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ABSTRACT

Ultra-intense laser (> 10'® W/em?) interactions with matter are capable of producing
relativistic electrons which have a variety of applications in state-of-the-art scientific and
medical research conducted at universities and national laboratories across the world. Con-
trol of various aspects of these hot-electron distributions is highly desired to optimize a
particular outcome. Hot-electron generation in low-contrast interactions, where significant
amounts of under-dense pre-plasma are present, can be plagued by highly non-linear rela-
tivistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting
in less than desirable and predictable electron source characteristics. High-contrast inter-
actions offer more controlled interactions but often at the cost of overall lower coupling and
increased sensitivity to initial target conditions. An experiment studying the differences in
hot-electron generation between high and low-contrast pulse interactions with solid density
targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence
Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated
in the laboratory are not directly observable at the source of the interaction. Instead, in-
direct studies are performed using state-of-the-art simulations, constrained by the various
experimental measurements. These measurements, more-often-than-not, rely on secondary
processes generated by the transport of these electrons through the solid density materials
which can susceptible to a variety instabilities and target material/geometry effects. Al-
though often neglected in these types of studies, the specularly reflected light can provide
invaluable insight as it is directly influenced by the interaction.

In this thesis, I address the use of (personally obtained) experimental specular reflectiv-
ity measurements to indirectly study hot-electron generation in the context of high-contrast,
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relativistic laser-plasma interactions. Spatial, temporal and spectral properties of the inci-
dent and specular pulses, both near and far away from the interaction region where exper-
imental measurements are obtained, are used to benchmark simulations designed to infer
dominant hot-electron acceleration mechanisms and their corresponding energy/angular dis-
tributions. To handle this highly coupled interaction, I employed particle-in-cell modeling
using a wide variety of algorithms (verified to be numerically stable and consistent with
analytic expressions) and physical models (validated by experimental results) to reasonably
model the interaction’s sweeping range of plasma densities, temporal and spatial scales,
electromagnetic wave propagation and its interaction with solid density matter. Due to
the fluctuations in the experimental conditions and limited computational resources, only
a limited number of full-scale simulations were performed under typical experimental con-
ditions to infer the relevant physical phenomena in the interactions. I show the usefulness
of the often overlooked specular reflectivity measurements in constraining both high and
low-contrast simulations, as well as limitations of their experimental interpretations. Using
these experimental measurements to reasonably constrain the simulation results, I discuss
the sensitivity of relativistic electron generation in ultra-intense laser plasma interactions
to initial target conditions and the dynamic evolution of the interaction region.

This work was performed under DOE contract DE-AC52-07NA27344 with support from
the Lawrence Scholar Program, OFES-NNSA Joint Program in High-Energy-Density Lab-
oratory Plasmas and an allocation of computing time from the LLNIL Grand Challenge and

the Ohio Supercomputing Center.
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Chapter 1

INTRODUCTION TO ULTRA-INTENSE
LASER-PLASMA INTERACTIONS

1.1 Motivation

Ultra-intense laser (> 10'® W/em?) interactions with matter are capable of producing rela-
tivistic electrons which have a variety of applications ranging from generating extreme states
of matter |1, 2|, creating short duration, directional x-ray and 7-ray sources [3], creating
high density electron-positron plasmas [4] and hadron cancer treatment research [5]. Each
have very stringent requirements on the energy spectrum, angular distribution and conver-
sion efliciency where control of various aspects of these relativistic electron distributions is
essential to their effectiveness. Some of the more relevant applications for the work in this
thesis include warm-dense matter generation, the cone guided fast ignitor (FI) approach to

inertial confinement fusion (ICF), and ion acceleration.

Warm-dense matter generation

Warm-dense matter (WDM) is the region of phase-space between condensed matter and
plasma where systems have energy densities of 10! J/m?®. Understanding how materials
behave in this regime is essential to studying the evolution of many astrophysical phenomena
[6, 7]. The equation of state (i.e. the correlation between density, temperature and pressure)
of hydrogen, for example, at extreme densities and pressures like those present at the center
of giant gas planets like Jupiter (Figure 1.1(a)) determines whether the core is liquid or solid

and how the planet’s magnetic field is produced. Stellar phenomena at these extremes, such

1
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Alternatively to magnetic confinement [16], which has been around for more than 50 years,
this approach relies on the fuels own inertia to confine itself for the duration of the fusion
burn (~ 10s of picoseconds), dubbed inertial confinement fusion (ICF). In thermonuclear
fusion, the energy to overcome the Coulomb force comes from heating the fuel to high
temperatures, so the ideal fuel for the reaction would be deuterium-tritium (D-T, D+ 7T —
3He(3.6 MeV)+n(14.1 MeV)) for its high nuclear cross section at ‘moderate’ temperatures
(tens of keV') and relative abundance in the oceans. High fuel density and temperatures,
~ 1000x STP (standard temperature and pressure) conditions at ~ 10 keV, ensure an
efficient and containable burn in a laboratory setting, but nearly isentropic compression of
cryogenic, fermi-degenerate fuel (~ 11 Kelvin) is required to minimize compression driver
energy [17].

Once compressed, the energy required to heat a solid sphere of this compressed fuel
to ~ 10 keV to initiate the fusion burn, known as volume ignition, is not feasible for a
self-sustaining reactor design [18]. The conventional isobaric approach, known as hot-spot
ignition [19], has a low density D-T gas at the center of a hollow spherical shell of cryogenic
fuel. The mechanical PdV work done on the low density gas during the compression stage
simultaneously heats the hot-spot to ignition conditions, generating energetic a-particles
which then heat the surrounding compressed D-T fuel and propagate the burn from the
inside-out until the fuel is consumed [8]. The whole process is proposed to work in four
stages [17], depicted in Figure 1.2(a). (i) In the first stage, either direct laser [20, 21]
or indirect x-ray radiation [8] ablates away the outer portion of the cryogenic fuel shell.
(ii) The heated coronal plasma expands and, by momentum conservation, simultaneously
compresses the cryogenic shell and the low density gas at the core. (iii) The hot-spot forms
from the compressed gas core, ignites and (iv) the burn propagates outward, consuming the
cold fuel and eventually exploding.

Hot-spot ignition, however, is plagued by hydrodynamic instabilities [22], driver asym-
metries [23] and species separation [24], all of which lead to less than ideal thermonuclear
yields. The electron fast ignition approach [1], alternatively, suggests that a short pulse,
PetaW att class laser (10s ps, 10s kJ) could be used to generate a supra-thermal electron

3
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(TNSA) [39, 40|, illustrated in Figure 1.3. The most energetic electrons escape the laser
interaction region, traverse the target and escape into vacuum, charging the target and
creating ~ MV/um electrostatic sheath fields normal to the surface. These fields then ionize
the target and the resulting ions are accelerated to mulli — MeV energies, predominantly

coupling into hydrocarbon contaminants on the rear surface of the target [41].

1.2 Issues typical of ultra-intense laser-plasma interactions

Laser pulse contrast

Unless painstaking measures are taken, these ultra-intense short-pulse lasers are typically
preceded by millijoules (if not more) of laser energy nanoseconds before the main pulse
arrives at the target, dubbed ‘pre-pulse,” often with sufficient intensity to create 10s of
microns of under-dense plasma in front of the target before the short pulse of interest
arrives. The pulse then must propagate through this ‘pre-plasma’ before being reflected
at the critical density interface, becoming subject to non-linear instabilities that result in
spectral [412], temporal [43] and spatial [14] distortions, creating significantly different pulse
characteristics and driving additional (often less predictable) shot-to-shot variations. The
presence of pre-plasma also introduces additional magnetic field generation mechanisms [44—
46], resulting in quasi-static hundreds of MegaGauss fields that can extend over microns
and persist throughout the interaction which can perturb, or even trap, relativistic electron
trajectories.

High-contrast lasers minimize the laser energy before the main pulse, minimizing the
often detrimental effects of pre-plasma on the propagating laser pulse and hot-electron gen-
eration and transport. Several facilities, like LULI at Ecole Polytechnique (France) [47],
Trident at Los Alamos National Laboratory (NM) [48] , HERCULES at the University of
Michigan (MI) [49], Titan at Lawrence Livermore National Laboratory (CA) [50], OMEGA
EP at the Laboratory for Laser Energetics (NY) [51], Orion at the Atomic Weapons Estab-
lishment (UK) [52] and, of course, Scarlet at The Ohio State University (OH) [53] already

have this pulse cleaning capability typically obtained through nonlinear optical processes,



such as harmonic generation and third order cross-polarized wave generation [54|, or with
plasma mirrors [55, 56].

Correspondingly, experiments and simulations have seen marked improvements in per-
formance by increasing the laser pulse contrast. In WDM generation, it was found that
a significant fraction of the hot-electrons generated by the laser was lost to heating the
pre-plasma (due to a strongly magnetized under-dense plasma) and that switching to high-
contrast pulses improved coupling to the bulk, resulting in increased target temperatures
[13]. Recent experiments and laser-plasma simulations studying electrons generated with
the cone-guided fast ignitor configuration have seen decreased angular spread [57, 58] and
increased coupling of laser energy into electrons of interest to FI [59, 60] with increasing
contrast. In TNSA, sharp target interfaces are important for creating large sheath fields
[39] and thiner targets allow for more escaping electrons with higher mean and maximum
energy [61], but significant pre-pulse can create microns of under-dense pre-plasma or even
destroy too thin of a target. The advent of high-contrast pulses has opened up the possi-
bility of shooting sub — micron thick targets, resulting in increased maximum ion energies
[62].

The advent of laser systems with intense, but extremely clean, laser pulses has ushered
in a new and exciting regime of experiments. However, the absence of pre-plasma tends to
reduce the overall laser-coupling efficiency and, in general, the coupling mechanisms are not
well understood. Firstly, the coupling mechanisms are different with high-contrast pulses
since any acceleration mechanisms must now be able to move electrons from high density
regions into the vacuum laser fields before they can receive a relativistic kick. Under these
conditions, the interaction region also more closely resembles the initial target interface
thus making initial surface conditions important [63]. Additionally, accurate modeling
the interaction at the sharp, supra-critical density interface is required to interpret any

experimental results.



Experimental technique limitations

To date, experiments are incapable of directly measuring the hot-electrons generated in
intense laser-plasma interactions at the source, but many indirect measurements exist that
can constrain the simulations used to infer the hot-electron properties. Transport diag-
nostics typically study the electrons as they propagate through the target by measuring
bremsstrahlung emission [27, 28, 64|, K, emission from tracer fluors [25, 65] or wires [59, 66]
generated when hot-electrons knock out k-shell electrons, and transition radiation at an in-
terface [67] while other measurements directly measure electrons that escape the target
using magnetic spectrometers [68, 69]. Electron transport (and measurements), however,
can be quite sensitive to target geometry and refluxing [70], target heating [71], current |72
and resistivity gradient [73]| driven magnetic fields inside the target, target charging effects
|74] and filamentation instabilities [75]. Additionally, comparison of these simulations to ex-
perimental data are often limited by incomplete equations of state (EOS), emission models
and opacities of these extreme states of matter, the difficulty of self-consistently modeling all
essential aspects of the LPI and electron/photon transport in a single simulation [70], and
computational limitations associated with 2D and 3D simulations for absolute comparison
with experimental measurables [76].

Although often neglected in these experiments, the unabsorbed light (from both the
specularly reflected pulse and harmonics generated near the interaction interface [77]) can
provide a direct measurement of the laser-plasma interaction and previous work has sug-
gested that it can be quite informative of the pre-plasma environment.! The change in
divergence between the incident and specularly reflected pulse, due to the shape of the rel-
ativistic critical surface, has been shown to be a strong indicator of pre-plasma scale length
near critical density [78]. Instantaneous spectral shifting and broadening due to motion of
the critical surface [35] and relativistic effects [42] have been observed to be quite sensitive
to pre-plasma environment, as well as temporal pulse front steepening due to group veloc-

ity dispersion [43]. Spatial, spectral and polarimetry measurements of harmonics generated

L Albeit, a significant amount of additional work and equipment is needed since both the incident and
specular pulses must be simultaneously characterized in the same manner.
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near the critical surface have been found to sensitive to pulse contrast [79] and target sur-
face roughness [80, 81] as well as indicative of magnetic fields in the under-dense pre-plasma

environment [82, 83].

1.3 Principle objectives and outline

The principle objective of this work is to qualitatively and quantitatively address how prac-
tical and/or effective experimentally obtained specular reflectivity measurements are at
constraining simulations used to indirectly study relativistic electron generation in both
low and high-contrast relativistic laser-plasma interactions. Experimental reflectivity mea-
surements are, however, exclusively obtained in the ‘far-field” where diffraction effects can
potential to convolve the interpretation of the ‘near-field’ physics to the point of being use-
less. Note: in contrast with traditional definitions [84], ‘near-field’ in this thesis refers to
the fields near the interaction region and ‘far-field’ refers to the fields far away from the
interaction region, where diffraction effects have fully manifested themselves. For these far-
field measurements to be useful, diffraction effects must be either able to be de-convolved
or the far-field measuremetns must be indicative of the near-field interaction physics: to
accomplish the principle objective of this work, the simulation work must be able to ac-
commodate a comparison between the near-field physics and far-field measurements. The
simulations, once reasonably constrained by the experimental reflectivity measurements,
will be ultimately used to infer properties of the relativistic electron sources born in both
low and high-contrast interactions. In the remainder of this chapter (Chapter 1.5), T discuss
some background physics fundamental to understanding the material in this thesis.
State-of-the-art simulations used to study these laser-plasma interactions require a va-
riety of algorithms to handle the sweeping range of plasma densities (from vacuum to solid
density), electromagnetic wave propagation and interaction with matter, transport and
generation of radiation and charged particles in solid density plasmas, equation-of-state of
warm-dense matter, as well as vast computational resources to tie it all together. In Chapter

1.6, I briefly address some fundamental algorithms and difficulties associated with modeling



this scale of laser-plasma interaction and assumptions made for computational convenience.

In the next chapter, I discuss specular reflectivity measurements from the experimental
work that inspired this research. I discuss the experiment in Chapter 2, which compared
high and low-contrast pulse interactions with solid density, planar aluminum targets. Spa-
tial, temporal and spectral properties of both the incident and specularly reflected pulse
are simultaneously obtained on each-and-every shot, a critical distinction from other similar
work due to the shot-to-shot fluctuations in the incident laser properties. Significant differ-
ences in specular properties are observed between low and high-contrast laser conditions,
with high-contrast conditions showing an additional sensitivity to different initial target
surface perturbations.

For the low-contrast interactions, I continue the discussion with the influence of pre-
plasma on the specularly reflected pulse using simulations with simplified pulses and fully
ionized, exponential pre-plasma electron density profiles in Chapter 3. The shape of the
relativistic critical surface plays a significant role in the far-field intensity distribution, at a
distance where diffraction has fully manifested itself, which is observed to be indicative of the
pre-plasma scale length. In Chapter 4, I discuss how laser-plasma instabilities associated
with laser and target conditions more characteristic of the experiment can influence far-
field specular reflectivity measurements and how quasi-static magnetic fields generated in
the interaction can influence hot-electron generation.

For the high-contrast interactions, I begin in Chapter 5 with a discussion of hot-electrons
acceleration mechanisms typical of these clean, but rough, interfaces using highly simplified
high-contrast pulses and sinusoidal surface perturbations. The scale of the perturbations
determine the evolution of the interaction interface, under-dense plasma expansion and
ensuing hot-electron conversion efficiency, energy and angular distributions. I find that
electron accelerations are dominated by the standing-wave that forms near the interface
from the high reflectivity of the sharp interface. Following up this discussion, I next discuss
realistic surface perturbations, using experimental measurements to constrain the specular
reflected light properties and infer some properties of the resulting hot-electron source in

Chapter 6.
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Finally, in Chapter 7, I conclude with a summary of the more relevant experimental and

simulation findings.
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1.4 Units

All units in this thesis are Gaussian units (i.e. cgs) where length is measured in centimeters
[cm], mass in grams [g] and time in seconds [s] unless otherwise stated. Some of the most

useful quantities are

Quantity Symbol Value/Units

Electron charge —e —4.80320428 x 10710 esu
Electron mass Me 9.10938215 x 10%® ¢

Speed of light, vacuum ¢ 2.997924 58 x 10'° em /s
Boltzmann constant kn 1.380648813 x 1070 erg/K
Electric field E statV/em

Magnetic field B G

1.5 Physics fundamentals

In this section, we briefly discuss a few aspects of laser-plasma interactions that are fun-
damental to understanding the material in this thesis. First, we start with single electron
interactions with relativistic electromagnetic plane-wave. This is followed by discussion
of the collective behavior of plasmas and its influence on electromagnetic radiation. How
the laser interacts with this plasma at sub-critical density is discussed next, along with
several important non-linear phenomena and magnetic field generation mechanisms which
can affect hot-electron generation and transport. Finally, several traditional high-contrast

acceleration mechanisms are discussed.

1.5.1 Single electron interactions with electromagnetic fields

It is often useful to characterize an electromagnetic field using a vector potential /1
where the electric field E — —c‘laff/at and magnetic field B = VxA A plane
wave traveling along the x-axis (2) with arbitrary polarization can be described by

A=A, dcosoy+ 1 —02sin¢g 2| where the phase ¢ = wpt — krax and 6 = 0, +1 for

12



linearly polarized light and § = 41/v/2 for circularly polarized light, with the angular
frequency of the light wy = ckr, = 2me/Ar and ¢ = 2.998 x 1019 ¢m/s is the vacuum speed
of light.

Following (but correcting) Gibbon [85], the solution for the motion of a single electron

in this field start’s with the Lorentz force

dp T

— =—e|EF+-xB 1.1

dt { + c } (L1.1)
where p = m.¥ is the electron’s momentum with relativistic Lorentz factor

v = 1T+ p?/m2c2, —e = —4.8 x 10719 esu and m. = 9.11 x 1072 g are the elec-
tron charge and rest mass respectively. When combined with the work-energy theorem for
an electron in an external EM field (d(ymec?)/dt = —eu, - E), the vector potential and
normalized units @ — eff/mec27 T =wrt, x = krx, 0 = p/mec, V = ¥/c, the equations of

motion reduce to

do, dvy da,  Oay Oa, Jda,

do. dy |9 Oyl - |0a: 12

dr ~dr " {87 R 1.2)
g, o od
dor _ da . 0a 1.
dr or oy (1.3)

where ¢'| is the normalized momentum in the plane perpendicular to the laser propagation
direction (i.e. (gy,0-)). The right hand side (RHS) of Equation 1.2 is identically equal to
zero (since ¢ = 7 — x) and the RHS of Equation 1.3 simply reduces to da, /dr. Recalling
that v2 =1 + 02 + Qi7 the resulting electron momentum equations reduce to

:1—a2+gi

o (1.4)

Oz = 7Y —C

—

01 = d+ol, (1.5)

where « is a constant of motion and ¢;, an integration constant representing the initial
transverse momentum. For an electron that starts from rest (i.e. 0,, = g1, = 0 at

o

7 = x = 0), the momentum relations reduce to the classical ejection angle

—1
tanf. = oL j:«/,y— (1.6)
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which is the angle the electron is traveling with respect to the laser propagation direction
where, interestingly enough, this is only a function of the electron energy. Integration of
the momentum equations results in the electron’s position as a function of time which, in
the center-of-rest frame, returns the characteristic ‘figure-of-eight” motion.

More generalized expressions of the electron energy-angle relationship for arbitrary ini-
tial conditions can be obtained using Equations 1.4 and 1.5. For an electron injected into the
field at 7 = x = 0 with initial momentum 0, = (04, 0y, 02,), We find g1, = (0y, —da0, 02,)),

o = Yo — 0, With corresponding momenta

1= (Yo — 0,)° + 02 + 02

o 00— 200 D
0y = 0y, +0a,(cos(¢) —1) (1.8)
0: = 0z, +V1+0%a,sin(¢) (1.9)

where v, = \/m Shown in Figure 1.4 is the possible energy-angle phase space an
electron point source can fill for a linearly polarized plane-wave with a, = 3 with wavelength
Az, = 527 nm and corresponding intensity of 4.4 x 10" W/em? for electrons with various
initial energies (colorscale) and orientation where electrons are injected at the (a) peak
and (b) node electric field locations.? The distributions are clearly ‘bifurcated’ with the
separate ‘fingers’ always broadening with increasing initial electron energy with respect to
the classical ejection angle (white curves).

The peak energy an electron, starting from rest, can gain in the oscillating electric
field alone is given by the quiver energy U, = (W — 1) mec? which for this field
corresponds to 1.1 MeV; clearly the additional push from the v//¢ x B term with these
relativistic conditions (i.e. a, = 1) is creating electrons with energy greater than the quiver
energy. This occurs because electrons are very quickly accelerated to relativistic speeds
along the laser propagation axis, allowing them to ‘surf’ with the field where they can
gain more energy by staying ‘in-phase’ with the accelerating field for longer before being

decelerated by the alternating field sign. Although the trajectories share a self-similar shape,

2These are conditions characteristic of the experiment discussed in Chapter 2.
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and introducing the same normalizations of g = p/mec and @ = eff/mec27 this reduces to

+(U-V)o= = —Ux (V xa) (1.11)

—

Using the vector identity V(A -T') = (A - V)T'+ (I' - V)A+ A x (V x [) + T x (V x A), this

reduces to
017} oa
a—f‘F%Vf—’Ux(Vxﬁ) - a—i—ﬁx(de) (1.12)
0 (6—d) = —SVP+0x(Vx(6—a) (1.13)
5 (@ = Ve 0 : :
For an electron starting with normalized momentum ¢, = (0s,, Oy, 0z,), We find from

Equations 1.4 and 1.5 that g— @ o ¢% ()& + ¢, which is curl-less. Plugging this back into

Fquation 1.13 we find that the force acting on a electron will be

dg  oad

Z8 27 1.

T T cVry (1.14)
o o

where v = m The equation has two components: a fast oscillating component
that varies like the fields vector potential, driving electron motion transverse to the laser
propagation direction and a slow component that varies with spatial gradients in v (and
hence intensity). This slow component expels electrons away from regions of high intensity
and is often called the ponderomotive force.

Depending on how these electrons are injected into and de-phase from the plane-wave
completely determines their final energy and trajectory characteristics after the interaction:
control of both these aspects is critical to applications of interest in this thesis. With the
exception of a few vacuum acceleration schemes [85], electrons in these experiments are
typically born in and de-phased from the EM field by interacting with matter.

Most materials begin to ionize at laser intensities of ~ 10" W/em? via multi-photon
ionization, but over-the-barrier (OTB) ionization will quickly take over as soon as the field
becomes strong enough to significantly perturb the Coulomb potential of the atom [85]. A
schematic of OTB is shown in Figure 1.5, where the Coulomb potential Ux of the nucleus

(blue) is perturbed by a strong, homogeneous, external electric field Ug (red), resulting in a
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this system obey Maxwell’s equations, which in cgs units are given by

V. E Amp (1.16)
V. B 0 (1.17)
, 198
E et 1.1
V x 7t (1.18)
- 47 1(’9E
B S 1.1
VX ¢’ + c Ot (1.19)

where p = n. + 3., Zang is the charge density (cm™*) and J = e(—n. + Yo Lala) is
the current density (statampere/cm?), both given as a sum on « over all ion species with
charge 7, and velocity ¥,.

The attractive nature between charges of opposite sign often leads to macroscopically
quasi-neutral plasmas (i.e. p = 0), but thermal motion limits charge shielding on a mi-
croscopic level. The characteristic distance over which charges are screened in traditional
plasmas is known as the Debye length Ap, given by Equation 1.20, where kp is the Boltz-

mann constant and 7¢ /. the electron/ion temperature [7].

_ Ne NaZ2
A5 = dre? <I{JBT6 +)° k:BTa> (1.20)

When ion motion is negligible, this equation reduces to the electron Debye length Ap =

kpT./(4mnee?). Foral keV, solid density, fully stripped aluminum plasma (typical of the
reduced mass targets in these laser-plasma experiments), the Debye length is approximately
0.26 nm (nearly 2000x smaller than the laser wavelength at 527 nm).

