of a supra-

ponderomotive tail in the electron spectrum[16]. In effect, this would increase the number

of exchange-mediating populations in equation (1), e.g. Raman-scattering electrons[8].

Equation (37) is independent of ρh, showing that the interplay between the piston velocity

βp and light coupled into the oscillatory mode is indirect, occuring only as the fast electron

absorption increases the total light absorbed by the plasma. Equation (37) also predicts a

decrease in piston velocity as total absorption increases, with βp → 0 as R → 0. This limit

corresponds to the cases described by Haines et al.[5] and Ping et al.[9].

The piston velocity from Wilks et al.[1],
√

(1 +R)/2 β0, can be derived exactly from

equation (32) in the limits that nh → 0 and β0 � 1. This expression is close to our result for

βp in the nonrelativistic limit, but diverges as βp & 0.1. It is straight-forward to show that

the relativistically-correct piston velocity for 100% conversion efficiency into ions as found

by Naumova et al.[7], up/c = β0/(1 + β0), represents a contour along the surface defined by

equation (37). Indeed, this result follows exactly from our equations (32) and (31) in the

limit nh → 0. It should also be noted that equation (37) reduces in the nonrelativistic ion

limit to
√
R β0, equivalent to the expression found in [9] for linearly-polarized light, despite

quite distinct assumptions in the underlying model.

From equations (33-34) and (37), we find that the solution for γh contains two terms to
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zeroth order in ρh,

γh =
(1−R)

√
β2

0R+ 1− β0

√
R(1 +R)√

β2
0R+ 1 β−2

0

ρ −1
h +O (1) (38)

The O (1) term is a polynomial in β0 and R. Fig. 2 shows the contours of the O (1) term.

Fig. 3 depicts the solutions {γh, βp} from equations (37) and (38). The ensemble average

hot electron energy γh scales as ∼ ρ−1
h , while from equation (31) the total energy coupled

into the oscillatory mode ∼ γh ρh is independent of the parameter. This will be discussed

in more detail in Section VII.

With the piston velocity βp in equation (37) and the ensemble average hot electron energy

γh in equation (38), the distribution functions fs in equation (1) are fully-characterized.

Together with equation (12) relating ui to the piston velocity, these equations satisfy energy

and momentum conservation between an ultraintense laser and overdense plasma.

In the next sections, we will examine how these analytic solutions change as system

parameters, e.g. the total reflection R, vary and are subject to constraints. We will show

that knowing the properties of fs allows us to extract information about the global properties

of the system.

VII. CONVERSION EFFICIENCY INTO HOT ELECTRONS AND HOLE

PUNCHING IONS

Finally, let us consider the conversion efficiency of laser light into populations listed in

equation (1).

From equations (34) and (37) we can calculate the conversion efficiency into hot electrons,

f h
a = (γh − 1) ρh

β−2
0

1− β0

√
R

β2
0R+1

(39)

Using equation (38), this expression can be expanded as,

f h
a =

(1−R)
√
β2

0R+ 1− (1 +R)β0

√
R√

β2
0R+ 1− β0

√
R

+O

(
ρh
β2

0

)
(40)

Equation (40) illustrates the key result that while the per-electron energy depends on ρh

through γh ' 1 +
(
ρ −1
h

)
, the total energy coupled into electrons f h

a depends only on β0 and

R while ρh/β
2
0 & 1.
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For the laser conversion efficiency into hole punching ions, f p
a , we have,

f p
a =

2β0R3/2√
β2

0R+ 1− β0

√
R

(41)

As for f h
a , we observe that the conversion efficiency into hole punching ions is robust to

the hot electron mass density ρh. The conversion efficiencies from equations (40) and (41)

highlight the nonlinear dependency of the coupling on the shock velocity scale β0 and the

total light absorption 1 − R. The solutions for the conversion efficiencies are depicted in

Fig. 3.

In the following section we will compare the predictions of equations (40) and (41) to

particle-in-cell simulations.

