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Why warm instead of cryogenic (cryo)? 

Author—NIC Review, December 2009 2 NIF-0000-00000s2.ppt  

Physics: 
•  San Ramon 2012 workshop: hotter hohlraum plasma could reduce inner-

beam SRS 
•  Hohlraum gas fill affects laser propagation: higher Z absorbs more via 

inverse bremsstrahlung 
•  Only H, He, and some Ne gas fills don’t freeze in cryo conditions 
•  Warm shots allow range of gas fills, e.g. hydrocarbons 
 
 
Practical: more shots 
•  Warm shots easier to field, shorter shot cycle 
•  Cheaper targets – no cryo hardware 



Fielding warm shots 
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•  Hohlraum fill gas: warm shots have 0.82 
mg/cc neopentane (C5H12)  

•  Same initial electron density as 
standard cryo fill 0.96 mg/cc He 

•  Windows can’t hold same He 
density warm 

•  Capsule fill gas: propane (C3H8), or 
deuterated (C3D8) for neutrons 

•  H, He diffuse through plastic at 
room temperature 

•  Could Al-coat capsule, or 
continuously pump gas (T. Parham) 

•  Other ablators (Be, B4C, diamond) 
may not leak 

•  More radiation, cooler hot spot, shell 
emission in x-ray images 

 

NIF chamber geometry 

Outers 
 (44o, 50o) 

Inners 
(23o, 30o) 

Cross-beam 
Energy 
transfer 

“ConA:” 
X-ray 
Backlighter 
source Gated 

X-ray 
detector 

gravity 

“symcap” 



We have (almost*) successfully commissioned the 
NIF warm hohlraum platform 

2009: first two symcaps!   
•  Less inner SRS, more outer SBS, less pancaked at same Δλ than cryo 
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* Warm keyhole shot would verify shock strengths and timings (H. Robey) 

2012-2013 symcaps: walked up in energy/power: avoid laser SBS damage 
N121226: 821 kJ, 292 TW, Δλ = 1.5 Å (low transfer) 

Comparable inner SRS and outer SBS power 
Delivered inner / total power ~ 1/3 -> large pancake 

N130125: higher power: 946 kJ, 368 TW  
Δλ = 3.5 Å: round hotspot!  This Δλ used subsequently 

N130217: extend peak power: 1.26 MJ, 362 TW 
up-down asymmetry (potential alignment issues) 

N130405: repeat 130217, first C3D8 capsule fill, round hotspot 
 

2013 2D ConA’s: 
N130509: -300 um hohlraum: large in-flight diamond (P4>0) 
N130627: +700 um: reduced in-flight P4 

0.5x capsule fill pressure to reduce self-emission in ConA images 



Warm shot performance different from cryo 
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•  Backscatter: Warms have less inner-beam SRS, more outer-beam SBS 

•  P2 shape: Warm hotspots are close to round with less cross-beam energy 
transfer 

•  The P4 question: warm in-flight diamond shape, square hotspot 
•  Lengthening hohlraum reduces in-flight diamond – both warm and cryo 
•  Cryo shots have diamond in-flight and hotspot 
•  Hydra simulations: both warm and cryo diamond in-flight, square 

hotspot  

•  Nuclear: 
•  Deuterated propane C3D8 -> up to 2.6E11 neutrons 
•  Tion up to 1.7 keV 



Warm laser pulse similar to cryo: picket higher by 
~20% to burn through higher Z hohlraum gas 
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•  First two shots used lower peak power or duration – avoid backscatter laser damage 

•  Warm trough shorter due to starting from a different comparison shot 
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BACKSCATTER 



Warm shots have less inner SRS, more outer SBS, 
than cryos 
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•  Difference partly (entirely?) due to less Δλ in warms 

•  2009: similar changes just due to hohlraum gas composition: same pulse, same Δλ, 
just changed gas fill 



Warm shots have more laser coupling than cryos 
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Outer beam SBS: DrD sensors show more on cone 
50 than 44, and give power scaling 
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•  DrD = drive diagnostic sensor - at least one beam in each quad 
•  3ω power history - forward and backward (separated in time) 

•  N130125: one quad on each cone had 18% higher power: power scaling on one shot! 