Plasma is also known to exhibit collective behaviors, such as the renowned electrostatic
density oscillations. Consider an initially uniform quasi-neutral sheet of plasma which has
been perturbed in such a manner that all the electrons (n. ~ Zn;) have been displaced from
their quasi-neutral positions a small distance dx along the & — axis (fixed ions), illustrated
in Figure 1.7. From Guass’ law (Equation 1.16), we find the resulting electric field due to

this charge separation to be

V- E = 4nZne — E - & = dnneedx. (1.21)
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1.5.3 Electromagnetic waves in plasma

Charged particles in plasma respond to external electromagnetic fields, but because of the
mobility of electrons and their shielding tendencies, the fields begins to deviate from their
vacuum form. For a non-relativistic linearly polarized plane-wave traveling along the x—axis

(which for convenience we switch to the complex notation E — E,eiwrt—kn)

) traveling
through a quasi-neutral, collisionless plasma, the electron motion is purely oscillatory in
the electric field having quiver velocity v, = ie/ (mewL)E:f: with corresponding current
density j = —enev.. Taking the curl of Ampere’s Law (Equation 1.24), we apply the vector
identity V x (V x B) = V(V - B) = V2B (where V- B = 0) and insert the oscillatory form of
the electric field and current density to obtain Equations 1.25 and 1.26. Applying Faraday’s

Law (Equation 1.18), the equations reduce down to only a function of B as in Equation

1.27.
- Ar . 10K
B) - Tiy -2 1.24
Vx(Vx vx<c]+c€9t> (1.24)
5 = idTnee? 5wy =
V2B = Vx |- B ZLE (1.25)
MeWLC c
j w? 4
= L <— Pe | 1) V x E (1.26)
c w?
. 2 =
- iwr, [ Woe 0B
— V2B = =L 21| == 1.27
c? <w% ) ot (127)

Since B is also periodic in x and ¢, we simply Fourier transform (i.e. where V. — —ik
and 9/9t — iwr) and find that the expression reduces to the plasma dispersion relation
(Equation 1.28) [91].

k? = wi — w2 (1.28)

From the dispersion relation, we find that electromagnetic waves with wy, < wpe, k
becomes imaginary and the fields exponentially decays with distance. The electron density
at which wy, = wp is called the critical density n. = mew% /(47ne.e?) as it is the highest
density plasma which can support propagation of the electromagnetic fields. Beyond this

density, electrons effectively shield the plane-wave’s electric field since wy, . > wy. For the
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527 nm laser used in this experiment, this corresponds to an electron density of 4.03 x
102" em ™3, nearly 45x lower than a cold, solid density aluminum target.

The index of refraction of the plasma is given by n = /1 — wgye /w? which is always
less than or equal to unity. The phase velocity of the wave, vy = wr/k = ¢/n, blows up
to infinity while the group velocity, vy = Owr,/0k = cn goes to zero at the critical density
since n = 0. At densities above the critical density, the field strength decays exponentially,

falling off by an e-folding with with a characteristic skin depth I3 = k=1 or

lg— — ¢ (1.29)

w1 — t%e
Since this evanescent wave doesn’t propagate any energy, the electromagnetic energy
that is not absorbed by the target is reflected. lectrons, uninhibited by this critical density
electromagnetic cutoff, can now dephase from the oscillating accelerations and decelerations
of the electromagnetic field, entering the supra-critical density target with net momentum

and a trajectory characteristic of its acceleration process.

1.5.4 Non-linear and relativistic laser-plasma phenomena

All of the work in Chapter 1.5.3 assumed non-relativistic field, but the pulses of interest
are clearly relativistic with a, > 1. Electrons in these relativistic fields begin to quiver in
the electric field with velocities approaching the speed of light. These relativistic electrons
effectively have their mass increased by the cycle averaged Lorentz factor v = m
(i.e. me — yme). Along with the finite temporal and spatial envelopes of a real pulse, rela-
tivistic effects can significantly alter the spectral, temporal and spatial distributions of the
incident pulse in physically intriguing, although often devastating, ways as the pulse prop-
agates through under-dense plasma. Generally speaking, any phenomena that can modify
the local plasma frequency, either in space or time, can induce pulse altering phenomena and
instabilities. This can only be accomplished in two ways: (1) modify the electron density

or (2) relativistic effects.
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Spectral modification

Apart from spectral dispersion,? a changing electron density introduces an additional phase
accumulation. The amount of phase ¢ accumulated by the pulse by propagating a distance
L through a spatially and temporally varying electron density (with index of refraction n)

is given by Equation 1.30 [92].

zo+L
o 7/% 0!, t)de! (1.30)

The corresponding change to the instantaneous wavelength is then simply winee = wr —
d¢/ot. Modifications to the local electron density can come about by either ionization
nM>0—-n<0— q5 < 0 = Winst > wr, blueshift) or recombination (N <0 — 7 >0 — q5 >
0 — Winst < wr, redshift). Considering only OTB field ionization,® the charge state of the
aluminum targets shot in the experiment (peak intensities of ~ 4 x 10'? W/em?) saturates
at Z = 11 which can be reached at > 1.6 x 10'® W/em?2. Given the temporal profile of the
pulse (and lack of recombination), field ionization should only produce a blueshift in the
first several 10s of femtoseconds of the rising edge of the pulse for our aluminum targets.
While ionization will saturate for this pulse with aluminum, other materials, like gold for
example, will continue to be influenced by ionization effects up to the peak of the pulse.
For a plasma that starts with a single charge state (i.e Z starts the same everywhere), one
might also expect this blueshift to come in discrete intervals because of the discreteness
of the ionization intensity curve (Figure 1.6), although they are not likely to be observed
with the limited temporal resolution of current measurement techniques. This trend of field
ionization induced spectral blueshifting (Aw/wr, = (Winst — wr)/wr, green) is illustrated in
Figure 1.8 along with the incident pulse intensity (black).

The laser pulse can also gain spectral shifts from the motion of the reflection surface

4Although not addressed in this study, dispersion can be an issue for extremely short pulses with a ‘broad’
spectrum.

® Although not addressed in this study, other means for changes in electron density than field ionization
can come from collisional ionization/recombination [93].
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critical density (n. — vn.), what is commonly referred to as self-induced transparency
|48, 94]. Since the relativistic Lorentz factor varies in time, the location of the relativistic
critical surface changes throughout the duration of the pulse. On the rising edge of the pulse
4 > 0, resulting in v. > 0 and a corresponding Doppler induced redshift upon reflection.
On the trailing edge of the pulse, after the peak has reflected, the reverse holds true with
a blueshift. For a pulse that is symmetric in time and pre-plasma that is not dynamically
changing, this produces a symmetric spectral broadening about the peak of the pulse (i.e.
Aw/wr, is an odd function). This is illustrated in Figure 1.8 by the dashed green line.
Akin to the ionization induced spectral shift in the laser as it propagates through the
under-dense plasma, the relativistic mass effect can also lead to additional phase, commonly
referred to as self-phase modulation [42]. On the rising edge of the pulse, 4 > 0, resulting in
7 < 0 with a corresponding redshift. On the trailing edge of the pulse, after the peak, the
reverse holds true with a blueshift. Since self-phase modulation also depends on the sign
of 4(t), the corresponding spectral shifting trends look similar to self-induced transparency

(again, dashed green line in Figure 1.8).

Temporal /spatial envelope modifications

Since the pulse has finite temporal and spatial profiles (i.e. not a plane-wave), the relativistic
Lorentz factor will vary in both time and space. Since n(t) also varies with (t), the group
velocity (vg = ne) of the pulse will also vary in time. The peak of the pulse has a higher
v than the wings, and with a higher index of refraction. In under-dense plasma, the peak
of the pulse can travel faster than the leading or trailing edges, resulting in temporal pulse
front sharpening [43], illustrated in Figure 1.9(a). The difference in the time required for a
relativistic pulse of to travel to the critical density (indicated by x.) is given by Equation
1.33: negative values of At, like those for v > 1 for relativistic intensities, implies that
the front of the pulse would sharpen and conversely, positive values would imply that the

trailing edge of the pulse would sharpen.

Te 1 1
A = {vg@,w» T (1.33)
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spatial envelope, a(z) = a, exp(—z2/w?), the condition for which this occurs is given by [85]

o Wpe Wo 4 (1.34)

c
where w, is the 1/e falloff of the vector potential amplitude, often referred to as the beam
waist. For a Gaussian beam with a, = 3, A\r, = 0.527 um and w, = 5 pm, the electron
density at which this occurs is & 2.01 x 10" ¢m ™3, approximately 2000x smaller than the
critical density. Any phenomena that can create transverse index modulations can seed this
instability, often breaking the pulse up into many smaller filaments.

Other spatial /temporal envelope modifications can arise from non-uniform absorption of
laser energy into the target. Absorption is highly non-linear as collisional processes are im-
portant in the non-relativistic portions of the pulse (a, < 1) while collisionless mechanisms

dominate the relativistic portions (a, 2 1) [90].

1.5.5 Laser-driven quasi-static magnetic field generation

The interaction between a relativistic laser pulse and under-dense plasma can drastically
change the spectral/temporal and spatial properties of the accelerating electromagnetic
fields which directly relates to how electrons gain energy. Aside from the aforementioned
laser-plasma instabilities, quasi-static magnetic fields can develop in the laser interaction
region reaching hundreds of MegaGauss over micron spatial scales. In some circumstances,
these quasi-static magnetic fields have magnitude and extent that can significantly affect
(if not completely trap) even relativistic electron trajectories and have reasonably been as-
sumed to be responsible for more randomized accelerated electron trajectories in relativistic
laser-plasma interactions [72, 89].

To determine the trapping conditions, we consider a uniform magnetic field with strength
B with an electron traveling perpendicular to the magnetic field orientation with velocity
ve. The magnetic field can do no work since the force on the electron is perpendicular to

the motion, driving the electron to move in a circle. The radius of this circle is given by
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still at supra-critical densities. The electron distribution in this region is highly anisotropic,
consisting of both highly directional laser driven hot-electrons and, more-or-less, an omni-
directional cold neutralizing electron current [98]. This results in an electromagnetic form
of the two-stream instability, often referred to as the Weibel instability [99], which causes
the hot-electron currents to filament and create several 100 MG magnetic filaments that

extend over sub-wavelength spatial scales inside solid density.

1.5.6 Over-dense interactions

By switching to high-contrast pulses, we are attempting to avoid the pitfalls of the laser-
plasma interactions described in the previous sections. High-contrast pulses, however, have
the additional complication associated with getting the electrons from sharp, supra-critical
density target interfaces into the relativistic fields.

In ultra-intense interactions, absorption is dominated by collisionless processes [85, 90]
and several heating mechanisms have been suggested. Vacuum heating, often referred to as
the Brunel mechanism [100], relies on a component of the laser electric field being normal
to the interface that can push and pull electrons from within a few skin depths across
the vacuum interface but is only present for p-polarized lasers at non-normal incidences.
Alternatively, relativistic 7 x B heating [101] can exist at normal incidence as it relies on
the oscillating #/c x B component of the Lorentz force within a few skin depths to drive
electrons across the interface, which will work for any arbitrary linear polarization. In both
of these mechanisms (illustrated in Figure 1.12(a)), electrons within a few skin depths are
pushed and pulled away from the supra-critical interface, creating a charge imbalance. A
sheath field Ey develops to neutralize the imbalance, pulling electrons into vacuum hefore
turning them around and accelerating them to the point where they can dephase at the
solid density interface and escape beyond a few skin depths. The work done on the electron
in either scenario is by this normal sheath field.

For perfectly flat interfaces irradiated at normal incidence, low coupling results in a
standing-wave (SW) field pattern near the interface from the interference between the in-
cident and reflected waves. Electrons that eventually reach vacuum are accelerated with
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1.6 Simulation fundamentals

1.6.1 Introduction

State-of-the-art simulations used to study these laser-plasma interactions require a variety
of algorithms to handle the sweeping range of plasma densities (from vacuum to solid
density), electromagnetic wave propagation and its interaction with matter, transport and
generation of radiation and charged particles in solid density plasmas, equation-of-state of
warm-dense matter, et cetera. Additionally, the interactions that we desire to model occur
over a vast range of spatial and temporal scales with on the order of an Avagadro’s number
of electrons and ions; we desire to model macroscopic laser-plasma interactions, occurring
over ~ 100 x 100 x 100 um?, ~ 10 picoseconds, which are sensitive to microscopic physics
phenomena requiring ~ nanometers, ~ attoseconds resolutions.

Despite significant computational advances over the past several decades, state-of-the-
art simulations are still incapable of handling this scale of interaction without any simplifi-
cations. That being said, models have been developed to capture the essence of the plasma
response with a manageable size simulation, but often with the loss of some level of finer,
although often irrelevant, detail. More often than not, a kinetic description of the plasma
and charged particles is adopted for these relativistic interactions where a large number of
charged particles in the laboratory setting are represented by a single ‘macroparticle’ which
has the same charge to mass ratio (¢/m) as the component charges so that the equations
of motion are unchanged.

The positions and momenta of these macroparticles are self-consistently advanced using
the Lorentz force (Equation 1.1) and Maxwell’s equations (Equation 1.16), where the equa-
tions are discretized into a finite-difference form for numerical integration. Field quantities
are calculated at discrete grid locations by interpolating macroparticle charge and current
density in each cell to the grid points. This is commonly referred to as particle-in-cell (PIC)
modeling. In these simulations, the grid mesh was fixed (often referred to as an Eulerian
grid) but other algorithms employ an adaptive, or Lagrangian, mesh. Kinetic simulations,
however, tend to create noisy fields because of the discreteness of the macroparticles. If
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chosen wisely, charges with finite size, described by a particle shape or ‘cloud,” can remove
the self-force of a own particle’s field on itself and smooth over high frequency noise, often
referred to as cloud-in-cell (CIC) [103].

The spatial Ax and temporal At resolution required by the simulation are constrained
by the physics of interest and the integration algorithms of choice. To resolve the wave
propagation of the laser, we would require Az < A and At < Ax/c (known as the Courant
limit) for numerical stability. For plasma, we would ideally want to resolve the Debye length
(i.e. Ax < Ap) for charge screening phenomena and the electron plasma frequency (i.e.
Al < 27/wy, ) for plasma wave oscillations. In the under-dense regions of the grid, the
laser resolution requirements are typically more strict than the plasma requirements but
the reverse can hold true at supra-critical densities.

Two numerical approaches exist for solving these coupled partial differential equations:
explicit and implicit integration algorithms. Explicit integration is the most straight-forward
approach, relying only on previous values to determine current conditions. As such, both
the Debye length and the plasma frequency must be fully resolved for numerical stability (of-
ten creating very large and computationally expensive simulations). In implicit algorithms,
both previous and estimated future quantities are used to calculate the current quantity of
interest. Although being more computationally expensive than explicit algorithms per time
step, implicit algorithms can offer to relaxed temporal resolution constraints for numerical
stability, mocking up a plasma-like response for longer interactions while strongly damp-
ing under-resolved high-frequency phenomena. All of the simulations in this thesis were
performed with the direct implicit algorithm implemented in the commercially available

electromagnetic PIC code Large Scale Plasma (Lsp) [104].

1.6.2 Direct implicit algorithm

In the direct implicit algorithm in Lsp, outlined in Figure 1.13, particles receive two half-
pushes for every time step, separating the influence of past and future fields on particle

motion: the first half-push arises from previous field values and then the second from
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;ff where T is the magnetic field rotation tensor

1+Q% 0105 +Q3 103 — s

1~

ST | -0 1408 O+ (1.39)

D03+ Qs Q03— 1+02
where ( = Atqﬁn/@vmc) and A = Pr—1/2 + Aldp + Pp_1/2 X Q). For the two half-pushes,
Ais split into two components: A= /Yl + /Yg where /Yl = Pr—t1/2 + /28801 + Pr_1/2 X 0
is the first half-push with the old field values and Ay = (g/2m)En41(Znq1) is the second
with the predicted fields.

In order to predict the new fields, the additional current that is missing from the second
half-push acceleration, 5J. , needs to be calculated. In Lsp, the estimated current density
takes the form J = J' + §J where J! is the current density from the first half-push and
§J = S En+1(:i:'n+1) is the perturbed current from the second half-push. Due to its similar

form to an electric susceptibility [105], S is called the implicit susceptibility tensor given by

Atg . ,
4 (L - Unt1/2 @ ’Un+1/2> (1.40)

S=—t——(r
= 2%q1pm =

where S is is scattered to the grid after the first half-push and the future fields are then

calculated by

B .
%—t — —V x F (141)
OF B} ,
— = VxB- J' =8 Epi1 (@) (1.42)

The implicit susceptibility tensor is what allows future fields to be estimated using old
quantities. This system of equations governing the predicted electric and magnetic fields,
once discretized into a finite-difference format, can be solved either iteratively (using the
Alternating Direct Implicit (ADI) method) or with matrix inversion algorithms. Since the
susceptibility tensor only provides an estimate of the missing current density (i.e. §J doesn’t
exactly conserve charge), the difference between the final current and the two-step based

current estimate is gradually incorporated back into the simulation over a specified number
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time steps [104].

1.6.3 Implementation

The direct implicit algorithm implemented in Lsp relaxes the the constraint on the time
step At to the extent that wp e and w.. do not need to be simultaneously resolved, although
both cannot be under-resolved at the same time in the same place [105]. This allows us
to model a plasma-like material response with greater numerical stability for longer time
step intervals, reducing the overall cost of the simulation. However, numerical heating of
sub-critical density plasmas can occur with this implicit algorithm when w, At < 1 (where
the reverse holds true with cooling of supra-critical density plasmas with w, At 2 1).
Fortunately, for the durations of interest, this only amounts to a few +10s eV which is
insignificant relative to direct heating by the laser to ~ keV. Typically, simulations were
performed with between 32 and 64 time steps per laser optical cycle, T, = A /c.

The particle push in Lsp is energy-conserving, which is insensitive to numerical heating
that is caused by under-resolving the Debye length where plasma electrons in a cell will
artificially heat until the Debye length becomes the cell size [105]. For computational
convenience, the Debye length not resolved in these simulations. Instead, convergence tests
using increasingly finer mesh resolutions are performed under each simulation conditions to
determine the minimal resolution necessary to study particular phenomena. For studying
specular reflectivity with these relativistic lasers interacting with solid density plasmas,
typically Az < Ap/16 was necessary. In particular, spatial resolutions close to the skin
depth of the laser fields at the interaction interface (05, Equation 1.29) were found to be
necessary for convergence of hot-electron properties.”

FEven with all these simplifications of finite grid resolution and implementation of
macroparticles, the simulations are still quite difficult to implement in a fully 3D Cartesian
geometry even on the world’s largest supercomputers. Alternatively, to create a man-
ageable number of macroparticles and grid size, 2D Cartesian geometry is used with a
virtual transverse dimension. The electric field is polarized in the interaction plane with

“For the quantities of interest, a resolution no larger than approximately twice the skin depth was needed.
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the magnetic field oriented in-and-out of the plane which, without any other events like
scattering, can only move charges in the simulation plane (X7 in this case). Particles are
instead ‘rods’ of charges where their electric fields fall off like 1/ (where r = V22 + 22)
instead of 1/r? which makes any phenomena sensitive to this Coulombic field falloff
uncharacteristic of the experiment. Lsp keeps track of particle momenta in the virtual
dimension, known as 2D3V geometry, but particles cannot be moved out of the plane and
gradients of any quantity along this direction are always zero.

Some of the larger scale interactions I have modeled in this thesis consisted of spatial
grids with 2752 x 4800 cells with upwards of ~ 750 million particles, modeled up to ~ 2 ps.
Using 3840 processors for nearly 70 hours, some of the larger simulations required nearly
270 kCpuh.

While Lsp self-consistently solves Maxwell’s equations and the Lorentz force with al-
gorithms that have been extensively verified for stability and consistency under particular
conditions, there is no guarantee that any resulting simulation will be characteristic, quali-
tatively or quantitatively, of the experimental conditions since not all of the physics is able
to be modeled with infinite accuracy. Of particular relevance to this type of laser-plasma
interaction, Lsp has algorithms to approximate collisions, ionization and recombination,
radiation generation and transport, relativistic electron energy losses (of particular interest
to the transport diagnostics in these types of experiments), ete, but they each have limi-
tations of their applicability and it’s not a priori clear that the experimental observables
are sensitive to any of them, individually or in conjunction. Experimental validation of
each simulation condition is required to provide any viability to the study where sensitiv-
ity to each physical phenomena is typically addressed by simply running both with and
without a particular model (for example, this approach is employed in Chapter 4 where
the influence of dynamic ionization is studied). Due to the fluctuations in the experimental
conditions and limited computational resources, only a limited number of simulations were
performed under typical experimental conditions to infer the relevant physical phenomena

in the interactions.
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Chapter 2

LOW AND HIGH-CONTRAST
RELATIVISTIC LASER-PLASMA
INTERACTIONS EXPERIMENT

In this Chapter, we® discuss an experiment that studied the effects of pre-plasma on specular
reflectivity measurements and hot-electron generation in relativistic laser-plasma interac-
tions with solid density aluminum targets. In particular, we describe differences in the
various properties of the incident and specularly reflected pulses (spectra, temporal pro-
files, spatial profiles, reflectivity) of both low and high-contrast pulse interactions. From
these specular reflectivity measurements, we infer the influences of initial target conditions
and, in subsequent chapters, constrain simulations used to indirectly study hot-electron

generation in each scenario.

2.1 Facility

The experiment was performed on Titan at the Jupiter Laser Facility (JLF) at Lawrence
Livermore National Laboratory (LLNL) in Livermore, CA. Titan is a two beam platform
with a nanosecond scale ‘long-pulse’ and a picosecond PW scale ‘short-pulse’, centered
around 1.053 um, which can be used independently or co-linearly with controllable relative

delay. The second harmonic of both pulses is also available, generated using a 2 mm thick

8The experiment was designed and performed by a collaboration between various research groups at The
Ohio State University, LLNL, UCSD, General Atomics, University of York and the University of Alberta. I
helped develop and implement many of the laser, specular and transport diagnostics in the experiment and
appropriate credit has been given to those whose analysis is included in this thesis.
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KDP crystal. Typical pulse parameters are shown in Table 2.1.

Long-pulse Short-pulse
AL 1053 nm 527 nm 1053 nm 527 nm
Pulse 0.35—20ns 0.35—20ns 0.7—200ps 0.7—200 ps
Max Inergy 1kJ 500 J 300 J 50 J
Best Focus 20 pm 20 pm 8 um 8 um
Intrinsic Pre-pulse - - 15 mJ <10 pJ

Table 2.1: Typical pulse characteristics of Titan, courtesy of the Jupiter Laser Facility
website [106].

2.2 Setup

To consistently study the role of under-dense plasma in laser-generated hot electron sources,
we designed the experiment to have a controllable amount of pre-pulse. The baseline case,
i.e. minimal pre-plasma, used the high-contrast pulse at 527 nm produced via second
harmonic generation (SHG) from the 1053 nm short pulse. Since SHG is a nonlinear process
(i.e. the second harmonic signal is proportional to the square of the input intensity as it
is a y process), lower intensity portions of the pulse will not get converted as efficiently
as the higher intensity portions resulting in a higher contrast pulse at the second harmonic
(2wr). The second harmonic of the long pulse was injected coaxially with the short pulse
and was used as a controllable source of pre-pulse. Several diagnostics, as outlined in Figure
2.1, were used to study hot-electron generation and transport under these two conditions.
Although not critical for this study, the targets (Figure 2.2, assembled by General Atom-
ics (GA) in San Diego, CA [107]) were designed to simultaneously accommodate a variety
of transport diagnostics. The C'u tracer layer was used to track hot-electron current density
via K, radiation generated when hot-electrons that knock out k-shell electrons [70]. 2D
images of this 8.04 keV emission were obtained using a spherically bent Bragg reflecting

crystal but only within a narrow bandwidth (5 eV Full-Width-at-Half-Maximum (FWHM))
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which can be sensitive to heating [71]. By varying the fluor depth (with the thickness of the
first Al layer) and taking successive shots, an electron beam ‘divergence’ as it transports
through the target was also inferred [25]. Integrated spectra of this K-shell emission was
obtained using a calibrated Highly Ordered Pyrolytic Graphite (HOPG) spectrometer with
range between 7.5 keV and 13.3 keV [65]. Escaping electron spectra were also obtained
using a magnetic spectrometer. Although target charging effects can drastically modify
the energy of hot-electrons as they leave the target and enter vacuum, modeling has been
shown that there is a strong correlation between the slope temperature of the laser gener-
ated electron spectrum inside the target and that measured in vacuum [74]|. Bremsstrahlung
radiation created by these high energy electrons as they propagate through the target was
also spectrally resolved (at various angles) and used to constrain the electron source and
divergence [27, 64]. As most of these diagnostics are sensitive to hot-electron refluxing,
a conducting polystyrene layer (1.04 g/cm?) was added to the back to minimize refluxing
through the diagnostic fluor but with minimal x-ray signal attenuation. Fortunately, neither
the C'u diagnostic fluor position or the GLL were found to have any observable effects on
the specular pulse properties and will therefore not be discussed in any further detail.