VIII. PARTICLE-IN-CELL SIMULATIONS

To test the predictions of the analytic model we have performed PIC simulations using

the hybrid LSP code[17]. The code is configured to solve the discretized Maxwell’s equations

and Lorentz force equation implicitly, with no time biasing to avoid numerical damping of

light waves. The timestep is determined by the Courant condition multiplied by a factor of

0.1. Electrons and ions are fully kinetic and are represented using 500 particles/cell/species.

We have modified the LSP source code to implement a ’kinetic-to-kinetic’ particle migration

feature. This allows us to effectively distinguish, label and track electrons which interact

with the laser and exceed a kinetic energy threshold from the cold background.

Simulations are one-dimensional Cartesian geometry with uniform spatial resolution

(∆x)−1 = 16 cells/µm. Laser light enters the box at the left x = 0 boundary and is

incident upon an overdense Z/A = 1 plasma slab at x = 5µm. The slab density ramps to

peak density n0 = ne = Zni over 0.06µm and has a 290µm spatial extent, followed by 5µ

m of vacuum ahead of the right boundary; the box is effectively infinite to prevent electron

refluxing. The laser pulse has 1µm wavelength and rises over 3 optical cycles to a flat-top

profile with 500-700fs duration. The plasma density n0 and normalized laser amplitude a0

are varied across simulations.

We exploit optical polarization to investigate laser coupling to the populations in equation

(1). Starting from circular light, by ’detuning’ the phase offset between the laser electric

field components we can precisely examine the system as increasing energy is coupled into
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the oscillatory mode, as |〈fL〉 − fL| > 0. Our method is as follows: two lasers are injected

through the x = 0 boundary, each linearly polarized in the opposite plane with normalized

intensity a0/
√

2. From this setup, precise control over the oscillatory electron energy is

possible by tuning the relative offset between the phases of the two waves, ∆φ [rad]. In this

notation, ∆φ = π/2 corresponds to circular light and ∆φ = 0 corresponds to linear light,

with the total amplitude of the light equal to a0 for arbitrary ∆φ. We have checked that

the ∆φ = 0 simulations agree closely with simulations performed using a single linearly-

polarized laser. This approach has an important experimental analog, as maintaining ideal

polarization phases is challenging under realistic conditions.

Fig. 4 compares the analytic predictions to simulation results for various a0, n0 configu-

rations for ∆φ = π/2 (circularly-polarized) light. (A,C,E) show the simulation results for

the energy coupled into the oscillatory (red) and steady-state (blue) absorption modes. The

cumulative particle energy is normalized to the total field energy injected into the simulation

for an equivalent ’empty’ run with no plasma,
∫
ILdAdt. The simulation instantanous par-

ticle energy flux is normalized to the attenuated injected energy flux density from the laser

as noted in equation (32), (1− βp)IL. We find that the proper normalization coefficients,

C0 =
(
1− βp

)
IL (42)

C1 =

∫
IL dA dt (43)

are essential so that measurements of the instantanous coupling agree with measurements

of the cumulative energy coupling, confirming equation (22). With this approach, we have

checked that the full time-integrated photon energy passing through the simulation bound-

aries agrees with the total and instantaneous energy absorbed into particles.

We note that care must be taken in measuring the instantaneous reflection using light

passing through the simulation boundaries, as the energy flux associated with the reflected

photons undergoes both doppler red-shifting and dispersion over time, due to the additional

distance dx = 2updt traveled. Because IL corresponds to the laser light reaching the over-

dense target surface, as noted in equation (30), care must also be taken in scenarios with

large-scale underdense plasma regions.