•  Why more SBS on 50’s than 44’s? 
•  50 focal spot smaller -> higher intensity 
•  Cross-beam energy transfer calculations: post-transfer power on 50’s > 44’s 
•  Could be pure intensity scaling; plasma conditions may also play role 
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SBS on 50o outer cone 
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N130405: 
1.3 MJ shot 

•  Cryo shots show some outer SBS late in time, esp. for longer pulses or high power 

•  Warm platform good for studying outer SBS and mitigation – cheaper, reproducible 

incident 

SBS 
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IN-FLIGHT SHELL SHAPE 



Convergent ablator “ConA” shots: backlit radiographs 
of shell in-flight (before hotspot formation) 
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NIF chamber geometry 

X-ray 
Backlighter 
source Gated 

X-ray 
detector 

Quicklook: N130627-002-999 

Shot highlights: 
• All diagnostics performed well 
•  Yn = 2.1e+11 (DD), Ti = 1.8 keV, 

BT_xray = 22.37 ns (SPIDER) 

N130627-003-999 C_Hohl_2DConA_Chfill_s03 

Campaign RI: Callahan, Moody, Kline 
Platform RI: Town, Rygg 
Designer: Strozzi, Hinkel, Callahan 
Shot RI:  T. Ma, R. Rygg, M. Barrios 
 
Objectives of the shot:  
•  Backlight the implosion in-flight to 

determine shape of warm capsule in 
+700 µm hohlraum 

•  Warm platform commissioning 
•  Scaling with capsule fill gas pressure 
 
-   575 Au hohlraum, +700 µm, nominal 
LEH 
- Capsule: T0, graded 1x Si  
-  15 nm tent 
-  1.3 MJ, 370 TW into hohlraum 
-  Ge BL 
-  Δλ = 3.5/3.5 
-  Target temperature = 298 K 
-  Capsule fill pressure = 1175 Torr 

HGXD 90-78:  
Backlighting of In-Flight Shell N130627 (warm 2D ConA) 
Shell attenuates backlighter x-rays 

Hotspot self-emission 

g 

CH shell 



Implosion symmetry expressed with Legendre 
modes, mut be controlled for ICF to work 

14 

NIF chamber geometry g 

P2 < 0: pancake*: outers too strong P2 > 0: Sausage: inners too strong 

*Oblate, prolate are ancient Etruscan for pancake, sausage 

P2 mode: determined by final (post-transfer, post-backscatter) laser cone fraction 

P4 mode: determined by geometry: hohlraum length, beam pointing 

P4 < 0: square: corners out P4 > 0: diamond: corners in 



In-flight shape (ConA): warms are more pancaked 
(P2<0), slightly more diamond (P4>0) than cryo 
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☐: N121219: cryo -300 µm 
✚: N130211: cryo +700 µm 
☐: N130509: warm -300 µm 
✚:  N130627: warm +700 µm 

P0 = radius P2 P4 
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•  Longer hohlraum reduces P4 in both warms and cryos – as Hydra predicts 
•  Program has adopted +700 µm as standard hohlraum 

Hotspot 
~ 50 µm 



N130509: warm 2D ConA, Lhohl -300 um: 
Hydra and data agree on P4, so-so on P2 
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Hydra post-shot 
measured 

•  Hydra P2 controlled by δn/n saturation clamp in cross-beam energy transfer.  
Lower value would agree better with data.   