Unfortunately, data collected in the high energy density sciences (HEDS) are often
plagued by limited statistics as most of the platforms capable of reaching the desired rela-
tivistic conditions are capable of only a handful of shots a day. Of those few shots taken,
there can be large fluctuations in laser pulse properties (energy, intensity distribution, du-
ration, spectrum, etc) from one shot to the next. Worse still, electronic equipment used on
such experiments can fail to acquire data due to electromagnetic interference (EMI) caused
by high energy charged particles created during the shot. That being said, it is of upmost
importance to fully characterize each and every shot as thoroughly as possible to be sure
that any anomalous observations are not just a fluke; averaging over many shots is not ad-
visable. Using rep-rated diagnostics, we characterized the incident and specularly reflected
laser pulses in space, time and spectrum on each and every shot. Figures 2.3 and 2.4 show
the experimental layout and setup for all the laser diagnostics (both incident and specular)
for this experiment.
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The incident pulse, originating from the compressor chamber, first reflects off the Turn-
ing Mirror TM before being focused down onto the target (located at Target Chamber
Center TCC) with an Off-Axis Parabola OAP (15.3deg, f/2.5°, f = 60 em, path shown
in green). The low intensity leakage through the T'M (purple) was sent to the laser diag-
nostic table where the energy, temporal and spatial profiles, spectrum and pre-pulse of the
incident laser pulse were measured. A detailed schematic of the exact layout of the laser
diagnostic table is provided in Appendix A. The pre-pulse monitor was capable of measur-
ing pre-pulse energies down to ~ 10 uJ with the help of a nonlinearly absorbing medium
and is discussed in more detail in Appendix B. The temporal profile of the laser pulse, both
intensity and phase, was obtained using a technique known of Frequency Resolved Optical
Gating (FROG) [108] which is discussed in some detail in Appendix C. In short, a FROG
measurement is an autocorrelation of the pulse with itself, resolved in frequency, resulting
in a 2D spectrogram in wavelength A and relative delay 7. Using an iterative phase retrieval
algorithm, the temporal profile of the complex electric field that created the spectrogram
can, in theory, be uniquely retrieved [109]. The on-shot energy was obtained using a cal-
ibrated calorimeter and the on-shot focal spot was also monitored, but unfortunately it
wasn’t available for the shots of interest. Instead, the on-shot intensity distribution was
estimated using the spatial distribution of a using a low energy shot obtained at best focus
at TCC.

Similar characteristics of the specularly reflected pulse were also measured, albeil in a
slightly different manner with the biggest difference being that these measurements were ob-
tained in the far-field where diffraction effects have fully manifested themselves. Collecting
the light scattered from a diffuse reflector screen, we captured the time-integrated far-field
spatial distribution, obtained an energy reflectivity measurement as well as the integrated
spectrum of the specularly reflected pulse. Using a small hole in the screen, we sent a small
fraction of the central part of the beam to a FROG for the temporal intensity and phase

profile.

°The f/+# is the ratio of the optical systems focal length to the beam diameter and is a measure of beam
convergence
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this measurement, the intrinsic pre-pulse energy was estimated to be less than 10 pJ. In
the 3 ns before the short pulse arrived (at time equal to 0 ps when the signal saturates),
approximately 10 J of the 1053 nm long-pulse resulted in 3.16 + 0.12 mJ of 527 nm pre-
pulse after the second harmonic conversion. The error bars were obtained by the quadrature
addition of the background noise (integration over 3 ns of the background signal) and
integration window offset (shifting the window by +1 pixel).

The incident laser pulse was characterized using a PG FROG!' (Appendix C) and the
resulting spectrogram measurement of the high-contrast incident pulse is shown in Figure
2.6(a) (as y/I(\,7) to emphasize low energy portions of the trace). The temporal intensity
and phase information was retrieved using the iterative phase retrieval algorithm discussed
in Appendix C.2. Using a 512 x 512 grid, FROG errors (defined to be the RMS difference
between the original trace and retrieved one, Equation C.4) were found to be a few percent.
The lowest retrieved FROG error reconstruction of the incident laser pulse is shown in Figure
2.6(b) with Figures 2.6(c) and 2.6(d) the time and wavelength domains of the reconstructed
pulse respectively. For both domains, the instantaneous intensity (black) and phase (red)
are simultaneously displayed.

Since these experimentally obtained traces aren’t ideal FROG traces (i.e. they have
some uncertainty due to noise, calibration, geometrical effects etc), running the algorithm
on multiple occasions with different initial seeds results in similar, but not identical, re-
constructions all with equally low FROG errors. Given enough reconstructions, a careful
calculation of the mean and standard deviation of all the traces can indicate the consistency
of the reconstruction (procedure discussed in Appendix C.4) and provide a retrieval error
estimate. Shown in Figure 2.7 are the error weighted, mean and standard deviation of 100
reconstructions for this laser FROG trace.

Figure 2.7(a) is the temporal intensity profile (black) with the gray shaded area indicat-
ing a £ogrp deviation about the mean. Unfortunately, the exact structure that appears

in the FROG trace is not uniquely determined as apparent from the shaded gray area.

HThege PG FROGs had approximately a 10 ps total delay window with &~ 125 fs resolution and approx-
imately a 100 nm spectral window.
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Fortunately, this amount of chirp is a negligible effect for our application as will be discussed
shortly in the specular pulse properties in Chapter 2.5.

The next laser property of interest is the energy of the main pulse. This information
was obtained using a calibrated Molectron calorimeter [112] on the laser diagnostic table
(labeled as Calorimeter in Figure A.1). Fortunately for the shots of interest here, the energy
was stable around 35 J, but varied between 31 and 53 .J throughout the experiment.

Many effects in relativistic laser-plasma interactions, such as self-focusing for example
(Chapter 1.5.4), also depend on the spatial intensity distribution of the incident laser pulse.
The pulse was focused down using an off-axis parabola OAP (f/2.5, 13.5deg, f = 60 cm)
onto the target at Target Chamber Center T'C'C with the electric field polarized horizontally
(p-polarized interaction with the target). Since a focal spot obtained at best focus cannot
be obtained on a full energy shot (since there happens to be a target in the way and it
would also destroy the camra), an equivalent on-shot focal spot distribution was obtained
using the full aperture leakage through the last turning mirror, referred to here as the focal
spot monitor (beam path outlined in Figure A.1). Instead of an equivalent imaging system
(i.e. an identical OAP to the one used in target chamber), an f/25 lens (f = 6.1 m at
527 nm) was used to help mitigate alignment issues associated with small f-number (f/#)
focusing optics (mainly the depth-of-focus being directly proportional to (f/4)2). The
sequential reflection off of two uncoated wedges was used to reduce the energy of the pulse
on the laser diagnostic table so as to not destroy the CCD detector (Apogee ALTA U47+UV
[113], 1024 x 1024 array, 13 x 13 um? pixels). However, the focal spot size is also directly
proportional to the f/# so an additional correction (given simply by the ratio of the f/#’s
of the OAP and lens) was necessary for the equivalent on-shot focal spot distribution on
target.

Unfortunately, this focal spot monitor was not available for the shots of interest to this
thesis. Instead, a low energy focal spot obtained at TCC using a microscope was used to
estimate the on-shot focal spot. A typical low energy focal spot obtained at TCC is shown
in Figure 2.8(a) [114]. Although it is irregular, an equivalent circularly symmetric focal spot
was created (using the high-contrast shot with 33 J, 460 fs) by fitted using a superposition
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of 3 Gaussians to estimate the full power, on-shot intensity distribution. This intensity
distribution is shown in Figure 2.8(b) and its Gaussian components listed in Figure 2.8(c).
Ultimately, we estimate for these shots our focal spot on target has a peak cycle averaged
intensity of approximately 4.6 x 10 W/em? delivered into an 8 pum FWHM focal spot
[114].

(a) Low intensity focal (b) Estimated radially (¢) 3 Gaussian Fit:
spot at TCC symmetric intensity _
distribution on target |

5 2(:¢-" I

- | =4.6x10"" W/cm Iry=]

g « Sa
: 3 | *
— e 8 um FHWM ‘ ,
> 2 Amplitude, a, | Waist, w, [um)
‘G
g1 0.38 4.1
E

0 0.28 10.7

0 10 20 0.34 18.3

Radius [um]

Figure 2.8: (Color) Focal spot intensity distribution [115]. Subplot (a) is a low intensity
focal spot obtained at TCC. Subplot (b) is the estimated, radially symmetric, on-shot
intensity distribution (33 J, 460 fs) using the energy distribution in subplot (a). Peak
intensities observed were ~ 4.6 x 10'% W/em? with an 8 um FWHM focal spot. Subplot
(¢) shows the components of a 3-Gaussian fit to the radially averaged intensity distribution
in subplot (b). Courtesy of S. Kerr [114].

This injected pre-pulse (co-axially aligned with the short pulse) was focused down using
the same parabola however only down to approximately a 14.1 um focal spot with peak
cycle averaged intensities of around 6.38 x 10" W/em? [115]. The pre-pulse to main pulse
energy contrast ratio was therefore < 2 x 1077(6 x 107°) and intensity contrast ratio was

< 4.6 x 1071(1.4 x 107®) for the high (low) contrast pulse.
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2.4 Initial target conditions

While neither the C'u diagnostic fluor position or the C'HH GLI were found to have any
observable effects on the specular pulse properties, the variety of surface roughness’ shot
during the experiment were found to have a dramatic effect on the high-contrast reflectivity
measurements. While the scales of these surface perturbations were unlikely to effect low-
contrast pulse shots, i.e. the pre-pulse would likely ‘wash’ out any of these features leaving
an extended pre-plasma environment, high-contrast pulses have been found to be quite
sensitive to even wavelength scale surface perturbations. In this section, we discuss the
characterization of the initial target conditions just before the main pulse arrives for both

the low and high-contrast shot conditions.

2.4.1 Low-contrast

For the low-contrast, injected pre-pulse shots, radiation hydrodynamic calculations were
performed to estimate the pre-plasma environment conditions. The calculation was
performed using MULTI2D [116] and was carried out by Rafael Ramis at Universidad
Politécnica de Madrid (UPM). The pre-pulse was modeled as 15 um FWHM gaussian
spatial profile with a 3 ns flat top temporal profile, containing 3 mJ of energy incident
normally on an initially cold solid density Al target with cylindrically symmetric RZ
geometry. Figure 2.9(a) is the total electron density on a logig scale (normalized to
the critical electron density ne/n.), (b) the cell averaged ion charge state and (¢) the
electron temperature in eV at 3 ns. For these figures, the original cylindrically symmetric
RZ result was mirrored about the » = 0 um plane. Absorption at these intensities
(<6.38 x 101 W/em?) is largely dominated by collisional processes [85, 90] and nearly all
of the absorption in the simulation was attributed to inverse Bremsstrahlung [85, 115].
Originally, the solid density aluminum interface (ne/n. ~ 45) was perfectly flat (initially
the x = 0 um plane). Now, 3 ns later and just before the main pulse would have arrived,
the pre-pulse has sufficiently heated the front of the target enough to ‘dimple’ the original

solid density interface by nearly 5 um along with creating under-dense plasma that extends
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10’s of microns from solid density is nearly 10x ionized, these simulations would suggest
that the initial pre-plasma near the critical density would not be even be close to fully
ionized. Therefore, dynamic field ionization could significantly alter the interaction region,
propagating laser pulse (both discussed in Chapter 1.5.4) as well as specular reflectivity

measurements.

2.4.2 High-contrast

In high-contrast, short pulse laser-plasma interactions, target surface morphology can mat-
ter. For targets with initial surface perturbations (i.e. roughness), significant enhancements
in absorption have been reported which have typically been attributed to enhanced Brunel
[72, 98|, resonant excitation of surface plasma waves [117-120] or local field enhancement
via Mie resonance [121, 122| depending on the specifics of each study. Therefore, great care
has been taken to characterize the experimental targets surface morphology on both laser
spot size (~ 8 um) and a laser wavelength (< 527 nm) scales.

Unfortunately, only the few targets not shot during the experiment survived to be
characterized. Atomic Force Microscope (AFM) [123] measurements of similar targets were
made twice for each target: (1) ‘large scale’ features at 390 nm resolution over a 100 x
100 pm? box to see fluctuations over the focal spot size and (2) ‘small scale’ features at
19.5 nm resolution over a 10 x 10 um? to see deviations on a sub laser wavelength Az,
scale.'? Two typical target scans (at the lower resolution) are shown in Figures 2.10(a)
and (b) and clearly several different features were observed. Subplot (a) is typical of the
Goodfellow foils [124] used for the shallowest fluors and had an nearly isotropic spectral
intensity distribution with an RMS value of around 400 nm. To obtain deeper C'u tracer
fluor layers, the Goodfellow foils were electroplated by GA (subplot (b)) where a preferential
groove orientation was observed but generally with much smoother overall with RMS values
ranging between 100 (vertically) and 200 nm (horizontally). The corresponding spectra of
these targets (as a function of wave-number k = 27/\) are shown in (¢) where the shaded
gray area indicates the range of the data. To obtain variations on a sub-wavelength scale, a

12The AFM measurements were performed by students of R. Fedosejevs at the University of Alberta.
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low-wavelength pass edge filter (at ~ 4\ ) was applied to the higher resolution data. Subplot
(d) shows the single unique small scale feature that appeared across all these targets with
an average RMS of 25 nm (again with the mean in black and the shaded gray area the data

range). The targets, in reality, had a superposition of these two spectrum.
g g Y

2.5 Specular pulse properties

Once again, variability in the data and unreliable electronics resulted in only two data
shots being discussed in this thesis: one low-contrast shot with the injected pre-pulse (~
3 mJ,3 ns) and the other high-contrast shot the intrinsic pre-pulse (< 10 pJ). Just like
the incident laser pulse, the total energy, spatial and temporal profiles and spectrum of the
specularly reflected pulses were also measured, albeil in slightly different ways. The largest
difference between the incident and specular pulse characterization is that the specular pulse
properties were all measured in the far-field, 10s of ¢m away from the best focal position

where diffraction effects have been fully manifested.

2.5.1 Integrated reflectivity and spectrum

By knowing the laser energy that is incident upon a target and the energy that is specularly
and diffusely reflected, we can place an upper bound on the amount of energy that could be
transferred into high energy electrons created during the interaction, a critical parameter
in any laser-plasma interaction. The integrated spectra, total energy and 2 spatial profile
of the specularly reflected pulse were all obtained with the help of a calibrated scattering
plate made of optical grade Spectralon® produced by Labsphere®, Inc. [125].
Spectralon® is a fluoropolymer, similar to Teflon, which is a nearly perfect diffuse
reflector for the ultraviolet to near-infrared regions of the spectrum, scattering > 99% of the
incident light into 27 steradians [126]. It also exhibits extremely Lambertian properties for
visible and near-infrared spectrums. By definition, this means that the number of photons
dN,, scattered per unit time dt into solid angle d€) by an emittance area dA) varies linearly

with the cosine of the viewing angle € (taken with respect to the surface normal). This
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cos 0, illustrated in Figure 2.11(b) [127].

(a) (b)

I cos dQ dA

Figure 2.11: Lambertian scattering surface showing (a) angular dependence on scattered
photon emission and (b) isotropic radiance [127].

The 25.4 x 25.4 em? screen was 35.2 em away from T'C'C' (normal to the specular laser
propagation axis) resulting in an f/0.74 collection window (labeled as L in Figure 2.4). By
imaging the light scattered off of this surface at some angle relative to the Spectralon®
normal, we obtain a time integrated 210 map of the intensity distribution along with a
means for measuring the energy of the incident radiation. The imaging system used a
variety of Schott glass neutral density (ND) optical glass filters as well as a 50 nm FWHM
interference filter centered around ~ 532 nm to keep the imaging camera within the linear
response range. For the CCD camera used in the camera, a 16-bit Andor DV434 [128], the
linear regime was below approximately 40k counts for green light. The spectrally resolved
transmission of the individual filters are shown in Figure 2.12(a) along with the systems
total (b) optical density (= 5.2) and (c¢) transmission curves.

Since the power scattered into any particular direction with respect to the surface normal

will vary as cos 0 (Figure 2.11(b)), an in situ calibration was necessary to convert the imaged
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with the in situ calibration, spectral response of the filters and spectral measurements. The
spatial profile of the reflected pulse is quite smooth and only 14.6 + 2.5% of the incident
pulse energy captured on the screen.'?

Also shown are the horizontal (red) and vertical (black) lineouts through the peak'4

in (b) spatial and (c) spectral domains.'®

The spot is observed to be asymmetric, being
approximately 40% broader along the horizontal axis as compared to the vertical. Since the
incident laser pulse effectively has a ‘tophat’ distribution (i.e. a circular beam with nearly
uniform intensity), the size of the incident laser upon reflection off a perfect mirror target
at the scattering plate plane would be approximately 14.1 ¢m in diameter, indicated by the
vertical dashed black lines in subplot (b).

Similar to the low-contrast shot, Figure 2.15 the specular reflectivity data from the high-
contrast shot. Not only is the specular reflectivity nearly 3x higher than the low-contrast

show at 41.6 +8.3%, the spatial intensity distribution is significantly ‘spikier’. The specular

pulse is again asymmetrically broadened, but this time it is broader along the vertical axis.

Although not directly confirmed with this experiment, a subsequent ‘follow-up’ exper-
iment confirmed that the asymmetric broadening in the high-contrast regime is consistent
with the ‘grating’ orientation of the rough targets discussed in Chapter 2.4. Figure 2.16(a)
shows AFM measurements of an optically flat target (first row) and one of the electroplated
targets (second row) like those described previously, oriented consistently with how they
were aligned in the target chamber as seen from the incident laser propagation axis. Sub-
plot (b) shows the Spectralon® data obtained from a coaxially aligned sub-aperture CW
alignment beam (f/12). From the optically flat target, we observe a mirror like reflection.
The electroplated target, however, exhibits a very obvious broadening but only along the
vertical axis. The orientation of the target and broadening direction are consistent with a
grating-like reflection (i.e. diffraction pattern) from the horizontally aligned grooves like

3The energy error bar was obtained by quadrature addition of errors from background subtraction,
interpretation over the holes and spectral calibrations [129].
The lineouts are taken as close as possible to the peak without crossing a hole.

BThe ~ 500 pm/pizel resolution over the 25.4 em window resulted in observable spectral modes below
~ T mrad/pm.
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1 ¢m in diameter before being directed into the FROG. Higher harmonics generated in the
interaction were blocked from entering the FROG with a piece of KG3 [131].

The low-contrast FROG data is shown in Figure 2.17(a) as the square of the intensity
to illuminate the low intensity portions of the signal. Since the PG FROG trace has an
asymmetry in delay, the chirp in the pulse can be directly inferred from the spectrogram;
clearly a large redshift occurs at early times in the pulse but quickly decays by the peak of
the pulse. The retrieval with the best (minimal) FROG error is shown in subplots (b)-(d)
where the best error for the 1024 x 1024 grid was around 2%. Compared to the incident
pulse, the specular pulse would appear to have much more structure and looks significantly
longer in duration and broader in spectrum.

The phase retrieval algorithm was run 100 times with different initial seeds to obtain a
measure of the consistency of the pulse reconstruction. These results are shown in Figure
2.18 with the (a) time domain and (b) wavelength domain representations. Large standard
deviation error bars (gray bands, 2 25%) indicate that the exact structure of the intensity
profile is not well constrained in the retrieval. On average, the pulse duration was longer with
approximately a 1.3+£0.3 ps FWHM. The instantaneous wavelengths, as we had speculated
from the raw FROG trace, start off redshifted at early times (peaked at Ay ~ +3.2 £ 1%,
2 ps before the peak of the specular pulse), shift back to the carrier by the peak of the pulse
and eventually end in a blueshift (= —0.8 £ 0.2%) on the trailing edge of the pulse. The
averaged reconstructed spectral intensity from the FROG measurement is shown in subplot
(b) with a 3.6 0.1 nm FWHM centered around 526 nm. The independent measurement of
the spatially averaged spectrum is also shown (blue). While they differ slightly, both spectra
do show similar trends of increased redshift contributions. This discrepancy is likely due
to the FROG only sampling a small spatial portion of the pulse around the specular axis
whereas the integrated spectrum summed over the entire distribution. Unfortunately, a
separate spectrum of what the PG FROG sampled was not obtained.

The high-contrast FROG trace is shown in Figure 2.19(a). The retrieval with the best
(minimal) FROG error is shown in subplots (b)-(d) where the best error for the 1024 x 1024
grid was around 1.6%. Just like the low-contrast shot, the specular pulse would appear to
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conditions become extremely important and significant enhancements in absorption using
targets with initial surface perturbations (over perfectly flat interfaces) have been reported.
These enhancements have been attributed to enhanced Brunel [72; 98], resonant excitation
of surface plasma waves [117-120] or local field enhancement via Mie resonance [121, 122]
depending on the specifics of each study. Without simulations, it is a priori difficult to
surmise which of these effects (if any) are dominant for our targets of interest or which scale
surface perturbations affect the various observations in the specular pulse properties.

The targets shot during the experiment had a large range of surface perturbations in
both RMS and spectra, the specifics of which depended largely on the Cu fluor depth. From
the reflectivity data, the most laser energy that could be coupled into electrons for the high-
contrast shot conditions was < 58% (which doesn’t even take into account scattered light,
harmonic generation, target heating or quasi-static field energy in the target which would
all detract from this number). We also know that the reflected spectra has relatively small
instantaneous wavelength shifts and integrated spectrum with an overall 1 nm blueshift.
While many mechanisms can cause spectral shifts, it is likely that the dominant effect is
the ionization blue shift as there is very little pre-plasma. Preferential broadening direction
in the spatial profiles of the specular pulse indicate that the grating-like surface features
survive, at least to some degree, throughout the interaction.

Since the dynamic competition between heated plasma expansion and laser profile steep-
ening can drive changes in the electron density profile, it is likely that these features will
not make a large difference for lasers with significant pre-pulse. Plasma expansion that
cannot be overcome by the laser profile steepening can lead to smoothing over of the ab-
sorption enhancing perturbations by the motion of the relativistic critical density surface
and the development of an under-dense plasma shelf though which the laser must prop-
agate. The extent to which absorption in this high-contrast pulse interaction transitions
from being dominated by sharp interface absorption mechanisms to under-dense pre-plasma
phenomenon will be addressed using particle-in-cell (PIC) simulations.

Controllable pre-pulse was injected using a coaxially aligned long-pulse resulting in
3 mJ of energy delivered in the 3 ns before the short-pulse. From radiation hydrodynamic
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calculation with MULTI2D, 10s of microns of under-dense plasma was created in front
of the target before the main pulse arrived. Not only does this pre-plasma move the laser
interaction interface from supra-critical solid density to the lower relativistic critical density,
it also subjects the main pulse to instabilities [47, 5860, 132]

Previous work by Yuan Ping et al [35] has shown that the early red shift in instantaneous
wavelength on the rising edge of the specularly reflected pulse directly corresponds to the
Doppler shift that arises from the motion of the critical surface. Their experimental traces,
obtained from low-contrast pulse interactions, showed that the redshift was largest at the
beginning of the pulse at nearly 6%, gradually dropped to 0% shortly after the reflection
of peak of the pulse and ended with a 1.5% blueshift. The early redshift was found to
correspond to a 3% the speed of light and was corroborated using PIC simulations with
experimentally realistic conditions. The late blueshift corresponds to a reversal of the
motion, indicating heated plasma expansion toward the laser. However, this work was
found to be insensitive to dynamic ionization and relativistic self-phase modulation which
may not be the case for our experiment.

Other simulation and experimental studies in this regime have shown electron source
energy spectrum scaling with I\? commonly referred to as Ponderomotive scaling [34].
Increasingly stronger contributions from collisionless absorption mechanisms with ultra-
relativistic, low-contrast pulses have also been experimentally observed [90] as well as simu-
lations that suggest angular spectrum broadening of the hot-electron source with increasing
pre-plasma scale length [57, 133]. However, quasi-static field generation in the under-dense
plasma [15, 16] has been shown to greatly modify relativistic electron generation and trans-

port [72, 89].
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Chapter 3

'1'HE SHAPED CRITICAL SURFACE IN
LOW-CONTRAST HIGH-INTENSITY
LASER PLASMA INTERACTIONS

As previously discussed, extensive under-dense preformed plasma can develop around the
laser interaction region before the main pulse arrives due to pre-pulse in low-contrast inter-
actions. This pre-plasma, due to a variety of non-linear phenomena, can drastically modify
the incident laser pulse as it propagates through the plasma hefore ultimately being re-
flected at the relativistic critical surface. In this Chapter, which was previously published
as The Shaped Critical Surface In High Intensity Laser Plasma Interactions |[Physics of
Plasmas, 18(1):013102, 2011] [78], we!” use simulations to show how the far-field spatial
intensity distribution of the specularly reflected light is influenced by the curved shape of
the relativistic critical surface and surrounding pre-plasma. Additionally, we show how it
can provide a simple and meaningful diagnostic for determining the pre-plasma electron
density profile near the critical surface in low-contrast relativistic laser-plasma interactions,

a region that is notoriously difficult to probe experimentally.

3.1 Abstract

We investigate the properties of the relativistic critical surface in a high intensity laser-

plasma interaction, specifically the spatial morphology of the surface and its effects upon

17T provided support for simulations, analysis and analytic model development but the article was penned
by D. W. Schumacher. Few modifications of the original text have been made with the exception of a more
inclusive model description.