Predictions from the model are overlaid on the simulation results in Fig. 4 (A,C,E),

calculated using reflection data from the simulations at 30fs intervals. The model is seen

to closely agree with the simulation data to within fractions of a percent. Plots (B,D,F)
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show the corresponding front velocity βp from the simulations and model, for the Wilks

model (purple), Naumova model (black) and our model (red). The piston velocity from the

simulation is measured using two methods: first, the location of the interface defined by

ni/n0 = 1 is tracked over time at 10fs intervals. The green curve represents the derivative of

the front location over time, with oscillations in the piston velocity described in [13]. Second,

we measure the doppler-shifting in the frequency of the 1ωL light in the Ez transverse electric

field passing through the simulation boundary. The relativistic piston velocity βp is related

to the frequency shift through ∆f/f0 = 1 − (1 − βp)/(1 + βp). Blue dots on the curve

represent the Fourier transformed simulation data at 100fs intervals, and are seen to be

within one percent of the density front velocity metric. The analytic model predictions are

seen to be within one percent of the simulation data across laser intensities. Plots (C-D)

use a0 = 20
√

2, n0/ncr = 20 and show good agreement with results obtained in [13]. Plots

(E-F) correspond to a0 = 100, n0/ncr = 30, showing the steady-state interaction far below

the relativistic critical density threshold[10]. The protons reflected from the piston in this

simulation attain kinetic energy of ∼ 100 MeV.

Fig. 5 illustrates the effects of varying the laser polarization offset for the a0 =

100, n0/ncr = 30, Z/A = 1 plasma simulation, depicted for ∆φ = π/2 in Fig. 4 (E-F).

The electron and ion phase space from the simulation are depicted in the (Top) and (Mid-

dle) rows for ∆φ = π/2, 0.92. In the ∆φ = 0.92 simulation, the piston structure is observed

to reflect the background ions effectively even as 10% more energy is coupled into the os-

cillatory mode electrons, relative to the ∆φ = π/2 simulation. Plot (Bottom Row) (A-B)

show the model predictions for this case, showing agreement to within 5% in coupling ef-

ficiencies and in the piston velocity. Plot (Bottom) (C) shows the analytic curves for f p
a

(blue) and f h
a (red) for a0 = 100, n0/ncr = 30, as well as the light absorption limit indicated

with red and blue dots. Results from the simulations are overlaid along the curves. From

right-to-left, the colored ∇ markers represent simulation results for ∆φ = π/2, 0.95, 0.92, 0.

As the polarization tends further towards linear, simulation results show a jump in the total

energy absorbed by the plasma. This is due to the fact that the laser piston no longer

fully reflects ions, allowing electrons to fall through the piston potential. Consistent with

the assumptions underlying the model, accuracy falls beyond this point as additional effects

such as shock acceleration of ions modify the partitioning of energy coupled into the plasma.

The dynamics of these effects, recently reported on in detail[18], fall outside the scope of
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this paper.

Due to the restricted set of accessible states in 1-D geometry, full linear polarization

is seen to couple 47% of the laser energy into the target, relative to 37% for ∆φ = π/2

and 41% for ∆φ = 0.92. These conversion efficiences are high as ions in this interaction are

accelerated relativistically, with the corresponding shock velocity scale β0 = 0.3. Absorption

decreases as β0 becomes smaller, with nonlinear dependencies given by equations (39-41).

Laser coupling into the oscillatory absorption mode is illustrated in Fig. 6 for the β0 =

0.295,∆φ = 0.92 simulation. (A) depicts the density of exchange mediating electrons (red)

and of ions (black) at two times, with the arrows indicating the dynamical position of the

laser-plasma interface. The density of electrons coupled into the oscillatory mode, nh, is

calculated in the simulation as the subset of exchange-mediating electrons passing through

the x = 100µm plane as shown in (B). The associated relative mass density ρh � 1 given

by equation (36) is labeled on the right axis. (D) depicts the ensemble average Lorentz

factors for the exchange-mediating electrons and for the hot electrons. Fig. 6 (C) compares

simulation results to the analytical model. The dashed black line corresponds to equation

(40) using the average reflection coefficient 0.61 from Fig. 5. The hot electron energy flux

density dEh/(dA dt) is self-consistently calculated through a diagnostic in the simulation.

The solid blue curve shows this quantity normalized to equation (22) using the constant

laser intensity IL. The ensemble average quantity γh and ρh from the simulation are used

to calculate the solid black curve, according to equation (34). The good agreement between

the analytic model and the simulation results is illustrated in (C).