•  Inline Hydra model, including ion heating, under investigation. [P. Michel et al., 
PRL 2012] 



N130509: simulations show diamond P4 in shell 
density, which leads to square hotspot 
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Measured data: 
P0 limb min = 197 um 

Post-shot image and density  
P0 = 200 um 

flow 

In-flight density nodes plow in material, 
making a square hotspot 
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HOTSPOT SHAPE:  
THE P4 QUESTION 



Gated x-ray movies of hotspot emission give 
equatorial and polar shape  

19 

NIF chamber geometry 

Equatorial 
X-ray 
Detector 

g 

hotspot 

Movie of N130405 equatorial 
GXD images 

Polar X-ray Detector 



Hotspot equatorial x-ray images: warm and cryo 
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Warm radius slightly larger: 
cooler hotspot, shell emission? P2: less transfer makes warms round 

N130627: 
0.5x capsule  
fill pressure 
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While there is a clear correlation between inflight and 
hot-spot P2 there is not for P4 
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Nuclear performance of warm shots is similar to 
cryos, with cooler hotspots - C3D8 fill radiates more 
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Shot N130627 
2DConA  
+700 um 

N130509 
2DConA  
-300 um 

N130405  
symcap 

N130211 
2DconA 
+700 um 

N121219 
2DConA 
-300 um 

N120726  
symcap 

N120705  
symcap 

Elas [MJ] 1.35 1.34 1.27 1.33 1.34 1.37 1.85 
Tion DD 
[keV] 

1.7 1.3 1.3 2.1 2.2 2.2 3.4 

DD yield 
[1011 n] 

2.6 2.0 2.2 2.4 2.0 3.19 5.3 

Yield / 
simulated 

135% !
preshot 

44% 71% 

Capsule fill 
pressure 

0.5x 1x 1x 

P0 hotspot 0.82x 57.8 µm 
Capsule fill 
gas 

C3D8 C3D8 C3D8 D-3He D-3He 
 

D-3He 
 

D-3He 
 

Good reproducibility! 

•  Lower capsule pressure increases yield: smaller radius, higher Tion 



Conclusion: warm hohlraum platform commissioned 
on NIF, ready for physics studies 
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•  Hydrocarbon hohlraum and capsule fill – unlike H / He for cryo 
 

•  P2 shape: Warm hotspots near round w/ less cross-beam energy transfer 

•  Backscatter: Warms have less inner-beam SRS, more outer-beam SBS 

•  The P4 question: warm in-flight diamond shape, square hotspot 
•  Cryo: diamond in-flight and hotspot 
•  Hydra: diamond in-flight, square hotspot - warm and cryo 
•  Support tent could be playing a role 

•  Nuclear 
•  Deuterated propane: Tion up to 1.7 keV 

•  Future 
•  Different hohlraum fill to improve inner beam propagation 
•  Outer SBS mitigation: Au-Boron wall, split beams in quad 
•  Capsule spectroscopy - argon, krypton; needs Te ~ 2 keV (S. Regan)  
•  Test mix estimates with unknown concentrations (T. Ma) 
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BACKUP BELOW 



Polar shape: warms much dimmer and larger M0 vs 
cryo; “donut” shaped 

•  Likely due to propane (C3D8) capsule fill radiating more and cooling  
25 

M0: 83 µm 
M2/M0: 2.7% 
M4/M0: 2.1% 

N130405 (warm symcap) @ bang time 

•  M0   40.30 µm 
•  M2/M0   2.26 % 
•  M4/M0   4% 

N120726 – cryo symcap @ bang time 



Reducing the capsule fill pressure *increased* the 
yield 
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Shot 2: N130627 
2DConA  
+700 um 

1: N130509 
2DConA  
-300 um 

Elas [MJ] 1.35 1.34 

Tion DD [keV] 1.7 (1.31x) 1.3 

<σv>DD 3.6x 1x 

DD yield 1.3x 2.0E11 

Yield / simulated 135% 
preshot 

44% 

Capsule fill 
pressure ~ Ni 

0.5x 2350 torr 

P0 hotspot 0.82x 57.8 µm 

Hotspot pressure 
= niTi 

1.22x 1x 

Hotspot ni~Ni / P0
3 0.907x 1x 

 
→

Y2
Y1

=1.63

x=N130509 value 

shot 2: lower ion number, 
hotspot more converged and 
hotter 
Net effect is higher yield 