69



the divergence of the reflected light. Using the commercial, particle-in-cell code Lsp running
in two dimensions (2D3V'), we model the formation of the critical surface and show that it
resides at a varying depth into the material that is dependent upon both the intensity radial
dependence of the laser focus as well as the shape of the longitudinal vacuum-material inter-
face. The result is a shaped “mirror” surface that creates a reflected beam with phase and
amplitude information informed by the extent of the pre-plasma present before the intense
laser pulse arrived. In effect, we propose a robust, highly effective means of experimentally
determining the pre-plasma conditions for any high intensity laser-mater interaction. We
elucidate the important physics with a simplified model that, within reasonable intensity
bounds, recasts the effect of the complex laser-plasma interaction on the reflected beam

into a standard Gaussian optics calculation.

3.2 Introduction

High intensity laser-solid matter interactions generally begin as an interaction between the
laser and plasma at densities well below 1 g/em?, at the critical surface. This is the case even
for targets with initially sharp vacuum material interfaces because the peak intensity of the
laser pulse is usually preceded by lower intensities of sufficient duration that, before the peak
of the laser pulse arrives, the front of the target is well ionized yielding an interface region of
plasma, often called pre-plasma. The critical surface is defined as the region where the laser
frequency equals the local, intensity dependent, plasma frequency, and occurs at the critical
electron density n. = (ymewr)?/(4me?) (cgs), where the relativistic factor v = /1 + a2/2
[85]. Here, a9 = el/(mewrc), —e and m, are the electron charge and mass, and F and
wy, are the laser field amplitude and angular frequency, respectively. The relativistic factor
becomes significant when ag > 1 or the intensity exceeds roughly 10'® W/em?2. For a 1 um
wavelength, low intensity laser, the critical density is about 1.1 x 10%! em ™. In a focused
laser beam the intensity profile is a strongly decreasing function of the radial distance
from the focal spot center, so the most intense portion of the laser spatial profile requires

a higher plasma density before it will interact and thus penetrates farthest into the pre-
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plasma. This is the regime of self-induced transparency [134]. The resulting shaped critical
surface causes the region of strong laser interaction to be spread out along the pre-plasma
density gradient. Experiments do not generally measure the pre-plasma under conditions
of interest because no simple nor particularly effective method exists to do so. Shadow and
interferometric techniques provide useful information, but only for densities below that of
the non-relativistic (v = 1) critical surface [134, 135] X-ray probes have also been used,
but lack resolution [136]. Pirozhkov, et al. have recently shown that the measurement
of the reflectivity of a high intensity laser beam from the target can be reliably used to
indicate whether a significant pre-plasma is present; however they describe no means of
determining the actual pre-plasma density [137]. Here we use numerical simulations and a
remarkably simple model to predict that a given shaped critical surface - which we show
depends directly upon the laser and pre-plasma spatial profiles - will have an easily obtained
experimental signature that can be used to infer the properties of the pre-plasma at the
densities relevant in an experiment. Although this present work is strictly valid in the limit
where relativistic plasma self-focusing can be strong, but not so strong as to create a large
number of filaments, we show that these results can be used to characterize pre-plasma
conditions in general.

In Chapter 3.3 we describe our particle-in-cell (PIC) simulations including the algorithms
employed, relevant numerical parameters, and representation of the target. We describe the
formation of the shaped critical surface and its effect on the laser in Chapter 3.4. We also
describe how key aspects of the generally complicated propagation of an intense laser can
be treated with a simple model based on standard, linear Gaussian optics. In Chapter 3.5
we show the results of our PIC simulations and compare to the results of our model. The
effects of mechanisms outside our model are discussed. Finally, in Chapter 3.6, we propose

a new pre-plasma diagnostic based on our results and summarize.
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3.3 PIC simulations

We have employed the commercial, particle-in-cell code Lisp [138] which solves the Maxwell
curl equations and the Lorentz force equation on a discrete spatial grid. We represented
a Cu plasma using up to 100 million particles in two Cartesian dimensions (X 7). The
simulations employed fully mobile electrons and C'u+ ions, 15 grid cells per wavelength,
and 60 time steps per optical cycle, so the skin depth and associated absorption/reflection
mechanisms were resolved. Although collisions are not especially important for this problem,
we employed the Jones algorithm [139] using the Spitzer collision rate nevertheless. Our
results are robust against changes in all aspects of the simulation, including choice of ion
and ionization state. (We note that Lsp is generally free of numerical heating in this
regime.) Figure 3.1 shows a typical simulation geometry. The plasma and pre-plasma are
in the middle of the grid with a vacuum layer surrounding it. The plasma is solid density
(Nsotia = 8.5 x 10?2 em ™3, & 77n,.) with an initial temperature of 100 eV, 15 um thick and
75 um wide. A short laser pulse is injected from the left traveling towards the plasma (in
the ++x direction); the pulse had a 1 um wavelength, a trapezoidal envelope in time (130 fs
duration with linear 20 fs rise and fall times), and a Gaussian spatial profile (at the waist,
we, = 5 um). The pulse was focused to have a waist at £ = 0 um in vacuum (see Figure
3.1). The linearly polarized electric field is in the plane of the simulation and the magnetic
field is normal to it with the laser incident normally on the target. The pre-plasma was
specified as having an exponentially varying density profile (n. = nsouqexp(z/L), © < 0),
where L is the pre-plasma scale length. The pre-plasma starts at x = —10L and extends to

the solid density boundary at 2 = 0. The initial pre-plasma density is roughly 10™51,iq.

3.4 The shaped critical surface and a simple model

Figure 3.2 shows the pulse at the time the peak of the pulse is reflecting for . = 1 yum and
3 um pre-plasmas by plotting the y-component of the magnetic field on a log scale. We
specify the pulse peak intensity, I,, by the value it would have had at the waist in vacuum,

in this case I, = 10'% W/em?2. The actual peak intensity is higher at the critical surface
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where R is the radius of curvature of the Gaussian phase front and w the field spot size
[140]. The effective lens/mirror/lens formed by the shaped critical surface in the pre-plasma
transforms the laser pulse according to: 1/qouwt = 1/qim — 1/ f. Note the output pulse is
completely specified by ¢, in this model. For application, we need three input parameters:
L, gin, and I,. In an experiment L would be a fitting parameter. Here, we will simply
compare results to Lsp. We ignore self-focusing and determine ¢;, by taking R;, = oo and
w to be the waist size, w,, in vacuum (this is often measured in experiment). The peak
intensity at the critical surface will be somewhere between one and four times the nominal
peak intensity, I,, depending on how much is reflected. For simplicity, we use 21,.

The effect of the shaped critical-surface can be large. For the conditions of Figure 3.2(b),
the effective focal length is approximately 5 um, a powerful lens indeed, although acting at
a point where the incoming pulse is essentially at its waist. The outgoing beam is predicted
to suffer a divergence approximately eight times the incoming divergence. The primary
prediction of this model, then, is that there is an increased divergence in the reflected beam
relative to the input beam due to the shaped critical surface, with the divergence growing

with increasing pre-plasma scale length, increasing intensity or decreasing spot size.

3.5 Results and discussion

Clearly the simplified model must generate results that are in agreement with those from
the computationally intensive Lsp simulation. The Lsp simulations were performed on a
supercomputer, requiring about a day for the pulse to fully reflect and separate itself by
40 pm from the pre-plasma where it could be analyzed. In general, we find the outgoing field
is so severely perturbed that an outgoing divergence angle cannot be reliably identified. This
presents a practical problem for comparison, either to experimental measurements, or to the
simplified model, where the size of the reflected beam in the far field (i.e. after diffraction

is fully manifested) is what is measured. Using LsP to model the propagation of the initial
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reflected pulse into the far field would be prohibitively costly both in time and money;
instead, we determined the far field reflected pulse by using the near field as determined
by Lsp and propagating it according to Fresnel diffraction theory [141], discussed in more
detail Chapter 4.2.2.

Some typical results are given in Figure 3.4 for three scale lengths: 0.3 pm, 1.0 um,

and 3.0 wm. The vacuum pulse peak intensity was 10 W/em?

. In each case, the pulse
spatial profile in the far field for a perfect, flat mirror reflection is given in black. The Lsp
results after propagation into the far field are given in red and the predictions of the simple
model in green. The simple model does a good job of specifying the envelope of the reflected
intensity for longer scale lengths, but not for the case of extremely short scale lengths. (We
note that in most cases, high intensity, high energy lasers will produce pre-plasmas with
L > 1 pm [132]). Taken alone, the PIC simulation is informative but not insightful since
it is not at all obvious from inspection of the grid why the reflected pulse diverges. The
model, on the other hand, predicts such a divergence and provides a guide to our insight.
The difference between Lsp and the model for small L is interesting in its own right. For
this case, the normally dominating effects of the shaped critical surface and self-focusing are
absent. For very short scale lengths the critical surface is nearly flat and so the reflecting
surface is like a planar mirror and will not modify the divergence. Once the pulse reaches
densities of ~ 10?' em™2, the distance required for filamentation at 10'® W/em? is roughly
6 um, so the effect of self-focusing is also minimal. Finally, we note that fine scale structure
is evident in all three graphs in Figure 3.4. This appears to be due to diffraction of the
reflected beam off wavelength-scale structure in the critical surface, a phenomenon reported
by others, and generally present in such interactions [34]. This effect is actually obscured
because the pulse undergoes strong phase modulation resulting in a greatly broadened
spectrum of several hundred nanometers that blurs diffraction effects. We can reduce the
blurring by spectrally filtering the reflected light. Figure 3.5(b) shows the output pulse
spatial profile when only a 40 nm bandwidth centered about the 1 pm carrier wavelength
is measured for the L. = 3 um case. Note that the fine structure is more pronounced and

has a characteristic spatial scale that matches the spot size of the flat mirror reflected pulse
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While we have not examined the case where the laser pulse breaks into a large number
of filaments, such as occurs when larger intensities or longer pre-plasma scale lengths are
present, we note that the pre-plasma can also be measured by using a second, lower intensity
probe laser that does not suffer severe filamentation if this is an issue. The probe laser would
need to be introduced after the pre-plasma has been established but before the primary laser
arrives. This should usually be possible; however, the probe would also need to be offset
spatially from the primary laser to avoid perturbing the experiment.

In summary, modification of the critical surface due to high intensity laser pulses has
been noted for a long time [34]. We describe an overlooked effect of the shaped critical
surface enhanced divergence of the reflected beam. We have developed a simple model that
captures the primary effect. We propose this effect as a new pre-plasma diagnostic that
is sensitive to the region near the critical surface that is currently difficult to characterize
using current techniques.

We acknowledge useful discussion with D. Welch, M. Key, R. Stephens, and S. Wilks.
This work was performed with support from DOE under Contract Nos. DE-FG02-
05ER54834 and DE-ACH2-07NA27344 and a grant of computer time from the Ohio

Supercomputer Center.
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Chapter 4

DYNAMIC IONIZATION IN
LOW-CONTRAST RELATIVISTIC
LASER-PLASMA INTERACTIONS

For the highly simplified study in the previous chapter, the charge state appeared to play
little-to-no role in altering the far-field specular reflectivity measurements as compared to
the effect of the shaped critical surface. This, however, is not the case for the experimentally
more realistic pulses and pre-plasmas (Chapter 2.4, Figure 2.9) where dynamic ionization
of the pre-plasma can dramatically alter not only the pulse, but also the interaction region.
In this chapter, simulations with experimentally inspired low-contrast pulse conditions are
studied using under both a fixed ionization state and one that is dynamically ionizing'®
are compared in terms of the quantities of interest: specular reflectivity measurements and
ensuing hot-electron generation.

Ultimately, the applications discussed in Chapter 1 are only interested in the hot-
electrons that are generated in the ultra-intense interaction. Since these electrons are not
directly observable near the interface in the experiment, we'® rely on simulations constrained
by experimental observables of target and pulse properties to infer hot-electron properties.
Specular diagnostics can provide invaluable (and perhaps most importantly, experimentally
obtainable) insight into the laser-plasma interaction as the specularly reflected pulse. How-

ever, the phenomena that drive these specular modifications all occur near the interaction

BPor this work, only sequential field ionization is considered.
By ‘we’, I refer to the relativistic laser-plasma interaction community as a whole. I exclusively performed
the simulation work in this thesis, under the supervision and direction of D. W. Schumacher and A. Link.
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region, referred to here as the near-field. In order for these far-field measurements to be
physically meaningful, they must be representative of the near-field interaction. Due to a
variety of pulse-altering non-linear laser-plasma phenomena (discussed in Chapter 1.5.4),
the interaction region can dynamically evolve in time and correspondingly affect the far-field
properties of the specularly reflected pulse. Depending on the nature of the measurement,
these temporal modifications can convolve the far-field answer to the point of misinterpret-
ing the near-field physics of interest.

Using simulations, discussed in Chapter 4.1, I show how differences in ionization models
result in temporal modifications in the electron density profile and laser-intensity distri-
bution. Estimated near-field instantaneous wavelength shifts from ionization, relativistic
self-phase modulation and motion of the critical surface and far-field reflectivity calcula-
tions are discussed in Chapter 4.2. Pulses are analytically propagated over millimeters to
study far-field diffraction effects and several approaches are discussed in Chapter 4.2.2. En-
suing hot-electron generation from these evolving interaction regions is discussed in Chapter
4.3. For specular pulse properties characteristic of the experiment, I show how quasi-static
magnetic field generation in the under-dense pre-plasma strongly influences supra-thermal
electrons with energies above the quiver energy (~ 1 MeV). Finally, in Chapter 4.4, 1

summarize with a discussion of the implications for experimental measurements.

4.1 PIC simulations

4.1.1 Setup

2D3V Cartesian fully kinetic particle-in-cell simulations were performed to determine the
influence of ionization dynamics in Aluminum targets affect specular reflectivity measure-
ments and hot-electron generation in low-contrast laser-plasma interactions using the com-
mercially available PIC code Lsp [104]. The setup is shown in Figure 4.1. The initial
target conditions (density, temperature and charge state) before the short-pulse arrived
were taken from the MurTi2D simulations (shown in Figure 2.9). Since the MurTi2D

calculation returns a cell averaged ionization state, I populate the Lsp simulation using
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FWHM incident normally on the target with an 8 um focal spot FWHM,?" polarized in the
simulation plane with a peak intensity of 4.65 x 10 W/em?2. The peak quiver energy U,
of electrons in the oscillating electric field is given by UZTW = (vIW — 1)ymec? = 1.1 MeV
where WEW = m = 3.2 is the relativistic Lorentz factor and a, = eF,/mc.wrc = 3.1
is the normalized vector potential (where the ™" superscript refers to the vacuum value
traveling-wave field structure).

The simulation was performed using a direct implicit algorithm incorporating an energy-
conserving particle push [104]. The LPI portion of the grid had a spatial resolution of
31.2 nm (~ Ar/16) and temporal resolution of 27.5 as (~ 17 /64). Through a separate
study, specular pulse properties and hot-electron distributions in time, space, energy and
angle were found to be sufficiently converged at these resolutions. Electron macro-particle
densities ranged from 144 to 196 per cell and the ions ranged from 25 to 49 per cell resulting
in ~ 500 — 750 M macro-particles in the simulation. All electron and ion species were fully
kinetic and collisionless.

Understanding how interfaces evolve is critical to understanding how electrons are gen-
erated. For low Z targets, this effect may be minimal but interactions with mid to high
7 materials may increase local electron density by an order of magnitude (see Figure 1.6).
The extent to which these interactions with Aluminum are sensitive to ionization dynam-
ics is a priori unclear because of the non-uniformity of the charge state distribution. To
study effect of dynamic ionization, two separate simulations are compared with (1) fixed
and (2) sequential tunneling field ionization (using ADK (Ammosov, Delone and Krainov)

ionization rates for ions in an alternating electromagnetic field [87]).

4.1.2 Interaction region evolution

The evolution of the electron density (given by n./n.), charge state Z and laser intensity [
for the fixed and dynamic ionization cases are shown in Figuress 4.2 and 4.3 respectively.
The different rows show different shap-shots in time of these three quantities (separated

20The spatial profile was approximately Caussian with an f/40, ¢~ full angle divergence. This is drasti-

cally different from he experimental conditions, closer to an f/2.5. To reproduce such a divergence in Lsp,
one would likely have to perturb the wave-fronts but this is beyond the scope of this work.
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by columns): the first row is the initial conditions, second, third and fourth are the rising
half-peak, peak and falling-half peak intensity upon reflection respectively. In each subplot,
the initial critical surface is indicated by the gray curve and the current relativistic critical
surface with the black.

At first glance, these two simulations appear to evolve quite similarly, but a closer
inspection reveals some subtle, yet interesting, differences. For the fixed ionization case,
the critical surface at all times has been pushed toward solid density. The dynamically
ionized case, on the other hand, shows the increased electron density at early times which
initially pushes the critical surface away from the solid density interface but this expanding
motion is eventually overcome by the peak of the pulse. By the rising half-peak of the
pulse, the charge state for the dynamically ionizing case has saturated at Al 11+ in the
laser interaction region. Leading up to the rising half-peak, the laser in each case has
broken up into approximately 4 or 5 filaments. By the peak of the pulse, the filaments have
nearly coalesced down into nearly a single filament for the fixed ionization run while the
dynamic ionization case saw remained spread out over approximately two main filaments.
This differences are likely due to the effects of ionization induced defocusing (discussed in
Chapter 1.5.4) counteracting the laser self-focusing and, correspondingly, we see that the
perturbations in the relativistic critical surface are significantly smoother when ionization

is present.
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4.2 Near-field physics and far-field specular reflectivity mea-

surements

Although subtle from electron density plots, the differences between the fixed and dynami-
cally ionizing plasmas become abundantly clear in the near-field properties of the specularly
reflected pulse. Characterization of the specularly reflected pulse near the interaction with
simulations, however, is complicated by the presence of the supra-critical plasma target
by electrostatic fields, quasi-static magnetic fields, noise from the kinetic nature of the
macro-particles and, of course, the interference between the incident and reflected pulses.
Instead, specular field properties are recorded at the inlet/outlet boundary of the simula-
tion (50 um away from the target interface) where these influences are negligible. However,
even a few tens of microns away, diffraction effects have drastically reshaped the specular
pulse from the desired measurement near the interaction interface. Instead, estimates of
the pulse-altering phenomena discussed in Chapter 1.5.4 are made to determine their rela-
tive influences on the interaction in the near-field, discussed in Chapter 4.2.1. Propagating
the light to the far-field within these same simulations, where the experimental measure-
ments would be made, is prohibitively expensive since we would have to resolve the light
propagation over millimeters or even centimeters of space before the diffraction pattern
would converge. Instead, far-field properties of the specularly reflected pulse are obtained
by analytically propagating the boundary measurements to the far-field, centimeters away.
Multiple techniques exist and are discussed in Chapter 4.2.2. Far-field pulse properties are

discussed in Chapter 4.2.3.

4.2.1 Near-field physics

All the interesting physics that affects the specular pulse properties, such as absorption,
relativistic non-linearities, hole-boring, field ionization, ef cetera, occurs near the interaction
interface and many of these phenomena are nonlinearly dependent on intensity and electron
density profiles. Since the pulse has a finite focal spot (Figure 2.8), we can expect there to

be some spatial dependence on these effects in the near-field.
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Previous experimental work [35], which partially inspired the work in this thesis, has
shown that the instantaneous spectral shifts for a low-contrast relativistic laser-plasma
interaction arose primarily from the motion of the relativistic critical surface,?!, i.e. a
Doppler shift resulting in ‘red’ light for receding surfaces and ‘blue’ light for expanding
surfaces. The rising edge of the pulse saw redshifts as large as &~ 6%, indicating a recession
velocity of & 3% of the speed of light, which decreased to near zero shift by the peak of
the pulse, eventually turning into a blue shift. This dynamic shifting of the instantaneous
wavelength arise from the dynamic competition between laser profile steepening and heated
plasma expansion, where on the rising edge the increasing laser intensity pushed the critical
surface towards solid density trailing edge of the pulse the plasma expansion overcame the
decreasing laser intensity.

Shown in Figure 4.4 are spatially and temporally resolved estimates of the near-field
spectral shifts (given as a percentage of the incident pulse carrier) due to (i) Doppler shifting
from motion of the relativistic critical surface and (ii) relativistic self-phase modulation and
(iii) their combined effect for (a) the fixed and (b) the dynamically ionizing simulations. The
Doppler shift was calculated by tracking the motion of the relativistic critical surface (with
a 20 fs resolution, indicated by the black curves in Figures 4.2 and 4.3). The Doppler
shift upon reflection is then simply given by Equation 1.32. The relativistic self-phase
modulation was estimated, following Watts [42], using Equation 1.30 and the temporally
evolving under-dense plasma density from the simulation.?? In each case, the incident laser
intensity profile is assumed to be unperturbed. For clarity, the 1 and 50% peak intensity
contours of the laser are indicated by the dashed black curves and any intensity below 0.1%
is truncated (shaded gray areas).

For the fixed ionization case (a), the estimation of the Doppler shift from the motion

2INo ionization/recombination effects were considered (as the pre-plasma was almost fully ionized accord-
ing to the rad-hydro simulations) and relativistic self-phase modulation was estimated to be approximately
3 times smaller than the observed shifts, around 2%. Other phenomena, such as the changing location of
the relativistic critical surface and initial motion of the pre-plasma before the main pulse arrived was found
to be negligible.

22Tn particular, the integral was performed up to the relativistic critical surface and no phase modulation
of the backwards propagating pulse was included (which should be significantly less since the specularly
reflected pulse has significantly lower intensity).
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relativistic self-phase modulation (aii) suggests shifting of ~ +2%. The combined influences
of relativistic self-phase modulation from propagation through the plasma and Doppler
shifting from reflecting off the moving relativistic critical surface is shown in (aiii), given by

the relation
A)\toml o A)\Doppler + A)\SPM + A)\Doppler A)\SPM

)\L )\L )\L )\L )\L
where AX = \jst — AL

(4.1)

The field ionization in (b) raised the local electron density and drove a Doppler blueshift
(up to ~ —5%, although short-lived) just from the motion of the critical surface away from
solid density (which was absent in (ai)). Only lasting ~ 50 fs, this is consistent with the
rise time for the laser to reach ~ 10'® W/em?, an intensity sufficient to strip the Aluminum
ions to the highest charge state achievable with this laser (Al 11+). The expansion of
critical surface is then quickly overcome by the increasing laser intensity, turning into an
even stronger redshift (~ +2.5%) than what was observed for the fixed ionization case.
Once again, this redshift gradually disappeared by the peak of the pulse, turning into a
slight blueshift on the trailing edge. Although still present, the spatial striations in the
profile are less defined than the fixed charge state simulation, consistent with the previous
assessment that ionization defocusing counteracted the laser filamentation resulting in a
smoother relativistic critical surface. The instantaneous wavelength shifts due to SPM was
estimated to be around +2% on the rising edge and —1% on the trailing. If the electron
density profile were consistent throughout the simulation, the SPM should have created
equal strength red and blueshift. This suggests that the under-dense electron density leading
up to the relativistic critical surface is significantly different on the rising edge of the pulse

compared to the trailing edge (as compared to the fixed ionization case in (a)).

4.2.2 Analytic pulse propagation techniques

Although being computationally intractable or prohibitively costly in the PIC simulations,
producing far-field pulse phenomenon centimeters away is analytically approachable. Two

techniques were addressed: (1) paraxial propagation using the Fresnel propagation kernel
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implemented in Chapter 3 and (2) a novel non-paraxial propagation approach simply using
the wave-equation. Both solutions start with the wave equation and the ansatz of a linearly
polarized plane wave (parallel with the z — awxis) with wavelength A\ = 27 /kr, angular
frequency wy, = cky,, spatial envelope u and temporal envelope e propagating along the

x — axis (Equation 4.2), using the geometry of the simulation setup in Figure 4.1.

0?2 2 0?2 1 9% .
_ Y \\E - )
((’9:1:2 + oy? + 0z2 2 (’9152) (@, 2,1) 0 (4.2)

—

E(@,y,z,t) = ula,y,2)e(t)e’r ks (4.3)

After a separation of space and time variables and a Fourier transform along the spatial
dimensions transverse to beam propagation direction (i.e. along y and z), this evolution of
the spatial envelope as a function of propagation distance = takes the form of Equation 4.4

where u is the Fourier transform of the field along the transverse spatial dimensions.

? 0 N
(552 = 2tk — (kg + K22, by, k2) = 0 (4.4)
. . N
w(ky, kp, Ax) =k, kr,x,)e =" (4.5)

If we assume a slowly varying transverse spatial envelope (i.e. k3 = kzg + k? << k2, where
ki = (ky, k2)), then Equation 4.4 reduces down to the elegant form of the Fresnel propagator
given by Equation 4.5 [141]. Simply put, the far-field spatial field distribution a distance Ax
away from the measurement plane at x, is obtained through an appropriate phase addition
in k-space of the near-field answer. For small Fresnel numbers (F' = a?/(AxzAp) < 1 where a
is the characteristic size of the aperture), this approach has been found to reliably reproduce
the far-field Fraunhofer diffraction patterns produced by single and double slits, round and
square apertures as well as the endearing Gaussian beam solution.