IX. ASTROPHYSICAL APPLICATIONS

The results presented in this paper for the deposition of laser energy into hole punching ion

and hot electron components are germane to topical astrophysical problems. Most notably,

such conversion efficiencies are core unknowns in the study of astrophysical jets. There is a

growing enthusiasm among astrophysicists for the paradigm that Poynting flux-dominated

outflows in gamma-ray bursts (e.g. [19, 20]) and blazars (e.g. [21, 22] and references therein)

drive their energization and dissipation at large distances from their central ”engines”. Most

gamma-ray bursts (GRBs) are thought to emanate from powerful explosions of hypermassive

stars located in distant galaxies in the early universe, at redshifts of around z = 1 or larger
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[23, 24]. A smaller number of so-called “short” bursts may be the result of neutron star–

black hole mergers. The energy release of 1051–1054ergs is comparable to or somewhat higher

than conventional supernovae in our Milky Way galaxy, but a key signature is that it drives

a collimated, ultra-relativistic outflow (i.e., jet) with bulk Lorentz factors Γ in excess of

several hundred [25, 26]. Blazars are also extragalactic jet sources, but generally nearer by

and less luminous than GRBs, and with inferences of less extreme bulk motions (Γ ∼ 3−50).

They emanate from the environs of persistent supermassive black holes, exhibiting highly

variable optical, X-ray [27] and gamma-ray emission, all the way up to a few TeV in photon

energy. The variability in these wavebands can sometimes be as short as a few minutes,

thereby indicating a compact physical scale of around 1013cm for the emission/activation

zone. The rapid flaring is most easily explained by interpreting the jets in blazars as being

pointed almost directly towards an observer; relativistic Doppler effects then drive the large

amplitudes of the flux fluctuations. Optical polarization measurements (e.g. see [28] for

3C 279) suggest that synchrotron emission from somewhat coherent magnetic field regions

is what is seen in blazars, and this is the prevailing paradigm for non-thermal GRB jet

emission also.

A key element of our understanding of both gamma-ray bursts and blazars is that the

activation/emission region is not located right near the central engine, but is some dis-

tance/time further out. For bursts, the zone near the explosion event is Thomson optically

thick to gamma-rays, and most of the emission we see does not resemble a blackbody spec-

trum. Therefore the radiative dissipation must arise predominantly outside the photosphere

that is expected early in the expanding flow, and typically must arise at distance of 1015–

1017cm from the “hypernova” event. Similarly, blazars may become active only after their

jets have been propagating for some time outside the black hole environs, an inference sug-

gested by the optical polarimetry of synchrotron emission associated with gamma-ray flaring

activity [28]. Accordingly, a core question for these topical sources is how is the energy trans-

ported out from the central region, and what is the most efficient means for doing so. It was

realized long ago [23, 29] that pushing ions with the explosive force of a GRB progenitor star

would lead to unreasoanbly large requirements for the energy of the explosion. This defined

the so-called “baryon-loading” problem for GRB jets, and led to the preferred paradigm of

electron-positron pair jets composed of much lighter particles that are more easily acceler-

ated to bulk speeds with Γ > 100. The same is true for blazar jets. Yet what inhibits them
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from radiating efficiently until large distances from the central engine? This conundrum

has precipitated the class of electromagnetic driver models [19, 20], where Poynting flux

dominates the inner outflow zone in an inert mode, and converts to bulk kinetic energy and

dissipates only after a while, perhaps via magnetic reconnection, thereby activating the jet

particles so that they radiate the non-thermal gamma-rays and X-rays that we detect. It

must be remembered that prevailing ideas concerning jet launching and propagation mostly

require the presence of magnetic fields to effect continued collimation [30, 31]. Imbuing the

jet with a dominant electromagnetic component is an efficient means for propagating energy

out from the central regions and delaying the onset of radiative dissipation.