Since there is some finite bandwidth in short pulses, this propagator kernel should be
applied to each frequency individually.?® Starting with the space/time domain of the field

quantities at boundary of the simulation, a Fourier transform along both dimensions results

2%Note, this technique hadn’t been adopted for use in the previous chapter yet.
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in a wave-number/angular frequency (k-w) domain of the pulse. The Fresnel propagator
kernel can then be applied at each and every k-w pair before being inverse-Fourier trans-
formed to re-obtain the space/time domain of the pulse after propagation. This is equivalent
to propagating each laser frequency individually, treating each wave-number/angular fre-
quency component as a plane-wave, then superimposing the solutions after propagation.
However, rippling of the critical surface in low-contrast interactions can also create
features smaller than the laser wavelength. In order to appropriately handle these larger k-
modes, we approached the propagation problem by first removing the paraxial assumption

which allowed for the propagation of light modes up to kj.?*

The catch, however, in
dropping the paraxial approximation is that the differential equation to solve becomes
second order, requiring two boundary conditions to solve. Although not as elegant as the
Fresnel propagator kernel, one solution of the non-paraxial wave equation takes the form

of Equations 4.6-4.9 for the case of having field measurements at two planes located at x¢

and r22° where

etk (w14w2)

ikl,2) = C [a( )i (k’J_,:IJl) (x)u(m,@)} (4.6)
C = B — (1 —icot |(w1 — x2) k:2 — k2 ) (4.7)

alr) — otk (@ tae) ti(zi— x)\/k3—k7 1 _ p2ila—x2) NG k2) (4.8)
Bla) — etelrtotitemra VR () wme) (4.9)

with constant C, dependent only on the boundary conditions, fTI(EL,xl) and ﬂ(lﬁ,xg) are
the k-space fields at 1 and x5 respectively, and the x dependence comes in through « and
8. Alternative solutions exist for different boundary conditions but the two plane approach
was the most practical for these simulations.?® The procedure for propagating the pulse is

identical to the paraxial case, again modifying the phase of the near-field solutions in 21

24Tt is possible that this analysis could be extended to beyond kz, but this has been neglected for now since
there is very little energy in these modes and the simulations do not properly resolve features significantly
smaller than the laser wavelength.

PFor previous simulations in Chapter 3 enough vacuum was placed in front of the target to obtain a
spatially resolved field measurement, away from under-dense plasma, as compared to the novel non-paraxial
approach which uses a diagnostic plane, resolved in space and time.

26Tn practice, this approach has worked the best for two planes separated by only a few simulation grid
points.

93



Fourier space and then returning to the space-time domain with inverse Fourier-transforms.
To test the validity of these algorithms, simulations without any pre-plasma were per-
formed using roughened target surfaces with both laser spot size and sub-wavelength scale

perturbations.?”

Shown in Figure 4.5 are the power spectra of both the target surface
roughness (green) and of the specularly reflected pulse as measured at the boundary of the
simulation (black).?® The spectrum of the rough target has clearly been mapped to spec-
ularly reflected pulse and into spectral modes up to and beyond sub-wavelength features
(kr > 27 /A = 11.9 rad/wm, indicated by the vertical dashed red line). Also shown is the
approximate valid range of the paraxial assumption (red), which only covers approximately
an order of magnitude in spectral intensity. The specularly reflected pulse is inherently non-
paraxial; depending on the relative contribution of these modes to the spectra, propagating
these modes paraxially or simply ignoring them could potentially introduce significant er-
ror. The region of the spectra valid in this non-paraxial approach is also shown (blue) and
covers an additional order of magnitude in intensity.

The validity of both the paraxial (Equation 4.5) and non-paraxial (Equation 4.6) prop-
agation techniques was tested by propagating the pulse both forwards to the far-field and
backwards toward the original laser focal plane. By propagating the field measured at the
boundary of the simulation backwards toward the original laser focal plane, we can directly
see how the surface perturbations are imprinted onto the spatial profile of the specularly
reflected pulse. Shown in Figure 4.6 are the propagated pseudo-intensity distributions of
the specularly reflected pulse (i.e. |E,|?) as a function of space and time at the original
laser focal plane (on a logyg color scale so that the shape of the phase-fronts are apparent).
These images are zoomed in around small window that is centered in space and time around
the peak laser intensity.?? The paraxial approach (filtered in k — space to only a valid region
where k2. < k% /10) was used in (a) and the non-paraxial approach for (b). Also shown is

2TThe presence of under-dense plasma is not incorporated into this model so the propagation is only valid
in vacuum

28In fact, these features are characteristic of the experimental conditions, discussed in more detail in
Chapter 6.

2This test was performed using the shorter 100 fs pulses where the original surface perturbations have
not been altered by the peak of the pulse.
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of the reflected pulse energy, referred to here as specular reflectivity Rg, would have only

amounted to around 7% reflectivity (the experiment suggested it should be closer to 15%).

The second row shows the integrated spectra for both the incident (black) and specular
(red) pulses. For either case, the specular pulse is = 10x broader, approximately 9.6 nm and
12.4 nm compared to the incident 1.3 nm FWHM. Both specular spectra are also strongly
redshifted to &~ 535 nm, an overall 1.5% redshift. (As a reminder, the experimental data
suggested an overall blueshift of 1 nm, centered at 526 nm with only ~ 2.5x broadening.)

The spatially integrated, intensity weighted instantaneous spectral shifts (red) are shown
in the third row, along with the instantaneous intensity (black). Just as suspected from the
evolution of the electron density in the simulations, the ionization on the leading edge of
the pulse has created a noticeable difference in the instantaneous spectral shifts. For the
fixed ionization case in (e), the pulse redshifts to around 2% before decreasing and turning
into a —1% blueshift on the trailing edge of the pulse. The field ionization in (f) however
creates an early blueshift of ~ —3%, before being overcome by the rising intensity of the
laser pulse and turning into an even larger &~ 3% redshift, which again falls off gradually
after the peak of the pulse reflects, turning into ~ —1% blueshift. Unlike the experiment,
very little temporal broadening of the pulse occurs in either simulation but both appear
to be slightly temporally steepened (Chapter 1.5.4). Assuming that the density profile is
constant and the laser has the incident laser temporal profile, profile steepening of the peak
is estimated to be only about —3.7 fs, negligible compared to the ~ 100 fs observed.** The
temporal profile modification of the specular pulse is likely due to absorption and possibly
self-focusing effects and almost certainly not group velocity dispersion.

Shown in Figure 4.8 is the far field (x = —10 mm) spatial and temporally resolved (left
column) intensity and (right column) instantaneous wavelength shifting of the specularly
reflected pulses for both the (top row) fixed and (bottom row) dynamically ionization pre-

30SPM can, however, broaden the spectrum, resulting in greater GVD and creating a stronger effect.
Including the estimated SPM shifts, the peak of the pulse would only have sharpened by —4 fs relative to
the rising red edge of the pulse, again negligible compared to the pulse duration.
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plasma.®! The intensity distribution for the fixed ionization simulation in subplot (a) shows
that the ‘wings’ in the spatial intensity distribution develop near the peak of the pulse.
Surprisingly, we find that the strongest redshifts in the far-field occur off the specular axis.
The redshifts in the near-field are attributed to Doppler shifts from the electron density
profile steepening, which is strongest for the highest intensities. The critical surface in
these high intensity regions, because of the filamentation instability, is quite rippled as a
result which drives stronger diffraction of the specularly reflected pulse and is likely the
cause of the redshift appearing off axis. This suggests that any experimental measurement
that is not spatially integrated, like the FROG, could be sensitive to finite spatial sampling.
For the dynamically ionizing simulation, we find more uniform intensity and spectral shifts
in space which is likely due to the less dynamic, smoother shape of the reflecting surface.
Since experimentally obtained FROG traces are nonlinearly sensitive to the intensity of
the pulse (see Appendix C for more details on FROG measurements), appropriate weighting
of simulation results must be applied before any comparison can be made between the
two. Shown in Figure 4.9 are the spatially and temporally resolved answers, repeated
from Figure 4.8 for convenience. In the right column are the spatially integrated, intensity
weighted answers from the near-field estimates and the far-field calculations. Since, the PG
FROG signal is proportional to the cube of the intensity, the integrated far-field answers are
weighted by I®; the spatially integrated instantaneous intensity (black) and spectral shifts
(red) are simultaneously displayed. The +ogrp standard deviation in the quantities from
the spatial non-uniformities are indicated by the shaded areas (gray and pink respectively)
to indicate the range of the measurement our experiment would have observed. Also shown
are the near-field estimates of Doppler shifting (cyan), relativistic self-phase modulation
(SPM, green) and their combined effect (Total, blue) are linearly weighted by the local
intensity on target, and hence energy. In either case, the spatially integrated, intensity
weighted shifts (red) are reasonably bound by the near-field Doppler (cyan) and combined

Doppler/SPM curves (blue) which, in contrast to previous work, would suggest the SPM is

31These figures have been convolved using equivalent finite spatial and temporal resolution to the experi-
mental measurement, averaged over a ~ 125 fs x f/15 window.
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4.3 Hot-electron properties

The observation of an early (however weak) blueshift in the experimental data suggests that
perhaps ionization is influencing the specular pulse measurements. Ultimately, electrons are
the end-product of interest in these experiments for the applications previously discussed
so the question remains: do ionization phenomena in the under-dense plasma result in
observable differences in the hot-electron populations produced in these interactions?

Shown in Figure 4.10 are the spatially and temporally integrated electron energy spectra
(on a logyo-linear scale) for the fixed ionization (dashed — blue) and field ionization (blue)
simulations.®® Although similar, the spectra differ slightly between 1 and 10 MeV where
the field ionization case showed higher coupling into ~ Ug W electrons (indicated by the
vertical dashed-black line). The overall total hot-electron coupling into the bulk of the
target, defined as all electrons with energy above 50 keV that pass through the diagnostic
plane 5 um deep inside solid density, was 42.3% and 55.2% of the incident laser energy for
the fixed and field ionization cases respectively.

Previous studies of hot-electron generation in the presence of short scale length pre-
plasmas [58, 66] have observed that the energy distributions can be strongly Wilks-like [34],
having Boltzmann-like distributions with temperature approximately equal to the traveling-
wave quiver energy (Ug W — 1.1 MeV in this case, indicated by the red curve). While a
reasonable approximation for the electron energy distribution around Ug W the distribu-
tions appear to have multiple components with one being significantly hotter which domi-
nates the spectra above a few MeV. Many mechanisms for generating these supra-thermal
electrons have been proposed [142-144] but, from the discussion in Chapter 1.5, we can
see that plane-wave accelerations are completely capable of generating > 70 MeV in these
fields (Figure 1.4) given a hot enough plasma and sufficient acceleration distance. This
is supported by previous work by Krygier [145], which suggests that these electrons are

merely characteristic of longer plane-wave acceleration distances from a process they refer

*3These electrons were recorded 5 pm beyond the solid density at © = 10 pm because of the dimpled
surface. This is to help facilitate future comparisons of the hot-electron source between the high and low-
contrast simulations.
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electrons are in the ‘Goldilocks zone’ resulting in significant trajectory perturbations which
broadens the angular distrubtion. The highest energy electrons, generated in the most
intense portions of the pulse, likely originate inside the strongest laser filaments where
self-focusing has produced intensities several times higher than in vacuum. Interestingly,
the filaments appear to exist in regions with nearly uniform quasi-static magnetic fields.
Although not verified with trajectories (at this time), this is likely why the most of these
high energy hot-electrons preferentially veer to one side and not the other.

Clearly, the evolution of these fields is quite different between the two cases where fields
with the fixed ionization are significantly more pronounced than for the field ionization
case, resulting more divergent hot-electrons. Since the most of the generation mechanisms
discussed in Chapter 1.5 are proportional Vn., it is possible that the increased electron

density from field ionization could lessen this gradient and lead to slower field growth.
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4.4 Summary

With side-by-side comparison of fixed and field ionization simulations, we find that even the
modest changes in electron densities from field ionization that occurs in this under-dense
aluminum pre-plasma can have some very profound effects on laser propagation, quasi-static
field generation and the resulting hot-electron acceleration. Perhaps most importantly,
the influence of ionization on the temporally resolved spectral properties of the specularly
reflected pulse should be observable in an experiment (with a FROG). Since the interaction
region dynamically evolves, far-field measurements of the pulse can be sensitive to spatial
non-uniformities but integration over the entire far-field pulse shows strong correlations to
the near-field physics. Due to a variety of simplifying assumptions made of the incident
laser’s spatial and temporal envelope properties, the resulting far-field quantities were quite
different from the experimental results. However, we do find that all the qualitative trends
of spatial and spectral broadening are reproduced as well as the temporally resolved shifting.
Since the shifting magnitudes are similar to the experiment, it is reasonable to believe that
the field ionization and pe-plasma electron density profile steeping from field ionization and
Doppler motion of the critical surface, respectively, are characteristic of the experimental
conditions. Hot-electrons generated in such an experiment could be strongly influenced by
the growing quasi-static magnetic fields, resulting in preferential electron directionality and
broader angular distributions compared to the idealized plane-wave accelerations discussed

previously.
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Chapter 5

COUPLING OF LASER ENERGY INTO
HOT-ELECTRONS IN HIGH-CONTRAST
RELATIVISTIC LASER-PLASMA
INTERACTIONS

As previously discussed, extensive under-dense preformed plasma can develop around the
laser interaction region before the main pulse arrives due to pre-pulse in low-contrast pulses.
This pre-plasma, due to a variety of non-linear phenomena, can drastically modify the inci-
dent laser pulse as it propagates through the plasma, before ultimately being reflected at the
relativistic critical surface. Correspondingly, hot-electrons generated under such conditions
can be less predictable and desirable depending on the application of interest. Using high-
contrast pulses can remove some of these effects and create a more repeatable interaction,
but often at the cost of less overall coupling and increased sensitivity to initial target surface
conditions. In this Chapter, which was previously published as Coupling of laser energy
into hot-electrons in high-contrast relativistic laser-plasma interactions [Physics of Plasmas,
20(3):033104, 2013] [146], we* discuss a study on high-contrast laser-plasma interactions
using a systematic parameter study of highly simplified sinusoidal surface perturbations. In
particular, we address hot-electron generation from sharp interfaces and consider the overall

effect of surface perturbations on the resulting distributions.

351 exclusively performed all of the simulation and analysis work in this thesis but only after many useful
discussions and suggestions from the co-authors.
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5.1 Abstract

We use particle-in-cell simulations to explain the mechanisms responsible for the coupling
of laser energy into relativistic electrons for the case of sharp interface, solid density metal
targets free of pre-plasma. For perfectly flat interfaces, the accelerated electron trajectories
are dominated by the standing-wave field structure formed by interference between inci-
dent and reflected pulses. We find that quasi-static magnetic fields that develop near the
interface play only a minor role in perturbing the relativistic electron trajectories but can
contribute to enhanced absorption. Target surfaces that are structured exhibit enhanced
absorption and the acceleration mechanism deviates from the clean standing-wave acceler-

ation mechanism leading to more stochastic electron heating and larger divergence angles.

5.2 Introduction

Ultra-intense (> 10'® W/em?) laser-plasma interactions are capable of producing relativistic
electric beams with a variety of applications including the fast-ignitor approach to inertial
confinement fusion [1], creating ultra-short x-ray sources [3] and isochorically heating matter
to warm-dense states [2]. Each application has specific requirements on energy spectrum,
angular distribution and conversion efficiency where control of various aspects of these
relativistic electron distributions is essential to their effectiveness. Ultra-intense short-pulse
lasers are typically preceded by several m.Js or more of laser energy nanoseconds before the
main pulse arrives at the target. This ‘pre-pulse’ usually has sufficient intensity to create
10s of microns of under-dense plasma in front of the target. Not only does this move the
laser interaction interface from supra-critical solid density to the lower relativistic critical
density, it also subjects the main pulse to instabilities [47, 5860, 132] and quasi-static field
generation |45, 46] which can greatly modify relativistic electron generation and transport.

High-contrast lasers minimize the laser energy before the main pulse and therefore limit
pre-plasma formation. Several facilities, like LULI [47], Trident [48], HERCULES [19] and
Titan already have this pulse cleaning capability typically obtained through nonlinear opti-

cal processes, such as harmonic generation || and third order cross-polarized wave generation
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[54], or with plasma mirrors [55, 56]. Under these conditions, the interaction region more
closely resembles the initial target interface thus making surface conditions important. The
advent of laser systems with intense, but extremely clean, laser pulses has ushered in a new
regime of experiments including, particularly, the ability to use very thin (sub — micron)
targets for ion acceleration via Target Normal Sheath Acceleration (TNSA) [61, 147]. How-
ever, the absence of pre-plasma tends to reduce the laser-coupling efficiency and, in general,
the coupling mechanisms in this regime are not well understood. This is the subject of our
study.

Coupling of laser energy into electrons always requires two stages: a mechanism for
getting electrons into the laser field and another for them to de-phase from the laser. For
the case of a laser interacting with a sharp interface, the difficulty in coupling arises from
getting electrons out of the supra-critical density plasma and into the intense laser fields.
In ultra-intense interactions, absorption is dominated by collisionless processes [85, 90
and several heating mechanisms have been suggested. The Brunel effect [100] relies on a
component of the laser electric field being normal to the interface that can push and pull
electrons across the vacuum interface but is only present for p-polarized lasers at non-normal
incidences. Alternatively, relativistic j x B heating [101] can exist at normal incidence as
it relies on the oscillating component of the ponderomotive force to drive electrons across
the interface but the driving longitudinal electric field strength decays exponentially with
distance inside solid density.

For perfectly flat interfaces irradiated at normal incidence, low coupling results in a
Standing-Wave (SW) field pattern near the interface from the interference between the
incident and reflected waves. Electrons that eventually reach vacuum are accelerated with
trajectory characteristics unique to this standing-wave structure. For the perfect conductor
discussed by May et al [102], only electrons inside the plasma with sufficient transverse
momentum (approaching mec) are able to reach vacuum because of the strong surface
magnetic fields. Once in vacuum, electrons are accelerated by the electric field parallel to
the surface (peaked at \r,/4 away from the interface) and then turned back into solid density
by the magnetic field. This acceleration mechanism differs from both Brunel and relativistic
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j’x B heating in that no electric field component normal to the surface is required. However,
it is not present in plasmas with electron energies below a few 10s of keV and therefore
cannot address how initially cold targets can reach this state.

Considerable attention has also been paid to the current driven Weibel-like quasi-static
magnetic fields near the interface which have been assumed to be responsible for everything
from additional electron dephasing from the laser and more randomized electron trajectories
[72] to clearly structured bifurcations in electron angular distributions [89]. While these
effects are known, little work has been done that isolates the relative influences of the two
phenomenon or the resulting distributions of the hot-electrons that propagate deep inside
solid density.

Eventually, perturbations in the initially flat interface grow as these Weibel-like fields
develop near the interface [98] with magnitude and extent that can even affect the direction-
ality of relativistic electrons. These perturbations can increase absorption by introducing
a component of the laser electric field that is locally normal to the surface. Together, sur-
face perturbations and enhanced coupling can significantly modify the standing-wave field
pattern.

For targets with initial surface perturbations, significant enhancements in absorption
have been reported which have typically been attributed to enhanced Brunel |72, 98], res-
onant excitation of surface plasma waves [117-120] or local field enhancement wvia Mie
resonance [121, 122] depending on the specifics of each study. However, the dynamic com-
petition between heated plasma expansion and laser profile steepening can drive changes in
the electron density profile [35]. Plasma expansion that cannot be overcome by the laser
profile steepening can lead to smoothing over of the absorption enhancing perturbations
by the motion of the relativistic critical density surface and the development of an under-
dense plasma shelf though which the laser must propagate. However, increased electron
populations in under-dense regions can still result in enhanced coupling.

The resulting lower reflectivity creates a laser field structure more closely resembling
that of the propagating incident laser pulse (in vacuum), referred to here as a Traveling-
Wave (TW). In general, because of spatial non-uniformities in laser reflectivity, electro-
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magnetic fields near the interface of structured targets will have a complicated superposi-
tion of standing-wave and traveling-wave components. The processes by which electrons
gain energy in these field structures are fundamentally different from each other and their
relative contributions are apparent in the accelerated electron trajectory characteristics.
Traveling-wave accelerations in under-dense regions, not associated with the sharp interface
acceleration mechanisms, can contribute a significant fraction of the total conversion effi-
ciency. Furthermore, the complicated field structure can provide an additional dephasing
mechanism by which electrons can gain energy stochastically [142—144].

Using 2 D3V particle-in-cell simulations (described in Section 5.3) with an initially sharp,
solid density interface (free of pre-plasma), we study hot-electron generation in the context
of high-contrast relativistic laser-plasma interactions using 100 fs pulses. For perfectly
flat targets irradiated at normal incidence, we show how even cold targets (T, = 5 eV)
can produce relativistic electrons by including the effect of skin depth on the near-surface
standing-wave field structure in Section 5.4. In Section 5.5, we discuss coupling and ac-
celerated electron characteristics from targets that have surface perturbations. We show
Weibel-like quasi-static magnetic fields near the interface do not significantly contribute
to the directionality of relativistic electron trajectories but can enhance absorption when
surface structures are present. With under-dense plasma shelf formation, we find that a
significant fraction of the electron energy can come from traveling-wave accelerations and
not just the standing-wave driven interactions. While solid density, quasi-static magnetic
fields can affect even relativistic electron trajectories, we show that the randomization of
accelerated electron trajectories and angular distribution broadening is more consistently
associated with wave-front perturbations. Finally, in Section 5.6, we conclude with some

speculations on shorter and longer pulse behavior.

5.3 Simulation setup

2D3V Cartesian fully kinetic particle-in-cell simulations were performed to determine the

effect of surface perturbations on absorption using the commercially available PIC code
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Figure 5.1: (Color) PIC simulation geometry for sinusoidal surface features. The laser
(polarized along the z — axis) is normally incident propagating from left to right where LA
(TN) is the Laser-Axis (Target-Normal). The laser focal plane and (mean) surface interface
is located at * = 0 um. Sinusoidal surface perturbations have spatial periodicity A and
peak-to-trough height H.

Table 5.1: Conversion efficiency of surface features addressed in this study.

Height  Wavelength Conversion Efficiency

Surface bl A (<A M [%]
(a) 0 - 46
(b) 1/8 1 21
(c) 1 1 41
(d) | 2 47

Lsp [104]. For simplicity, sinusoidal features were chosen to represent initial target sur-
face roughness with various peak-to-trough heights H and spatial periodicity A (geometry
outlined in Figure 5.1 where LA/TN is the Laser-Axis/Target-Normal). The target was
modeled as a solid density (n. = 1.81 x 10%* ¢m™3), initially Z = 3 charge state Aluminum
slab, 25 pum deep by 50 pm wide with 25 pum of vacuum in front of the target to accom-
modate electron refluxing (with absorbing boundary conditions). Hot-electron properties
(time, energy and angle) are recorded as they pass through a diagnostic plane at & = 5 um
inside solid density where & = 0 pum corresponds to the (mean) solid density interface and
incident laser focal plane (in vacuum).
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The incident laser pulse (i.e traveling-wave with wavelength \; = 527 nm, period
Tr, = 1.76 fs, corresponding to a non-relativistic critical density n, = mee,w? /e? = 4.0 x
102! em™3) has a 200 fs duration sin? intensity profile (100 fs FWHM) incident normally
on the target with an 8 um focal spot FWHM, polarized in the simulation plane, with a

cycle averaged peak intensity of 4.65 x 10' W/em?

. The quiver energy U, of electrons
in the oscillating electric field is given by UZTW = (v — D)mec® = 1.1 MeV where
WZW = m = 3.2 is the relativistic Lorentz factor and a, = eFE,/mcwrc = 3.1 is the
normalized vector potential (where the 7" superscript refers to the vacuum value traveling-
wave field structure).

The simulation was performed using a direct implicit algorithm [104] incorporating an
energy-conserving particle push. The grid had a spatial resolution of 31.2 nm (~ Ar/16)
and temporal resolution of 27.5 as (~ 711/64). Through a separate study, hot-electron
distributions in time, space, energy and angle were found to be sufficiently converged at
these resolutions. Electron macro-particle densities ranged from 144 to 196 per cell and the
ions ranged from 25 to 49 per cell resulting in ~ 200 M macro-particles in the simulation.
All electron and ion species were fully kinetic and collisionless with initial electron and
ion temperatures of 5 eV. Sequential tunneling field ionization was included using ADK
(Ammosov, Delone and Krainov) ionization rates for ions in an alternating electromagnetic
field [87].

Four surface perturbation profiles have been chosen to illustrate different absorption
phenomenon in high-contrast interactions. They are summarized in Table 5.1 (consistently
labeled throughout as (a) through (d)) along with n;_,.—, the total conversion efficiency of
laser energy into hot-electrons. In this context, hot-electrons refer to electrons with kinetic
energy greater than 50 kel that pass through the diagnostic plane at x = 5 um deep inside
solid density. Surface (a) is the simplest surface with a perfectly flat interface. Surface
(b) has, by most definitions, optically flat surface perturbations with H = \r,/8 A = A
(~ Ar/25 RMS). The larger surface perturbations in surfaces (¢) H = A, A = 2, and
(d) H = A, A = A have been selected to isolate the separate influences of wavefront

perturbations and solid density magnetic fields on hot-electron generation and transport.
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5.4 Perfectly flat interface

The simplest sharp interface is one that is perfectly flat, surface (a). The evolution of the
electron density profile (log;o(ne)) is shown in Figure 5.2(i) at three instances in time: the
rising half-peak, peak and falling half-peak intensities of the pulse upon reflection. Also
shown are the original solid density interface (dashed black line) and the current relativistic
critical density interface (solid black line). Throughout the duration of the run, the interface
remains sharp only becoming slightly rippled at late times and the reflectivity remains quite
high averaging ~ 85%.

High reflectivity and a flat reflecting surface form a standing-wave field pattern due to
the interference between the incident and reflected pulses. However, since our collisionless
supra-critical plasma isn’t a perfect conductor, the fields inside the plasma aren’t zero
everywhere but instead fall off exponentially with distance from the interface. The field
structure near the plasma interface can be characterized by (for the same geometry as the

simulation) [85]

2, sin(krx + ¢) sinwri x < 0 (vacuum
B 1) it oS (racum) (1)
E(0)exp (—x/ls) sinwrt x > 0 (solid)

—2Be cos (kpw + ¢) coswrpt @ < 0 (vacuum)

By(a,t) / O (e, D)t — (5.2)

% exp (—x/ls) coswrt x > 0 (solid)

where ki, = 27/Ar, E, is the vacuum amplitude of the incoming laser field, Iy = ¢/wp(1 —
w? /w?)~1/2 is the collisionless skin depth (with plasma frequency w? = nce?/mee,) and ¢
is the phase offset of the standing-wave due to the plasma response. From Faraday’s Law,
components of £ parallel to the surface (i.e. E,) must be continuous across the interface.

This boundary condition lets us solve for £(0) and ¢ as follows

E(0) = 2B,
Wp

w
tan ¢ = —ls%.
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Figure 5.2: (Color) Temporal evolution perfectly flat interface, surface (a) with (i) the
electron density (logl0), (ii) By (linear) and (iii) angular distributions (normalized) resolved
by energy. The first column is a snapshot in time at the rising half peak, the middle column
at the peak of the pulse and the third the falling half peak. Vertical solid(dashed) black
curves in (i) and (ii) are relativistic(original) surface and the horizontal dashed white lines
in (iii) indicate U™ (lower) and US" (upper).

In the perfect conductor limit (I3 — 0), the perfect standing-wave structure is recovered
where the magnetic field is peaked and the electric field is always zero at the interface
where F, peaks at exactly Ar/4 away from the surface at twice the vacuum value, 2F,.
Correspondingly, the peak normalized vector potential is also twice the vacuum traveling-
wave value yielding relativistic Lorentz factor 5" = W = 6.5 and quiver energy
UZ*?W = (5™ — 1)mec? = 2.8 MeV (where the W superscript refers to the standing-wave

field structure).
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For our solid density aluminum plasma target, the electric field peak is closer to the
interface and finite electromagnetic fields persist at supra-critical densities over several skin
depths from the interface as can been seen in the corresponding magnetic fields (B,, normal
to the interaction plane) in Figure 5.2(ii). They are shown on a linear color scale to resolve
the 500 M G quasi-static magnetic fields at supra-critical densities (right of the solid black
curves). The standing wave structure is evident in the under-dense regions, as well (left
of the solid black curves). The electromagnetic field is dominated by the laser field in
under-dense regions and by quasi-static magnetic fields beyond a skin depth inside solid
density.

Magnetic field generation at supra-critical densities can come from many sources includ-
ing hot-electron currents [44], radial thermal transport [45] (i.e. thermoelectric oc VT x
Vne) and DC currents in steep density gradients [16] (i.e. ponderomotive & Vne x V).
For this surface, magnetic fields inside solid density beyond a skin depth appear to be dom-
inated by hot-electron currents. These highly anisotropic hot-electron currents inside solid
density are susceptible to the Weibel-like two-stream electromagnetic instability [99] that
causes these currents to filament resulting in ~ 100 M G magnetic filaments extending over
sub-wavelength spatial scales inside solid density. In some circumstances, these quasi-static
magnetic fields have magnitude and extent that can significantly affect even relativistic elec-
tron trajectories and have reasonably been assumed to be responsible for more randomized
accelerated electron trajectories in high-contrast laser-solid interactions [72, 89].

For the corresponding instances in time as the electron density and magnetic field snap-
shots (taking into account the time-of-flight to the diagnostic plane), the evolution of the
angular distributions of hot-electrons as they pass through the diagnostic plane inside solid
density is shown in Figure 5.2(iii). They are resolved by kinetic energy (integrated over a
10 fs time window) and each energy bin is individually normalized to show how the shape
of the distribution changes with energy. The horizontal dashed white lines indicate Ug w
and UZ‘?W (1.1 and 2.8 MeVrespectively) and at all times the peak observed electron energy
is between UZTW and UZ‘?W.

We observe a bifurcation in the angular distribution (which is especially clear at early
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times) that eventually blurs and fills in at later times similar to what was reported by Adam
et al [89]. In contrast with Adam, we find that accelerated electrons throughout the entire
interaction are characteristic of the standing wave structure that forms near the interface
and not a result of growing quasi-static magnetic fields near the interface.

Shown in Figure 5.3 are phase-space representations of the hot-electron angular distri-
bution, similar to Figure 5.2(iii), but instead from a calculation of test-particle electron
trajectories in the above form of the standing-wave electromagnetic field. Perfect reflec-
tivity was assumed and the half-peak intensity was chosen (corresponding to the first and
third columns in Figure 5.2). Electron test particles were injected into the field as a point
source at the solid density interface and sampled over an optical cycle. Only electrons that
reached vacuum to get directly accelerated by the standing-wave are shown with their final
kinetic energy and angle as they pass through the same diagnostic plane as the simulation

(x =5 um). Again, UZTW and UZ‘?W are indicated by the horizontal dashed white lines.
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Figure 5.3: (Color) Hot-electron phase space calculations of the point source test particles
accelerated from solid density by standing-wave EM fields as a function of final kinetic
energy and angle (colored by initial kinetic energy) for (ia) a perfect conductor and (ib)
plasma with the skin effect included. (ii) Initially 10 keV electrons from different density
interfaces (relative to initial solid density nsoiq at 45n.). The horizontal dashed white lines
indicate Ug W (lower) and UZ*?W (upper).
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The different colors in Figures 5.3(ia) and (ib) specify the initial electron kinetic energy
and they outline the phase-space that can be filled by this point source. The final electron
number density is not shown in this figure. Figure 5.3(ia) shows the perfect conductor case
and, as discussed by May, only higher energy electrons (10s of keV') can get accelerated to
ponderomotive energies. The same initial electron energies are shown in Figure 5.3(ib) but
now with the inclusion of the effect of the plasma skin depth on the fields (using the initial
solid density). Clearly, electromagnetic fields within a skin depth are sufficient to inject
even electrons that start from rest into the laser. Also, the peak observed electron energy
and bifurcation ‘finger’ thickness are both sensitive to the initial electron energy.

These distributions are also sensitive to the standing-wave offset phase ¢ (and therefore
electron density and relativistic effects). This is shown in Figure 5.3(ii) using only initially
10 keV electrons but with varying target electron densities (relative to the initial solid
density). With increasing density we find that both the angular separation between of the
‘fingers’ and peak electron energy decreases.

Clearly, the distributions we observe at early times in the simulation are much more
consistent with the < 1 keV electrons accelerated by standing-wave fields that include the
skin effect (dark and light blue in Figure 5.3(ib)) and not from a perfect conductor. This
is consistent with the simulation in that, near the interface, the mean electron energy at
the rising half-peak is less than 3 keV. In contrast with Adam, we find that the source
of this bifurcation is clearly not from the Weibel-like filaments, as the hot-electrons that
propagate inside solid density clearly keep the semblance of the standing-wave acceleration
signature. This is especially clear at early times when the Weibel-like filaments aren’t strong
enough to influence electron trajectories and yet we still see a very clear bifurcation. By
the time the falling half-peak of the pulse reflects, the bifurcation is no longer apparent.
Indeed, the distribution begins to resemble the < 100 keV electron phase space (dark red)
in Figure 5.3(ib) consistent with the average electron energy near the interface being heated
to ~ 50 keV as reported by the simulation: i.e. the filling in and broadening of the energy-
angle phase space is more consistent with target heating than trajectory randomization from
Weibel-like fields as previously assumed.
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5.5 Surface perturbations

For the perfectly flat interface, the relativistic critical surface remains optically flat through-
out the entire interaction only becoming slightly rippled near the end of the interaction.
This rippling, likely due to the development of quasi-static Weibel-like fields near the inter-
face, is accompanied by enhanced absorption [98]. While enhanced coupling in structured
targets is typically attributed to enhanced Brunel heating, resonant excitation of plasma
waves or field enhancement via Mie resonance, we find that the aforementioned quasi-static
magnetic fields near the interface at supra-critical densities now play an important role in
accelerating electrons to relativistic energies.

Depending on the scale of the surface perturbations (both H and A), enhanced coupling
can result in heated plasma blow-off that cannot be overcome by the laser profile steepening
under the conditions treated. The ensuing under-dense plasma shelf that develops results
in a hot-tail that dominates the accelerated electron energy spectrum above UZ*?W7 which
is not characteristic of the high-contrast standing-wave acceleration mechanism. This tail
can contribute a significant fraction of the total conversion efficiency.

Together, enhanced coupling and a structured surface drive deviations from the clean
standing-wave field structure. Finally, we show that the wave-front perturbations are largely
responsible for the more stochastic electron heating and randomized relativistic electron

trajectories rather than quasi-static fields near the interface.

5.5.1 Enhanced coupling from Weibel-like fields

In the laboratory, initial target surfaces will never be free of surface perturbations like the
highly idealized case previously discussed. Indeed, even targets polished to a mirror-like
finish will still have some sub-wavelength structure. Surface (b) has, by most definitions,
“optically flat” surface perturbations with a Ar/25 RMS and, yet, surprisingly we see an
overall 4 fold increase in conversion efficiency over the perfectly flat interface (as reported
in Table 5.1).

Figure 5.4 shows our results for surface (b) using the same organization as FIG 5.2, which
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showed results for the flat surface with the temporal evolution of the (i) electron density,
(ii) magnetic fields and (iii) electron angular distributions. By the peak of the pulse, the
relativistic critical surface has become smoother than the initial target surface, reducing
the coupling enhancing surface perturbations. While the vacuum field structure near the
interface is still largely standing-wave, the perturbations in the relativistic critical surface
drive transverse spatial modulations in the structure. We also note the earlier development

of Weibel-like fields, likely due to the increased current densities from increased coupling.
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Figure 5.4: (Color) Same as Figure 5.2 but for surface (b).

Angular distributions are shown in Figure 5.4(iii) and, even with this modest surface

perturbation, the bifurcation signature characteristic of the standing-wave acceleration is no
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longer present. Since Weibel-like fields played such a small role in the perfectly flat interface
example, it is unlikely that this blurring is solely due to quasi-static fields generated at
supra-critical densities. Since the magnitude and extent of these fields can reach ~ 200 MG
extended over ~ Az /4, only electrons with kinetic energy < 100 keV are able to be trapped.

Figure 5.5(i) shows typical electron trajectories for the (ia) perfectly flat interface and
(ib) the structure, but optically flat, interface born near the peak of the pulse when the
Weibel-like fields have developed to 200 MG levels. The original solid density interface
is indicated by the black curve and instantaneous electron kinetic energy is indicated by
the logig scale color bar. At supra-critical densities, low energy electron trajectories are
strongly influenced by these magnetic fields. Indeed, these electrons can be redirected back
into vacuum where the enhanced Brunel absorption from surface perturbations further
increases this probability. Due to the alternating competition between forward direct laser
acceleration in vacuum and redirecting magnetic fields inside solid density, electrons tend
to ‘surf” around the solid density interface until they gain enough energy from the laser to
escape the magnetic field trapping and propagate deep into solid density.

This surfing provides low energy electrons multiple opportunities to reach the vacuum
laser fields and is evident from the total distance electrons travel in vacuum. This inte-
grated vacuum travel distance (normalized to Ar) is shown in Figure 5.5(ii) where each
point represents an individual trajectory of a hot-electron that eventually makes it to the
diagnostic plane inside solid density. Clearly, when surface perturbations are present, we
observe more electrons spending more time in under-dense regions, often over multiple ex-
cursions, increasing their probability of getting a relativistic kick from the laser. Unlike
Brunel and j x B heating, Weibel-like quasi-static fields can improve coupling by providing
low energy electrons multiple opportunities to gain energy from the laser.

These recirculated electrons only travel < Ar/4 into vacuum before they get turned
around by the laser. Consistent with the majority of their energy coming from single sub-
optical-cycle accelerations from standing-wave-like field structures, coupling into sub—Uz‘,gW
electrons is enhanced as the number of low energy electrons that can reach the stronger
vacuum laser fields is increased. From the time-integrated electron energy spectrums shown
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Figure 5.5: (Color) Typical hot electron trajectories, colored by instantaneous kinetic en-
ergy, from the (ia) perfectly flat interface, (ib) optically flat interface and (ii) total travel
distances in vacuum as a function of maximum kinetic energy gained. The vertical dashed
black lines indicate UI™ (left) and U™ (right).

in Figure 5.6(i), we observe greater than 10 fold increase in Ug W electrons (where Ug w
and UZ*?W are indicated by the vertical dashed black lines).

While 96% of the total conversion efficiency from surface (b) is into electrons with
energy below UZ‘?W7 we also observe the development of a hot-tail that dominates the hot-
electron energy spectrum above U;,gW. Similar to previous studies [33, 102], we also see two
components in the electron energy distributions for these sinusoidal surface features: (1)
below UZ‘?W dominated by sharp interface standing-wave accelerations and (2) above UZ‘?W

dominated by under-dense accelerations.
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5.5.2 Under-dense acceleration

Energy distributions of electrons above UZ‘?W are largely Wilks-like [34] having Boltzmann
distributions with slope temperatures approximately equal to Ug W (plotted in Figure 5.6(i)
as the solid black line with arbitrary normalization). The development of this quiver energy
scaling part of the energy spectrum is consistent with previous experiment and simulation
work [58, 66] with similar under-dense plasma environments with which the pulse interacted

with before being reflected.
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Figure 5.6: (Color) (i) Energy distribution of electrons that pass 5 um plane inside solid
density on a log-linear scale for surfaces (a) through (d). The solid black line is a Boltzmann
distribution with temperature equal to Ug W' (arbitrary normalization). (ii) Same distribu-
tions but with single temperature Boltzmann fit to hot-tail subtracted. The vertical dashed
black lines indicate U (left) and USW (right).

Using a single temperature exponential fit to electrons with energy above U5W7 we find
that the hot-tail in surface (b) constitutes little of the total hot-electron energy (~ 4%).
The total conversion efficiencies for surfaces (c¢) and (d) were more than twice that of the
optically flat surface (b) and the hot-tail electrons constitute as much as 50% of the total
hot-electron energy. We can subtract out this exponential fit to the hot-tail to obtain a

crude estimate for the conversion efficiency of laser energy into hot-electrons generated
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Table 5.2: Estimated conversion efficiency contributions from sharp interface standing-wave
accelerations (SW) and under-dense traveling wave accelerations (TW).

Conversion Efficiency, nr_,.— [%]

Surface Total = Estimated SW + Estimated TW
(a) 4.6 4.6 0
(b) 21 20 1
(c) 41 28 13
(d) A7 23 24

from only the sharp interface interaction. The fractional energy contribution from these
two populations is summarized in Table 5.2. The resulting distributions after subtraction
are shown in Figure 5.6(ii). The predominant differences in the unmodified electron energy
spectra in Figure 5.6(i) between surfaces (b) through (d) is the amplitude of the hot-tail
contribution. Clearly in these high-contrast interactions, much of the enhanced absorption
can come from this developing under-dense plasma and not solely from sharp interface
mechanisms.

Our simulation results for surface (c¢) are shown in Figure 5.7. The competition between
heated plasma expansion and laser profile steepening drives the relativistic critical surface
to evolve throughout the interaction (Figure 5.7(i)). Additionally, we see more significant
under-dense plasma shelf formation [33] through which the laser must propagate before it
reflects off the relativistic critical surface. This is likely due to laser diffraction effects inside
the cavities (behaving as sub-wavelength apertures) preventing laser profile steepening from
overcoming heated plasma expansion. Since the aspect ratio of the cavities (H/A 2 1) is
of order unity, the light has to undergo multiple reflections before it can escape. These
effects, coupled with enhanced absorption effectively reduces the reflectivity from within
the cavities. Using an analytic technique to propagate the reflected pulse measurement
at the boundary of the simulation back to the original laser focal plane, we find that the
reflectivity from within the cavities was only ~ 5% while the reflectivity from the tips was

still higher than 50%. This spatial non-uniformity in reflectivity creates regions of field
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structure more closely resembling the traveling-wave of the incident laser and, at early

times, is the source of the Wilks-like hot-tail in the electron energy distribution.
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Figure 5.7: (Color) Same as Figure 5.2 but for surface (¢). The solid white curves in (iii)
indicate the classical ejection angle.

At early times before the cavities can fill with supra-critical density plasma, there is again
a clearly bifurcated angular distribution for electron energies above > UZ*?W (Figure 5.7(iii)
for the rising half-peak intensity). Electron motion in an ideal traveling-wave (i.e. plane-
wave) can be characterized with a simple energy-angle relationship given by the classical

ejection angle 6. (for electrons that start from rest) as

L 2
tan (0.) = p_” =+ P (5.3)
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where p) (p)) is the perpendicular(parallel) component of the momentum vector with respect
to the laser propagation axis. This solution is plotted on top of the electron distributions
for as a solid white curves in Figure 5.7(iii). Consistent with previous assessments, electrons
with energy above UZ‘?W are clearly from traveling-wave acceleration in under-dense plasma
and not from sharp interface mechanisms. The possible phase space that accelerated elec-
trons can fill by this traveling-wave (at half-peak intensity) are shown in Figure 5.8. Unlike
those distributions shown in Figure 5.3, this calculation does not incorporate the injection
or dephasing of electrons as their initial positions and momenta are unknown due to the
underdense plasma expansion. However, from this simple calculation we find that electrons
with initial kinetic energy less than 100 keV can only be accelerated by this plane wave
up to approximately 9 MeV, consistent with the maximum laser energy observed in the
simulation. Also, unsurprisingly, electrons injected into the field with momenta along the
laser propagation axis are more forward oriented (inside the dark blue classical ejection
angle curve) than those injected with momenta opposite the laser propagation axis (outside
the dark blue classical ejection angle curve).

Once the cavity fills with supra-critical density plasma, the clear bifurcation disappears.
At this time, gradient driven magnetic fields begin to develop in the now over-dense cavities
resulting in ~ 500 MG fields extending over Ar/2 by the end of the interaction. These
fields can trap even relativistic electrons (< 1 MeV). Despite having these quasi-static
magnetic fields at the interface that are larger and stronger than any Weibel-like fields,
the angular distribution of electrons narrows as the critical surface smooths over the solid
density surface features. While most certainly being capable of strongly perturbing even
relativistic electron trajectories, quasi-static fields near the solid density interface (yet again)

cannot be predominantly responsible for the shape of these electron angular distributions.

5.5.3 Quasi-static fields vs. wave-front perturbations

For surface (d) (Figure 5.9), the laser is able to propagate inside the cavities at all times
more-or-less preserving the original surface perturbation morphology. Like in surface (c), we
have increased under-dense plasma shelf formation and spatial non-uniformity in specular
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Figure 5.9: (Color) Same as Figure 5.2 but for surface (d).

5.6 Summary

In conclusion, we have shown that electrons accelerated from sharp, perfectly flat interfaces
are characteristic of the standing-wave acceleration mechanism where the skin depth effect
is essential for injecting low energy electrons into the laser in initially cold targets. In
addition to previous coupling mechanisms used to describe enhanced absorption at sharp
density interfaces, we find that developing Weibel-like quasi-static magnetic fields near the
interface at supra-critical densities can also enhance absorption by trapping and re-injecting
low energy electrons from beyond a skin depth inside solid density back into the laser fields
for multiple acceleration opportunities. Conversion efficiencies in these simulations above ~

25% are attributed to under-dense accelerations and not from the sharp interface standing-
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wave acceleration mechanism. While it has been speculated that quasi-static magnetic fields
near the interface at supra-critical densities could affect relativistic electron transport, we
find that it plays only a minor role compared to wave-front perturbations and accelerations
in stochastic fields.

We find this pulse/target combination to be in a transient regime where initial target
conditions can significantly influence early absorption physics but can still evolve quite
drastically throughout the interaction. For significantly shorter pulses, it is likely that the
interface will not significantly change throughout the interaction and under-dense plasma
expansion will be minimal. Therefore, accelerated electrons should be very sensitive to the
initial surface roughness and be typical of the early (rising edge) pulse behavior of these
100 fs pulses. For surfaces (a) and (b), this means coupling would likely be dominated
by the standing-wave acceleration mechanism with coupling predominantly into electrons
with energy below UZ‘?W. Since the widths of these angular distributions are sensitive to the
target temperature and electron density (Figure 5.3), we would surmise that the angular
distributions would be narrower for the shorter pulse (with the same peak intensity) since
the interaction interface is not likely to heat as much as or be at a lower density than the
100 fs pulse cases. For surfaces (¢) and (d), it’s likely that the angular distributions will
look very similar to the rising edge of the 100 fs pulse cases throughout the interaction,
where electrons with energy above UZ‘?W will be accelerated into the target at the classical
ejection angle. For significantly longer pulses, none of these sharp interface, absorption
enhancing features are likely to survive. However, under-dense plasma expansion and quasi-
steady-state critical surface perturbations [148] can provide additional coupling mechanisms
into electrons with energy well above UZ*?W that should eventually dominate the conversion
efficiency over the early sharp interface phenomenon. Certainly, another pulse/target pair
could produce radically different conditions throughout the interaction and as such merits
further study.

We would like to acknowledge useful conversions with R. Fedosejevs, F. Fiuza, A. J.
Kemp, R. B. Stephens and S. C. Wilks. This work was performed under DOE contract DE-
AC52-07NA27344 with support from the Lawrence Scholar Program, OFES-NNSA Joint
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Chapter 6

SPECULAR REFLECTIVITY AND
ABSORPTION IN HIGH-CONTRAST
RELATIVISTIC LASER-PLASMA
INTERACTIONS

In the previous chapter, I showed how high-contrast pulses can convert energy into relativis-
tic electrons near a sharp supra-critical interface, free of pre-plasma, using shorter 100 fs
pulses and highly simplified target surface perturbations. In reality, like for the experiment
discussed in Chapter 2, laser pulses can be significantly longer (2 5x, Figure 2.7) and
commercially available targets can have wavelength scale perturbations with complicated,
multi-modal spectral intensity distributions (Figure 2.10). Both of these factors play a
role in determining the evolution of the laser-plasma interface throughout the interaction
and ensuing accelerated electron properties. Since a variety of surface features were (albeit
unintentionally) shot during the experiment, a selection of typical surfaces were chosen to
study their effect on hot-electron generation, discussed in Chapter 6.3 using two pulse du-
rations: a shorter 100 fs pulse (identical to that chosen in Chapter 5 for simplicity and
computational convenience) and a longer 500 fs pulse characteristic of the experiment.
Direct measurements of the hot-electrons generated at the interaction interface are not
directly observable in experiment, but many indirect approaches have been proposed that
rely on electron transport through the target bulk [25, 27, 64, 65, 70, 71, 74]. Although often

neglected, measurements of the specularly reflected pulse have also been shown to provide
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invaluable insight into the laser-plasma interaction [35, 42, 78, 82, 149]. While still not a
direct measurement of the desired hot-electrons, specular reflectivity measurements provide
a direct measurement of the laser-plasma interaction and can constrain simulations (dis-
cussed in Chapter 6.1) used to infer hot-electron properties characteristic of the experiment
discussed in Chapter 2.