Understanding the efficiency of conversion of direct electromagnetic energy to plasma

kinetic and thermal energies is therefore an extremely desirable advance. Astrophysicists

modeling jet sources need to comprehend at greater depth how the electromagnetic energy

is reassigned to electrons and ions. Laser-driven plasma interaction and associated kinetics

can therefore provide crucial insights into these astrophysical phenomena. This study and

its results on laser light absorption is an important step in this direction. Formulating

simple equations such as equation (40) to describe the ultimate kinematic apportionment of

laser energy into hot electrons (efficient radiators) provides a first guide to how efficiently

we think gamma-ray bursts and blazars can radiate if their outflows are mediated mostly

by Poynting flux at early epochs in their expansion. Moreover, anticipating that down

the line this study can address higher laser intensities, we can extend the focus to the

relativistic flow speeds germane to bursts and blazars. This will then explore parameter

regimes that precipitate rampant pair production, and therefore sample the domain of pair

jets, perhaps the preferred picture for the later radiative phases of these highly variable

astrophysical sources. An interesting potential future foray could be to explore multiple

laser-plasma interaction sites corresponding an array of bulk flows, and these will in turn

interact, forming collisionless shock zones, where charges will be energized and radiate the

electromagnetic signals that we detect from GRBs and blazars.

X. CONCLUSION

In conclusion, we have developed a more comprehensive model of ultraintense laser ab-

sorption, allowing the light to couple into both the hole punching and hot electron absorp-
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tion modes in an energetically significant fashion for the first time. The fully-relativistic

model has been derived for arbitrary overdense interaction densities and is insensitive to

laser polarization assuming that bulk ions are swept up and fully reflected by the laser pis-

ton. Close agreement between the analytic model and particle-in-cell simulations has been

demonstrated, justifying the assumptions underlying the kinematic approach.

Using this framework, we have obtained solutions for the particle distribution func-

tion moments that simultaneously satify energy and momentum conservation, i.e. the

relativistically-correct hole punching velocity including the hot electrons, and the hot elec-

tron Lorentz factor. For the first time, analytic expressions for the conversion efficiencies

into hole punching ions and into hot electrons have been derived. These results open the

door to addressing a number of interesting ultraintense laser plasma applications in the

future.
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FIG. 1: Schematic depicting the laser plasma coupling in the interaction region with n0 = ne =

ni/Z where Z is the ion charge state. The laser piston boundary is represented by the dashed

line. The bulk ions reflected from the piston and the hot electron beam represent the energetically

significant particle fluxes.

FIG. 2: Contours of the O(1) term from equation (38).
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FIG. 3: (A-B) Analytic solutions satisfying energy and momentum conservation with the laser,

{γh, βp}. (C-D) Contours of the laser conversion efficiencies into each absorption mode.
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FIG. 4: (Top) Laser absorption into hole punching ions and hot electrons, simulation and analytic

model for ∆φ = π/2 (Left-to-Right) a0 = 32, n0/ncr = 50 (β0 = 0.073), a0 = 20
√

2, n0/ncr = 20

(β0 = 0.102), and a0 = 100, n0/ncr = 30 (β0 = 0.295). (Middle) Piston velocity βp from the

simulations and analytic model. Simulation data from FFT is indicated by blue dots and simulation

data obtained by tracking the critical surface over time is plotted in green.
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FIG. 5: Comparison of simulation and model as the laser polarization phase offsets vary from

circular towards linear for the a0 = 100, n0/ncr = 30, Z/A = 1 plasma simulation, corresponding

to β0 = 0.295. (A-B) Electron phase plots for ∆φ [rad] = π/2, 0.92. (C-D) Ion phase space plots

corresponding to above. (Bottom Row, Left and Middle) Simulation and model results overlaid

for the ∆φ = 0.92 simulation. (Bottom Right) Comparison of laser coupling to model.
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FIG. 6: Coupling to the oscillatory component of the laser ponderomotive force for the β0 =

0.295,∆φ = 0.92 simulation. (A) Number density of exchange-mediating electrons (red) and of

ions (black). Arrows indicate the position of the laser-plasma interface. (B) Hot electron density

nh and ρh. (C) Comparison of hot electron absorption from the simulation to the analytic model.

(D) Ensemble average Lorentz factors (see text).
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