All the interesting physics that affects the specular pulse properties, such as absorption,
relativistic non-linearities, hole-boring, field ionization etc, occurs near the interaction in-
terface and many of these phenomena are nonlinearly dependent on intensity and electron
density profiles. Since the pulse has a finite focal spot (Figure 2.8), we can expect there
to be some spatial dependence on these effects in the near-field. However, all experimen-
tal measurements are made in the far-field, after diffraction effects have fully manifested.
Therefore, the spatial distributions of the specularly reflected pulse in the near-field may
not be indicative of those in the far-field where all experimental measurements are taken.
A priori, it is not quantitatively obvious how significant this redistribution of laser energy
will affect the interpretation of experimentally obtained far-field measurements.

Characterization of the specularly reflected pulse near the interaction with simulations is
complicated by the presence of the supra-critical plasma target by electrostatic fields, quasi-
static magnetic fields, noise from the kinetic nature of the macro-particles and, of course, the
interference between the incident and reflected pulses. Instead, the specular field is recorded
at the inlet/outlet boundary of the simulation (20 um away from the target interface)
where these influences are negligible. However, even a few tens of microns away, diffraction
effects have drastically reshaped the specular pulse from the desired measurement near the
interaction interface. Also, propagating the light to the far-field with these same simulations
would be prohibitively expensive since we would have to resolve the light propagation over
millimeters or even centimeters of space before the diffraction pattern would converge.
Alternatively, both the near and far-field properties of the specularly reflected pulse are
obtained by analytically propagating the boundary measurements first backwards, toward
the original laser focal plane (x = 0 um), to obtain the near-field distribution and then
forwards to the far-field centimeters away. Multiple techniques exist and and have been
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discussed previously; here I use the non-paraxial approach discussed in Chapter 4.2.2 to
handle sub-wavelength spatial modes in the specularly reflected pulse.
Finally a summary of what can be learned from specular reflectivity measurements is

made in Chapter 6.4.

6.1 PIC simulations

6.1.1 Setup

2D3V Cartesian fully kinetic particle-in-cell simulations were performed to determine the ef-
fect of realistic surface perturbations on specular reflectivity measurements and hot-electron
generation using the commercially available PIC code Lsp [104]. The setup, Figure 6.1, is
similar to those discussed in Chapter 5 with the exception that now we use multi-modal,
realistic target surfaces instead of the single mode sinusoidal features. The target was mod-
eled as a solid density (n. = 1.81 x 10?* em™3), initially Z = 3 charge state Aluminum
slab, 75 um deep by 150 um wide with 25 pm of vacuum in front of the target to ac-
commodate electron refluxing (with absorbing boundary conditions). Both incident and
specularly reflected pulse field quantities were recorded at the inlet boundary of the sim-
ulation (r = —20 pm). Hot-electron properties (time, energy and angle) are recorded as
they pass through a diagnostic plane at x = 5 um inside solid density where x = 0 pum

corresponds to the (mean) solid density interface and incident laser focal plane (in vacuum).

The variety of surface features observed in the experiment are illustrated in Figure
6.2. On the left are the same surface spectral intensities from Figure 2.10 from the AFM
measurements for (a) the low resolution, wide area scan of spot size or ‘large’ features
and (b) the high resolution, narrow area scan of wavelength scale or ‘small’ features. The
range of the spectral power distributions are shown as the shaded gray area. Three unique
spectral distributions were observed (indicated by the solid and dashed black lines) with
RMS values ranging between 100 and 400 nm. Four surfaces were reconstructed with

representative spectral distributions and RMS as the data, shown in subplots (ai)-(aiv) and
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All electron and ion species were fully kinetic and collisionless with initial electron and
ion temperatures of 5 eV. Sequential tunneling field ionization was included using ADK
(Ammosov, Delone and Krainov) ionization rates for ions in an alternating electromagnetic

field [87].

6.1.2 Interaction region evolution

Since a variety of surface feature were shot during the experiment, we begin the discussion
with a single surface roughness characteristic of the experiment: the large scale features
of the red surface plus the small scale magenia features from Figure 6.2 and the 500 fs
pulse. The temporal evolution of the interaction is outlined in Figure 6.3 at four instances
in time, indicated by the different rows: (a) initial conditions, (b) rising half-peak upon
reflection, (¢) peak upon reflection and (d) trailing half-peak upon reflection. The first
column (indicated by ) is the electron density profile, normalized to critical density, shown
on a logyo scale. The second column (indicated by i) is the cell averaged ionization state.
The third column (indicated by ii¢) is the near-field cycle averaged laser intensity also
shown on a logig scale. The complex structure in the near-field intensity pattern is due to
the interference between the smooth incident pulse and the structured specularly reflected
pulse due to the surface perturbations and high reflectivity of the target. In all these
figures, the initial and current relativistic critical surfaces are indicated by the gray and
black curves respectively (calculated for each z-position as where the yn. curve intersected
Ne, Where 7 = \/W was calculated using the local field intensity). From these figures,
we can see that as the interface becomes increasingly ionized, the relativistic critical surface

expands out into vacuum accompanied by increased under-dense plasma environments.?%

%Note that there is an artificial interface in the simulation at © = 1 pm, apparent in the density and
charge state figures at late times, but it appeared to have little influence on the LPI or electron generation.
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6.2 Specular reflectivity

Unlike the previous low-contrast simulations, there is significantly less under-dense plasma
present near the interaction region throughout these high-contrast simulations. Therefore,
it is likely that under-dense plasma phenomena due from field ionization or relativistic self-
phase modulation will be negligible. We also note that by the falling half-peak intensity
of the pulse, the relativistic critical surface is no longer the same as the original surface

perturbations (Figure 6.3(d)).

6.2.1 Near-field

Shown in Figure 6.4 are spatially and temporally resolved estimates of the near-field spectral
shifts (given as a percentage of the incident pulse carrier) due to (i) Doppler shifting from
motion of the relativistic critical surface, (ii) relativistic self-phase modulation and (iii) their
combined effect for (a) the fixed and (b) the dynamically ionizing simulations. The Doppler
shift was calculated by tracking the motion of the relativistic critical surface (with a 20 fs
resolution, indicated by the black curve in Figure 6.3). The Doppler shift upon reflection is
then simply given by Equation 1.32. The relativistic self-phase modulation was estimated,
following Watts [42], using Equation 1.30 and the temporally evolving under-dense plasma
density from the simulation.?” In each case, the incident laser intensity profile is assumed
to be unperturbed. For clarity, the 1 and 50% peak intensity contours of the incident laser
are indicated by the dashed black curves and any intensity below 0.1% is truncated (shaded
gray areas). As anticipated, there is virtually no early shifting from ionization or relativistic
self-phase modulation from under-dense plasma propagation, but the spectrum is overall
blueshifted which appears to be from ionization induced critical surface expansion resulting
in Doppler shifts. On the trailing edge of the pulse, the heated plasma expansion out into
vacuum overcomes the laser radiation pressure, turning into a late blueshift of about 1%

from Doppler motion.

37In particular, the integral was performed up to the relativistic critical surface and no phase modulation
of the backwards propagating pulse was included (which should be significantly less since the specularly
reflected pulse has significantly lower intensity).
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Since there is very little plasma development, even by the end of the interaction, we can
use the non-paraxial propagation approach previously discussed to propagate the specularly
reflected pulse measurement (made at the boundary of the simulation) back toward the laser
interaction region. In this manner, we can directly study the near-field properties of the
specularly reflected pulse before diffraction effects have convolved its interpretation, without
the influence of fields present in the plasma near the interaction interface, and without
interference between the incident and reflected pulses. The spatially integrated results are
shown in Figure 6.4(b) with comparison to the various phenomena in (a). Similar to the
low-contrast results, the estimates are linearly weighted by the intensity on target and the
specular reflected pulse is weighted by the cube of the intensity (what the experimental PG
FROG measurement would have seen). The spatially and temporally resolved wavelength
shifts of the specularly reflected light (propagated back to the original laser focal plane) are
shown in (¢) and the match is quite good with the estimated shifting in (aii) up until the
falling half-peak of the pulse.?® Again, we see how nicely the non-paraxial algorithm works
since the propagated pulse fits nicely within the incident envelopes (the signal was again
truncated at 0.1% of the peak intensity value, shaded gray for clarity).

The amount of critical surface motion on the trailing edge of the pulse will be sensitive
to the heating of the target. Depending on the target composition, this blueshift could
be strongly sensitive to the electron heat capacity of the target. The heat capacity of the
target will depend largely on getting the charge state correct in the interaction region.
These simulations include field ionization, but not collisional ionization or recombination.®”
While collisional effects can play a larger role at solid density, it’s believed that the LPI
region rapidly heats to a nearly collisionless state [35, 102] where hot-electron generation is
dominated by collisionless mechanisms [90] (< yn., = 1 keV). This also means that the heat
capacity at solid density near the interface, where collisional effects aren’t negligible, will

be wrong and correspondingly the heated under-dense plasma expansion. The reduced heat

capacity at distances beyond a laser few skin depths, where field ionization is negligible,

33 At this time, it is unclear why this is the case.
39This is a work in progress for these simulations.

141



however, was found to be adequate for these aluminum targets/pulse combinations.*"

6.2.2 Far-field

In high-contrast interactions, the shape of the critical surface solely determines the differ-
ences in the far-field intensity distributions of the incident and specularly reflected pulses.
Since all the spectral shifting that occurs throughout the interaction originates in the near-
field close to the laser-plasma interaction interface, diffraction of the beam in the far-field
can produce a drastically different intensity distribution where experimental measurements
are made. A priori it is not obvious how this far-field diffraction will vary the interpre-
tation of the near-field physics. Shown in Figure 6.5 are the spatially and temporally
resolved intensity (first column,normalized, log1g color scale) and instantaneous wavelength
shift (second column) in the near-field (first row) and far-field (second row) of the specular
pulse. For the far-field, the collection window of the Spectralon® used in the experiment
are indicated by the horizontal black lines (~ 82% of the pulse energy is captured inside this
window). Shown in Figure 6.6 are, once again, the (a) near and (b) far-field instantaneous
properties of the pulse but this time averaged in space. Since the shape of the critical
surface affects far-field diffraction, the dynamically changing critical surface throughout the
interaction distort the temporal intensity profile (particularly after the peak of the pulse).
In contrast, the intensity weighted instantaneous wavelength shift appears, on average, to be
unaffected. However, the spread of the spectral shifting has significantly narrowed (shaded
pink), indicating that the far-field pattern is dominated by the high-intensity portions of

the pulse. This is great news for experimental measurements slightly off of the specular axis

°This was tested with additional simulations that used fixed ionization state Al 3+ and Al 13+ targets,
albeit using shorter 100 fs pulses. The Al 3+ target had fewer free electrons into which the laser could
couple energy, and hence lower heat capacity (as well as less mobile ions) than the Al 134 target. While
the integrated spectra for all three cases were similar, subtle differences appeared in the temporal evolution
of the specularly reflected pulse. For the target with field ionization, the instantaneous wavelength shift
was blue at all times (Figure 6.7(c), likely due to the ionization induced blueshift), ending in a =~ 0.5%
blueshift. For the fixed ionization targets, the instantaneous wavelength didn’t blueshift until after the peak
of the pulse had reflected (likely due to the thermal pressure of the heated target taking over, resulting in
a blue Doppler shift). On the trailing edge of the pulse, the Al 3+ target had = 0.5% blueshift where the
Al 13+ target showed = 0.75% blueshift. Since the difference in these late shifts are within the range of the
(transverse) spatial variations in the measurement (= £0.25%), this effect is thought to be negligible under
these conditions.
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Shown in Figure 6.8 are the near and far-field intensity distributions of the specularly
reflected pulse (red) and the incident laser pulse (black). In the left column is the shorter
test pulse with a 100 fs pulse FWHM and on the right, the 500 fs pulse characteristic of
the experiment. The intensity distributions of the near-field plots (top row) have been nor-
malized to the incident laser intensity to show spatial variations in absorption.*! Not only
is the reflectivity lower for the longer pulse, the spatial intensity distribution is smoother.
This is likely due to the smoothing of the critical surface from the under-dense plasma ex-
pansion. Interestingly, the ratio of the red to black curves show lower reflectivity from the
higher intensity portions of the pulse, consistent with previous studies [90]. The far-field
intensity distributions, propagated 10 mm away from the original laser focal plane, are
shown in plots (¢) and (d) in the bottom row (normalized by the peak). The solid angle of
the detector in the experiment is also shown, indicated by the dahsed-black vertical lines.
In each case, spatial diffraction and spectral broadening cause the experimental window
(~ f/2.5 x 527 & 25 nm) to only capture 75-85% of the unabsorbed light.

Because of the significant differences in spectra and coupling, shorter pulses are insuf-
ficient to study the spectral shifting observed in the experiment. We do find that these
shorter pulses, however, are useful for providing insight into which scale of surface pertur-
bations is driving different reflectivity phenomena. Using simulations, we can break down
the realistic surface roughness into large and small scale features correspondingly see how
each component is affecting the experimental observables (depicted in the first row of Figure
6.9). One of the realistic surface roughness with consistent spectral intensity distribution
and same overall RMS as the target measurements was chosen in particular (200 nmRM S,
distribution 2, red surface). The (ai) realistic target surface was broken down into (bi) large
and (ci) small scale features (27, edge filter).

Shown in the second row of Figure 6.9 are the normalized time integrated intensity
distributions 10 mm away from the focal plane at a distance where the diffraction pattern

has converged for each of these surfaces. The black curves in these three figures are the far-

41Yet again, note how well the non-paraxial propagation technique back to the original laser focal plane
consistently fits inside the incident pulse envelope. The regions that exist outside this envelope are likely
from focusing in concave regions of the surface features.
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6.3 Hot-electron sensitivity to surface features

6.3.1 Short pulse parameter scan

Since a variety of surface distributions were observed in experiment, a parameter study
of these various surfaces was performed using the recreated surfaces in Figure 6.2. This
was done using the shorter (100 fs) pulse since for their computational convenience and
simplified interaction since coupling into hot-electrons is dominated by standing-wave ac-
celerations and not under-dense traveling-wave accelerations (allowing us to more easily
focus on the electrons of interest). From the preliminary reflectivity simulations, we have
reason to believe that the absorption is being strongly influenced by the sub-wavelength
scale surface perturbations more than the spot-sized large features. To see the effect on the
reflectivity and electrons, each surface distributions was run twice: (1) using ‘Large Scale’
features from the low resolutions AFM scans shown in Figure 6.2(a) and (2) ‘Large+Small
Scale’ features which are a superposition of the high and low resolution AFM scans. The
results of these shorter pulse simulations are summarized in Table 6.1. The surfaces have
been identified by the colors defined by Figure 6.2. Although not characteristic of the ex-
periment, the perfectly flat surface (black) and one with just small features (magenta) are
also shown for reference. Both conversion efficiencies, defined to be the fraction of laser
energy converted into hot-electrons with energy above 50 keV that made to the diagnostic

plane x = 5 pm deep inside solid density, are shown.

Table 6.1: Conversion efficiency of the various experimentally realistic surface features
addressed in this study for 100 fs FWHM pulses.

Surface RMS Large scale distribution Conversion efficiency, ny_,.— [%]
(Figure 6.2)  [nm] (Figure 6.2(a)) Large scale Large+small scale
blue 400 1 2.4 3.8
red 200 2 8.7 11.3
green 100 2 6.7 10.9
{ 100 3 5.9 8.9
flat 0 - 4.2 (black) 18.2 (magenta)

149



The corresponding hot-electron energy spectra are shown in Figure 6.10 for (a) only
the large scale features and (b) the superposition of large and small scale features. Once
again, they have been color coded to the surfaces according to Figure 6.2. Of the large
scale features, we find that the blue surface (i.e. the isotropic distribution characteristic
of the Goodfellow foils like in Figure 2.10(a)) has significantly lower coupling than even
the perfectly flat surface. The other surfaces observed (blue, red, green and 1) were
characteristic of the electroplated targets and they all had similar conversion efficiencies and
electron spectra. With the addition of the small scale features, the optically flat surface saw
more than a 4x increase in conversion efficiency over the perfectly flat surface. The addition
of the sub-wavelength features increased the coupling into hot electrons independent of the
large scale features, however, the surfaces that were characteristic of the experiment didn’t
even double the conversion efficiency over the only large feature surfaces. In fact, the
optically flat target had the largest conversion efficiency of all the surfaces considered. For
all of these surfaces, the majority of total conversion efficiency (> 95%) was into standing-
wave electrons, i.e. electrons with energy below the standing wave quiver energy UZ*?W =
(5™ —1)mec? = 2.8 MeV where the peak relativistic Lorentz factor 75" = /1 + (2a,)2 =
6.5.

A few representative angular distributions, resolved by energy, each energy bin indi-
vidually normalized to the peak, are shown in Figure 6.11. All the angular distributions
looked similar to the optically-flat sinusoidal surface perturbations in Figure 5.4 but with
less than half the conversion efficiency of the simple sinusoidal surface. From the work in
the previous chapter, all these factors would suggest that the severity of the perturbations
in the standing-wave wavefronts from the large scale features is driving deviations from the
standing-wave acceleration mechanism resulting in more stochastic, less efficient, electron

accelerations.

6.3.2 Long pulse differences

From the experimental reflectivity measurements (Chapter 2.5) and simulations with sim-
plified surface perturbations (Chapter 5), the case that surface perturbations can play a
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This is likely because the simulation used a ~ f/40 Gaussian beam, but indicates that the
surface roughnesses simulated were a reasonable approximation of what was observed in
experiment.

For the short pulse, coupling of laser energy into hot-electrons is predominantly into
standing-wave accelerated electrons (with energy < UZ*?W = 2.8 MeV) since the inter-
face remains sharp throughout. Because of bandwidth and coupling differences, shorter
pulses are insufficient to study the long pulse shifting phenomenon but they did provide a
less expensive means of studying the phase space of surface perturbations shot during the
experiment. The small scale features, despite only having a 25 nm RMS, appeared to dom-
inate the absorption physics while the large scale predominantly created more stochastic
fields and drove far-field diffraction. Most of the targets produced produced very similar
hot-electron characteristics, predominantly driven by standing-wave accelerations, despite
the variability in surface perturbations. For the longer pulse, like those used in the experi-
ment, eventual under-dense plasma expansion resulted in longer acceleration distances and
hot-electrons characteristic of traveling-wave accelerations, dominating the spectrum above

SW
usw.
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Chapter 7
CONCLUSIONS

In conclusion, I have studied low and high-contrast relativistic laser-plasma interactions
using analytic descriptions, experimental observations and particle-in-cell modeling in the
context of hot-electron generation. Since these hot-electrons cannot be directly observed
in experiment, I utilized the often neglected specularly reflected diagnostics to constrain
simulations used to infer hot-electron properties.*? In particular, all the specular reflectivity
diagnostics suggest that the high-contrast interactions were particularly sensitive to initial
target surface perturbations which, to some extent, survived throughout the interaction. In
either case, I find these interactions to be highly sensitive to initial target conditions and
spatial /temporal pulse properties. For a quantitative comparison to experiment, both the
conditions must be simultaneously met in simulations (something not yet accomplished in
this work). While approximations of the incident laser pulse made quantitative comparison
difficult for this work, all of the experimental trends were qualitatively reproduced.

For low-contrast interactions, non-linear interactions between the laser and under-dense
plasma drive pulse altering phenomena and lead to a dynamically evolving interaction re-
gion. While many of these effects can be inferred from specular measurements, diffraction
of the pulse in the far-field can lead to spatially varying observations that are not always
indicative of the near-field physics. The far-field analysis was performed using a novel
non-paraxial field propagation technique which was found to reliably propagate spectral

modes up to the laser wavelength. For these aluminum targets, dynamic ionization in the

42In ideal world, all transport and specular diagnostics would simultaneously be used to constrain simu-
lations. This is a work in progress for these simulations.
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from previous works in that it describes how ultra-intense lasers can accelerate low en-
ergy electrons to relativistic energies from initially cold targets with this mechanism. The
unique bifurcation signature ‘washes out’ at late times and is typically attributed to growing
quasi-static fields inside solid density, but I find this phenomena to be more consistent with
target heating. With even the addition of ‘optically flat’ surface perturbations, significant
enhancements in coupling are observed and these quasi-static fields appear to be beneficial
in that they can recirculate low energy electrons back into the vacuum laser fields. Un-
like traditional coupling mechanisms, this ‘surfing’ of electrons around the interface by the
competing effects of magnetic field recirculation and direct laser acceleration present the
electron multiple opportunities to gain a relativistic kick from the laser, at which point it
escapes the trapping and propagates deep into the solid density target. For rougher tar-
gets, increased coupling results in extensive under-dense plasma expansion and electrons
no longer characteristic of the standing-wave mechanism. Depending on the under-dense
plasma expansion, the absorption enhancing features can be smoothed over by the motion
of the relativistic critical surface. Increasingly structured interfaces can drive chaotic field
patterns near the interface, resulting in more stochastic electron accelerations and broader
angular distributions.

Despite having overall lower coupling compared to the low-contrast interaction, high-
contrast interactions predominantly couple laser energy into electrons that are character-
istic of the standing-wave acceleration mechanism. In fact, under these conditions, the
high-contrast interaction showed increased coupling into sub-quiver energy electrons over
the low-contrast simulations (nearly 3x). Additionally, because of the limited under-dense
plasma, quasi-static fields generated near the interaction interface and non-linear laser-
plasma instabilities are significantly less pronounced, resulting in more consistent and pred-
icable hot-electron characteristics. Depending on the application, consistency and direc-
tionality may be more important than overall laser coupling which is typically dominated

by higher energy, traveling-wave accelerated electrons (see Figure 7.2).
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Appendix C

SHORT PULSE MEASUREMENT:
FREQUENCY RESOLVED OPTICAL
(GATING

Most of the diagnostics discussed in this thesis are fairly common or at least straight-
forward, perhaps with the exception of the temporal short pulse characterization. As a
significant fraction of the experimental results concern this diagnostic, it is worth some
time to briefly go through the theory behind the technique.

How can we measure the temporal evolution of a laser pulse that is a few mere
picoseconds from beginning to end with 10s of femioseconds resolution? Currently, the
only technique that can provide this kind of resolution requires the use of another short
pulse. Using an optical gating approach, Rick Trebino developed a technique that uses
another ultrashort pulse to simultaneously measure both pulses, known as Frequency
Resolved Optical Gating or FROG [108]. In principle, a FROG measurement is a correla-
tion of the two pulses that has been resolved in frequency with an imaging spectrometer.
The result is a 2D intensity distribution that is a function of both frequency and relative
temporal delay between the two pulses known as a spectrogram. Technically speaking, this
is the Fourier-transform of the correlation between the electric fields of the desired incident
pulse F(t) and the gating pulse G(t) at each relative delay value creating the spectrograph
(|S(w, 7)|?) as shown in Equation C.1. Using an iterative phase retrieval algorithm, the
full temporal pulse information (both intensity and phase) of both the incident and gating
pulses, in theory, can be uniquely retrieved from the real valued intensity spectrogram

182



[109).
I(w,7) = |S(w, )2 = |/°° EMG(t — r)e™* dt[? (C.1)

As you might guess, there are many configurations in which FROG traces can be gen-
erated but, in principle, they all operate under the same theory. Typically, only one pulse
measurement is desired so a self-gating technique is employed. Instead of the blind FROG
configuration where neither the incident or gating pulses are known, the incident pulse is
split in two using a beam splitter and used to measure itself with an autocorrelation geom-
etry. This simplifies the phase retrieval algorithm by a priori placing a constraint on the
gating pulse G(¢) by having it as a function of the incident pulse F(t). There are several
popular configurations using this self-gating approach, some of which are shown in Table

C.1 [150]. Each configuration has it advantages and disadvantages. If signal levels are lim-

Geometry Nonlinearity Effect G(t)  Sensitivity [uJ]
SHG x? Second harmonic generation — FE(t) 0.01
THG X3 Third harmonic generation — E(t)? 0.03
PG ¥ Optical Kerr effect |E(t)|? 1

Table C.1: Gating pulses for popular FROG geometries [150].

ited, then the second harmonic generation (SHG) FROG geometry is best as the conversion
efficiency of this process (using KDP or BBO) is typically the highest of all other sum-
frequency generation (SFG) processes, typically requiring only n.J’s of energy [150]. Also,
it is easy to separate out the signal from the unconverted light as the FROG signal is a
different color than the incident pulses. Although it will provide the highest signal levels (as
well as good signal-to-noise levels), the resultant trace is symmetric in time creating some
ambiguity in the retrieval (which can be removed but only with additional measurements).
Also, since efficient SHG requires phase matching, measurements of broad bandwidth pulses
can be complicated. The polarization-gated (PG) FROG geometry not only removes the

time directionality ambiguity (being asymmetric in time), the incident and gating pulses
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The geometry of a single-shot PG FROG is shown in Figure C.1. The incident pulse is
first sent through an input polarizer (passing only the horizontally polarized light, shown
in red) and then aligned to the two input irises (/; and I3). The pulse is then split equally
using a beam splitter (BS) where the transmitted light is sent to a delay arm A; and the
polarization of the reflected light is rotated 45 deg with respect to the incident pulse (blue).
Both pulses are then focused down to a line onto the nonlinear medium (N — SF'5 Schott®
glass in this case, a dense flint glass with high y nonlinearity) using cylindrical lenses
(C'Ly and CLs) and overlapped in space. The transmitted pulse is incident normally on the
medium and the gating pulse crosses at some angle. Induced birefringence (from the optical
Kerr effect) in the non-linear medium created by the gating pulse rotates the polarization
of the transmitted pulse but only when the gating pulse is present, creating the desired
self-gated autocorrelation signal (green). Using an analyzer (simply a polarizer that passes
polarization 90 deg with respect to the transmitted pulse polarization), we can separate the
autocorrelation signal with rotated polarization from the unrotated transmitted pulse. The
autocorrelation signal is then sent to an imaging spectrometer, where a grating provides
spectral resolution along one dimension and spatial resolution along the other. Since the
pulses crossed at an angle in the medium, we can remap this spatial dimension to relative

delay between the two pulses.

Figure C.2: Geometry for asymmetric mixing in the PG FROG
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Figure C.2 illustrates how the mixing angle in the nonlinear medium can be used to
remap the spatial dimension into relative temporal delay. For this simple picture, let’s
assume that each pulse has a uniform spatial profile with some fixed diameter DD, where the
incident pulse is incident normally on the medium and the gating pulse crosses at an angle
#, outside the medium. Since each pulse is traveling at the speed of light in the medium
¢/n where 7 is the refractive index, the theoretical maximum delay window in this crossed-
beam configuration is A7 = (nD/sinfs) /¢ where 6, = arcsin (sin (#1)/n) is the angle the
two pulses cross at in the medium, due to refraction, as given by Snell’s law. Clearly, the
relative delay 7 varies linearly as a function of overlap position x is given by Equation C.2.

However, some geometrical issues can arise from this configuration.
ne . x .
7(x) = —sinfy, = —sin by (C.2)
c c

Since the autocorrelation signal is created parallel to the transmitted pulse and not at
the bisector angle between the transmitted and gating pulses, the zero-delay axis at the
entrance of the nonlinear medium has drifted in space by the time it exits the medium.
The spatial drift in the zero-delay axis blurs the signal, limiting the temporal resolution of
the measurement. The thickness L of the non-linear medium and mixing angle determine
the severity of this effect. From simple geometrical arguments, the amount of spatial drift
in the zero-delay axis, dx, is Ltan(62/2). When mapped to delay space with Equation
C.2, the PG FROG configuration has a limited theoretical temporal resolution as given by
FEquation C.3. As you can see, thinner nonlinear medium and more smaller angles reduce the
geometrical blurring effecte and give a higher theoretical resolution. However, depending
on the application, large mixing angles and thicker nonlinear media may be the only way to
achieve a large enough temporal window for longer pulse measurements (see Appendix D
for more information on longer pulse measurements). If found to be too severe, this effect

of temporal blurring can be corrected [151].

L
o7 — ”7(1 — cos6) (C.3)

Another concern for FROGs is spatial non-uniformity in the pulse intensity profile, in
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particular, after being focused down to a line with the cylindrical lenses. If the spatial
profile is known, it theoretically can be deconvolved from the measurement. If there is
sufficient energy in the pulse, a spatial filter can be used to filter out high frequency spatial

modes and produce a much smoother line focus.

C.2 Pulse retrieval

Now that we have an experimentally obtained, real valued, FROG intensity spectrogram,
an iterative phase retrieval algorithm is used to extract the complex electric field (both
intensity and phase) that created the trace. The algorithm [152], known as the principle
components generalized projections algorithm (PCGPA) is outlined in Figure C.3. It starts
with an initial guess for the incident electric field: this is typically a gaussian temporal
envelope with random phase. This initial guess is then used to generate a FROG trace
as a function of angular frequency w and delay 7. Next, the intensity of the generated
FROG trace is replaced by the experimental measurement while the phase from the guess
is retained. This modified trace isn’t an actual FROG trace, but rather a linear combination
of multiple incident and gating pulses with varying eigenvalue strengths. A new FROG trace
is created using only incident/gating pulse pair with the largest eigenvalue. The current
complex electric field is used as the input for the next iteration, where the procedure repeats
until the algorithm converges or stagnates. The FROG error eprog is defined to be the
RMS difference between the reconstructed and experimental FROG intensity spectrograms,

and is given by Equation C.4.

N
1
€FROG = \| 373 Y eoare (wi, ) — alrroc (wi 75))° (C.4)

i=1 j=1

The only piece of the puzzle that’s missing is how to extract the principle eigenvectors
from a given complex FROG trace. Fortunately, there exists a convenient and fast algorithm
for converting a incident and gating pulse into a FROG trace and, most importantly, it is
a reversible procedure [152]. Let’s start with a discrete N x N FROG image in w/7 space.

The incident /v and gating G pulses that created that trace are discrete functions of time
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In this form (Equation C.7) each column represents a unique delay between the signal
and gating pulses. Using column manipulation, we can re-arrange these columns to be
increasing in delay from left to right. After taking a Fourier transform along the columns,
we obtain the complex FROG trace where the real valued spectrogram is obtained by the
square of the modulus of this trace. Now, we have a one-to-one mapping from a FROG
trace to its outer product from, which has a unique eigenvector pair solution.

With the application of the intensity constraint, however, we create a trace that no longer
has a unique eigenvalue i.e. in general there are several incident/gating pulse eigenvectors
that contribute to the newly created trace. Many methods for obtaining the predominantly
contributing pair to the trace exist such as the vanilla algorithm, power method or singular
value decomposition (SVD). The vanilla algorithm, as the name implies, is the simplest
technique for extracting the electric field from a given FROG trace. It simply obtains a guess
for the electric field by integrating the outer product form along the delay axis. Although
this algorithm is often insufficient for convergence [108], it provides a good initial guess
for the algorithm. The power method closely approximates the principle eigenvector by
multiplying the current guess by (O O)P where p is a large integer [152]. SVD algorithms are
typically much more computationally expensive than either the vanilla or power algorithms,
but all of the eigenvalue/eigenvector pairs can be extracted and, in theory, be used for error
analysis [152].

The SVD algorithm massages the outer product form of the trace (Equation C.6) into
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the product of three matrices as O = U x W x VT where the columns of U are the incident
pulse eigenvectors, the rows of V1 are the gating pulse eigenvectors and the diagonal values
of W (the only non-zero values) are the eigenvalues for each eigenvector pair. By choosing
the eigenvalue pair of signal and gating pulses that dominate the outer product form of the
trace in each iteration, we ensure that we minimize the FROG error in each iteration.
With any of these algorithms, a new guess for the intensity and phase is obtained and
the iterations stop whenever the FROG error is sufficiently small to constrain the problem.
However, any given algorithm is prone to stagnate at a local FROG error minima (can be
better or worse for some geometries/algorithms) before reaching an acceptable FROG error
so it is often beneficial to alternate between algorithms when stagnation occurs to reach
the global minimum FROG error. For the PG FROG in particular, more robust algorithms
only apply the intensity constraint on every other iteration [153]. Another useful option
is to modify the current stagnated solution and restarting the SVD retrieval algorithm.
Some of the more useful techniques I have found involve slight temporal smoothing of the

intensity /phase or adding some small random noise to the intensity/phase.

C.3 Preparing the data for retrieval

The PG FROGs used in this experiment used N-SF5 Schott glass as the nonlinear medium.
The Sellmeier equation for the index of refraction of N-SF5 is given by Equation C.8 where
the index of refraction for the 527 nm pulses we used was 1.68. The pulses had a 1 em
diameter, crossed at 30 deg outside the medium (17.3 deg inside) resulting in a temporal
window of A7 = 16.7 ps. The Schott Glass® was 500 pm thick, resulting in a temporal
blurring of 7 = 127 fs. The detection threshold for a 500 fs pulse was found to be about
100 p.

1.52481889)\2 n 0.187085527\2 n 1.42729015 )2
2 _0.011254756 A2 — 0.0588995392 = A2 — 129.141675
(C.8)

ny-sps(Alpm]) = \/1 5

As with any other experimental measurement, FROG traces obtained in the lab will

also have deviations from the idealized FROG measurement described previously. These
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deviations arise from poor signal-to-noise levels, geometrical smearing, non-uniform spatial
intensity distribution, leakage from the polarizer/analyzer setup, quantum fluctuations and
non-linear response in the CCD detector, (etc...). Depending on the severity of each of
these issues, there is a strong chance that create an physically un-retrievable FROG trace
according to the description above. Great care must be taken in obtaining these traces to
retrieve a meaningful pulse profile.

Two types of noise can arise: (1) multiplicative noise which is independent of intensity
and (2) pixel-to-pixel gain variation, both of which can lead to noisy looking retrieved pulses
[150]. Through post-processing, these sources can be removed by a mean subtraction of the
background levels along with a high frequency filtering of the 2D trace.

FROG traces here were obtained using a grating based imaging spectrometer, which
creates a spectrogram as a linear function of wavelength. Since the PCGP algorithm requires
that there be a one-to-one mapping between the delay axis and frequency axis, we must
convert wavelength to frequency and (for broad spectrum in particular) apply the nonlinear
conversion factor ( Iy(w) = (A?/2m¢)IN(A)y—2rc/w tO each wavelength/frequency signal
value [154]. For a given delay range 7 = —A7/2: 67 : A7/2, we must interpolate and crop
to corresponding frequency range w = wo+ (—7/d7 : 27 /A1 1 w/67) (where w, is the carrier

frequency) for the PCGP algorithm to work.

C.4 Error analysis

Uncertainty in the FROG retrieval algorithm is typically approached using what is known
as a ‘bootstrapping’ method, in the sense that it would appear that you get something for
nothing(‘pulling oneself by one’s own bootstraps’) [155]. Current techniques approach this
problem by randomly only using about 50% of the data, resampling and running the algo-
rithm many times until sufficient statistics are accumulated to calculate a meaningful mean
and standard deviation (used for the error bars) of all the retrieved pulses. Simply setting
these values to zero and rerunning the algorithm [48] isn’t sufficient since the algorithm still

attempts to fit these points: simply ignoring these data points in the intensity constraint
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portion of the algorithm appears to be the only viable approach for calculating a FROG
error.

The discrete Fourier transforms needed for the PCGP algorithm, however, require the
signal to be zero at the boundary of the outer product otherwise ‘ringing’ occurs because of
boundary artifacts. To minimize this ringing, large grids were used to ‘pad’ the borders of
the data with zeros, making the actual signal a smaller portion of the total trace. As a result,
simply using only ~ 50% of the trace in the intensity constraint resulted in unrealistic pulse
retrievals and large errors. Alternatively, we run the algorithm on multiple occasions with
different initial seeds which results in similar, but not identical, reconstructions, all with
equally low FROG errors. Given enough reconstructions, careful calculation of the mean
and standard deviation of all the traces can indicate the consistency of the reconstruction.

Since the phase retrieval doesn’t return an absolute value (i.e. ¢ and ¢ + 27 are equiva-
lent), ambiguities in the phase can develop and lead to large standard deviations in phase.
Trivial ambiguities can be removed by subtracting out constant value in phase, but due to
the structured nature of the pulse, non-trivial relative phase ambiguities creep up in dif-
ferent parts of the pulse. There doesn’t exist a non-trivial method to remove this between
different retrievals, making traditional error bar analysis difficult. Taking the derivative of
the phase with respect to time, however, removes these ambiguities. This is great news

since we are only interested in the instantaneous frequency wins = wo — d/dt.
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Appendix D

SPECFROG MEASUREMENTS ON
OMEGA EP

This chapter discusses some of the details associated with a long-pulse specular FROG
measurement at truly fast-ignition relevant conditions (originally submitted as a research

grant proposal).

D.1 Principal objectives of the proposed research

1. Use novel time-resolved measurements of specularly reflected light to study the tem-

poral evolution of ultra-intense laser plasma interactions (LPI)

(a) (Primary) Study the long-term evolution of hole boring in front of solid targets
at truly fast ignition (FT) relevant conditions with the full operational power of
OMEGA EP at the Laboratory for Laser Energetics (LLE), 1.5 kJ in 10 ps with

a peak focal intensity of 5 x 10'? W/em?

(b) (Secondary) Continue analysis of previously obtained data on Titan at the
Jupiter Laser Facility
i. Ionization dynamics in LPI with different atomic number interfaces

ii. Pulse splitting phenomenon with ultra-thin (sub-wavelength) targets

2. Benchmark 2D cartesian particle-in-cell (PIC) laser-plasma simulations using the com-
mercially available code Lsp [104] with specular reflectivity measurements to gain
further physical insight on all these phenomena
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D.2 Background information

Ultra-intense (> 10'? W/em?) laser-plasma interactions are capable of producing relativistic
electron beams with a variety of applications including the fast-ignitor approach to inertial
confinement fusion [1], creating ultra-short x-ray sources [3|, isochorically heating matter to
warm-dense states [2] and accelerating ions via Target Normal Sheath Acceleration (TNSA)
[61, 147]. Each application has specific requirements on energy spectrum, angular distribu-
tion and conversion efficiency where control of various aspects of these relativistic electron
distributions is essential to their effectiveness.

Unfortunatley, there is no way to directly measure the hot-electron source generated
in relativistic laser-plasma interaction experiments. However, previous studies of ultra-
intense laser interactions with extensive under-dense plasma environments have suggested
that far-field measurements of the specularly reflected pulse, with the help of particle-in-cell
simulations, can provide a great deal of information about the interaction. For example,
changes in divergence of the specular beam (relative to the input) from the shape of the
relativistic critical surface has been shown to be a strong indicator of the under-dense
plasma density profile near the critical surface [78|. Spectral broadening and shifting of the
specular pulse via relativistic self-phase modulation have also been found to be sensitive to
pre-plasma environment [42| and polarimetry measurements of harmonics generated near
the relativistic critical surface have been used to infer self generated megagauss magnetic
fields near the interaction surface [82, 149].

Novel, time-resolved measurements of the specularly reflected pulse, made recently by
our group on Titan at the Jupiter Laser Facility at Lawrence Livermore National Laboratory,
have opened up a new regime for studying laser-plasma interactions with temporal resolution
never before seen for this type of experiment. Using a technique known as FROG (frequency
resolved optical gating [108]), we have been able to observe differences in dynamic ionization
using different Z materials and study pulse splitting phenomenon from sub-wavelength thick
Sig Ny targets used for proton acceleration (still active research areas I am hoping to continue

with support from this proposal). We have also shown how shifts in the instantaneous
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wavelength of the specularly reflected pulse, as measured with a FROG, can be used to study
electron density profile steepening [35]. This study revealed that the competition between
electron density profile steepening from the laser and heated plasma expansion is not always
negligible in this regime (150 J, 1.4 ps, 1 x 10** W/em?). However, the reversion of inward
to outward motion of the reflection point of the light occurs near the peak intensity of the
1.4ps laser pulse so that the reversion could be due to either increase in plasma pressure or
decrease in laser intensity. Therefore, it remains uncertain that with longer pulses relevant
to the full-scale fast ignition, whether the light pressure or the plasma pressure will win
the competition on 10s of picoseconds time scale at these intensities. A final answer to
this question will critically affect laser absorption [90] and conversion efficiency into hot
electrons [27] as well as the required driver energy for fast-ignition. A FROG measurement
in this regime will provide a novel insight into the long term behavior of electron density

profile steepening and is the primary focus of this proposal.

D.3 Experimental design and approach

By measuring the instantaneous wavelength shifts of the specularly reflected pulse through-
out the interaction with an experiment on OMEGA EP, we hope to understand the dynamics
of the laser-plasma interaction at truly fast-ignition relevant scales. This will be done using
a polarization gated (PG) FROG, dubbed SPECFROG, and is the primary focus of this

proposal.

D.3.1 PG FROG background

In principle, a PG FROG measurement is an autocorrelation of the pulse that has been
resolved in frequency with an imaging spectrometer. The result is a real valued, 2D inten-
sity distribution Ipg as a function of relative delay 7 and frequency w (also known as a
spectrogram) given by Equation C.1 (where E(t) is the complex electric field of the pulse).
A sample FROG spectrogram from the Titan campaign [35] is shown in Figure D.1(a).

The basic geometry of a PG FROG is shown in Figure C.1. After aligned to the irises,
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light from the simulation is shown in yellow and found to be in very good agreement with
the data. While there are many ways to get spectral shifts, such as from relativistic phase
modulation or ionization, the shifts observed in the experiment have very good agreement
with the Doppler shift caused by the motion of the laser absorption point (AA/ A, = 2v/c
here v is the velocity of the reflection point and ¢ is the speed of light).

The PG FROG design is particularly advantageous, as compared to other geometries,
as it contains no ambiguity in time directionality and offers very broad bandwidth measure-
ments since phase-matching conditions are automatically satisfied [150]. Given the past
success on Titan, we are confident that this approach will produce high quality data on

OMEGA EP.

D.3.2 Requirements

A variety of requirements on the facility, laser, target configuration and diagnostic must be
fulfilled for a successful campaign. We will use the OMEGA EP backlighter laser as the
main pulse with 1.5 kJ of energy delivered in a 10 ps pulse duration at the fundamental
wavelength 1054 nm. It will be incident on the target (planar aluminum targets, ~ 1 x 1 x
0.1 mm?) with approximately a 15 deg incident angle. From the facility, we require a fixed
port window located along the specular direction. It will have an optical grade window and
a mechanical shutter to protect the window when the SPECFROG diagnostic is not in use.
We require that the transport optics used to relay and down collimate the specular light will
have a pointing stability of less than ~ 0.2 mrad and deliver a collimated 2 em diameter
beam at the entrance to the SPECFROG diagnostic (exclusively located outside the target
chamber). The SPECFROG will be located on the floor of the target bay, almost directly
below the chamber, and secured with kinematic mounts. The ccd camera (Apogee Alta®
U8300) and spectrometer (Ocean Optics® U2000) used in the diagnostic require a nearby
power strip and BNC trigger 50 ms in advance of the interaction (TTL, High-Z). The data
from these electronics will be sent to an LLE controlled computer with a fiber coupled USB
range extender and the acquisition software will be integrated into the LLE systems.

The SPECFROG itself must be able to accommodate the measurement of the 10 ps
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OMEGA EP pulse. It will look not at the fundamental laser wavelength (1054 nm): rather,
the second harmonic generation created near the critical surface at 527 nm will be measured.
The temporal window of the SPECFROG will be at least 30 ps with better than 500 fs
resolution. The spectral window will be at least 100 nm (527 &+ 50 nm) with ~ 0.1 nm
resolution to accommodate up to 10% shifts in the spectrum. An independent measure-
ment of the spectrum will be obtained using a fiber-coupled spectrometer and will serve
as an absolute reference for the phase retrieval algorithm. Shielding from hard hits and
electromagnetic interference will also be necessary. The SPECFROG will contain an LLE
approved green diode laser which will be used for internal diagnostic alignment as well as

external alignment to the transport optics and target inside the chamber.

D.3.3 Design

Transport optics will be used to collect, relay, down collimate and direct the specularly
reflected light into the SPECFROG. The schematic layout of transport optics is shown in
Figure D.2. After passing through a short-wave pass filter (block lw, transmit 2w), the
specular light will be collected by a f = 1 m, 4”7 diameter positive lens approximately
2 m from the target chamber center (TCC). If second harmonic generation on OMEGA EP
experiment scales similarly to previous Trident and Titan results, we will collect approxi-
mately 10 m.J of 2w light in an f/20 cone. The light is then collimated using a f = —50 c¢m,
2" diameter negative lens (approximately 1.7 m away from the first positive lens) into the
2 ¢m diameter spot size required by the SPECFROG. Because the FROG will be located on
the floor below the chamber, several mirrors will be used to direct the light to the FROG
entrance irises.

A new FROG had to be designed for the experiment to accommodate the longer pulse
durations at OMEGA EP (as our current setup used on Titan are only capable of measuring
~ picosecond pulses). The current SPECFROG model (designed by myself, Yuan Ping and
Anthony Link) proposed for the OMEGA EP measurement is shown in Figure D.3. The
pulses mix in the SF5 nonlinear medium at an angle of 60 deg (outside the medium),
resulting in a theoretical delay window 73.4 ps. The geometric temporal blurring [151]
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D.3.4 Campaign, support and simulations

The proposed experiment, submitted as a Laboratory Basic Science (LLBS) experiment in
March 2012, has already been accepted by the University of Rochester Laboratory for Laser
Energetics for the 2013 Fiscal Year on the OMEGA EP Facility. A total of 5 shots on August
29, 2013 have been awarded (along with two weeks of alignment time on MTW in April
2013 and ride-along opportunities on other experiments on April 30 and May 6, 2013 ). A
preliminary design review with LLE has already been completed and the budget for the
SPECFROG parts needed for this novel measurement on the OMEGA P laser has already
been approved.

This laboratory basic science experiment directly supports a major program funded by
the DOE Office of Fusion Energy Science (OFES) in the fields of relativistic laser-plasma in-
teraction physics and fast ignition: the Fast Ignition High-Energy-Density Science Program
(P.I., P. K. Patel) is developing a state-of-art simulation capability for integrated modeling
and design of all aspects of a fast ignition target. The simulation tools combine PIC, hybrid-
PIC transport, and radiation-hydrodynamics ICF codes (specifically Lsp, PSC- HYBRID,
ZuMA and HYDRA). A major requirement of the program is high quality experimental data
at OMEGA EP and NIF ARC scale with which to benchmark and validate the codes.

However, I will be graduating shortly (expected April-May 2013). Without support from
the FES Postdoctoral Research Program, I will be forced to find employment elsewhere
and the SPECFROG project will become dangerously undermanned. Not only would the
SPECFROG project benefit from my previous experimental experience with FROG mea-
surements on Titan and Trident, it will also receive continued support in design, experi-
mental data acquisition and analysis. In addition to experimental experience, I also have
extensive experience with large scale PIC simulations of laser-plasma interactions with Lsp
[70, 78, 146] and could continue to provide simulation support with the help of the the first

class computational infrastructure at LLINL.
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D.4 Expected results; significance and/or application of ex-

pected results

Hole boring is the original scheme proposed for fast ignition [1]. The process of hole bor-
ing is extremely time-dependent as the plasma density gradient, the temporal pulse shape
and the on-target laser intensity, which can be different from vacuum focus intensity due
to filamentation, are all varied in time. The complex physics of ultra-intense laser-plasma
interaction is sensitive to the detailed balance between these parameters and thus it is essen-
tial to perform the fundamental time-resolved measurements we describe on the OMEGA
EP laser which is operating in uncharted parameter space of peak laser power, intensity
and pulse length. Even for the cone-guided FI scheme, knowing the location of relativistic
critical density (and hence the standoff-distance between electron source generation and the
fuel core) is also crucial for determining the required FI driver energy since the ignitor en-
ergy scales as standoff-distance? [158]. Assuming the same electron divergence, a small 10%
decrease in the distance by hole boring could lead to a 40% drop in the driver energy, which
will be significant for the FI point design. We have already published high quality data on
Titan and expect that our results on OMEGA EP will make a major contribution to the
fields of fundamental relativistic laser-plasma physics and fast ignition in an experimentally

uncharted regime.

D.5 Relevance of proposed research to facilitys programs and

goals

By working jointly with LLE and LLNL, we simultaneously can fulfill aspects of each facil-
ities mission statement. In addition to enhancing the nation’s defense and reducing global
threats from terrorism and weapons of mass destruction, Lawrence Livermore National Lab-
oratory has a mission to “strengthen the application of world-class science and technology
and respond with vision, quality, integrity and technical excellence to scientific issues of
national importance.” The Laboratory for Laser Energetics at the University of Rochester

has a five-fold mission statement: (1) To conduct implosion experiments and basic physics
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experiments in support of the National Inertial Confinement Fusion (ICF) program, (2) To
develop new laser and materials technologies, (3) To provide graduate and undergraduate
education in electro-optics, high-power lasers, high-energy-density physics, plasma physics,
and nuclear fusion technology, (4) To operate the National Laser Users’ Facility and (5) To
conduct research and development in advanced technology related to high-energy-density
phenomena.

Not only does this project meet every one of these needs, the SPECFROG will be
extremely beneficial for all subsequent users of OMEGA EP for the design and interpretation
of experiments related to x-ray source generation, high energy density physics, and fast
ignition. It will also be invaluable for addressing the fundamental physics of relativistic laser-
matter interaction through validation of integrated short-pulse modeling tools including PIC

and hybrid-PIC codes.

D.6 Aspects of the facility which provide unique opportuni-

ties for conducting the proposed research

At present, OMEGA EP is the only laser in the world to operate in a regime truly relevant
for fast ignition: a laser intensity of 5 x 109 W/em? in a 10 ps duration pulse. Hence
an experimental campaign on 5P will provide the unique opportunity of studying the long
term dynamics of hole boring and the ensuing effect on hot electron generation. In addition
to the FROG technique expertise, LLNL provides the computation resources necessary for

the interpretation of the data with large-scale PIC and radiation hydrodynamics codes.
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