Yield increase estimate: 
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NUCLEAR PERFORMANCE 



Warm reflectivity 

Author—NIC Review, December 2009 28 NIF-0000-00000s2.ppt  
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The P4 question – warms and Hydra agree on in-
flight and hotspot P4, cryos do not 
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•  Warm shots switch from in-flight diamond to hotspot square 
•  Cryos have diamond in-flight and in hotspot 
•  Hydra predicts both should behave like warms 

In-flight (conA) 

diamond 

square 

Hotspot 
(GXD) 

cryo -300 µm 

warm -300 µm 

warm +700 µm 

cryo +700 µm 



Next warm 2D ConA: +700 um hohlraum length:  
in-flight P4 should be much less but still > 0 
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•  Warm still calculated to have positive P4 
•  Difference in wall motion / gold bubble (see SXI)? 
•  Room for additional re-pointing of outers? 

N121219: cryo +300 um 
N130211: cryo +700 um 
N130509: warm -300 um 
Pre-shot warm +700 um 



Hydra modeling of warms agrees on bang time and 
in-flight symmetry 
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Shot Hydra pre-shot* 
Warm +700 um 

N130509 
Warm 2DConA 

Hydra 
N130509_ps03 

N130405  
warm symcap 

Hydra 
N130405_ps03 

(λ23, λ30)-λout   [Å] 3.5, 3.5 Same Same Same Same 

Xray BT [ns] 22.57 22.32 Data + 60ps 22.44 Data + 80ps 

P0 GXD BT [um] 43.77 57.8 TI 51.8 64.4 49.2 

P2/P0 BT [%] +2.19 -14 TI +7.8 BT -6 +60 !! 

P4/P0 BT [%] -12.02 -10 TI -21.6 BT -20 -60 

DD yield [n] 1.92E11 44% YOS 4.57E11 71% YOS 3.1E11 

P2/P0 % @ 200 um -16.8 -14 -12 

P4/P0 % @ 200 um +5.18 +11 +12.5 

•  Hydra predicts both warms and cryos have in-flight diamond and hot-spot square 
•  Warm shots behave this way 
•  Cryo shots have both in-flight and hot-spot diamond – disconnect with Hydra 

•  Warm sims:  
•  Time-dependent cryo Oggie multipliers: gives slightly later BT 
•  Cross-beam transfer: script w/ dn/n = 6E-4 saturation – lower level would make 

sim pancaked 
•  Working on inline cross-beam and backscatter packages 



Warm equatorial self-emission x-ray images 
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Hydra N130405_ps03 
at bang time 22.52 ns 

Hydra N130509_ps03 
at bang time 22.38 ns 

N130405 measured @ bang-time  
N130509 (-300 um)  

Time-integrated  



Warm in-flight diamond (P4>0) switches to hotspot 
square (P4<0), unlike cryos (stay diamond) 
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Shot N130509 
Warm 2DConA 

N121219 
Cryo 2DConA 

N130211 
Cryo 2DconA 

N130405  
warm symcap 

N120726**  
Cryo symcap 

N120705  
Cryo symcap 

Elas [MJ] 1.34 1.34 1.33 1.27 1.37 1.85 

Ppeak [TW] 379 345 358 367 412 523 

(λ23, λ30)-λout   [Å] 3.5, 3.5 8.1, 6.6 8.1, 6.6 3.5, 3.5 9.7, 8.5 8.5, 7.3 

In-flight shape n/a to symcaps 

P2/P0 % @ 200 um -14 +2.7 +12 

P4/P0 % @ 200 um +11 +8.5 +2.5 

Hotspot shape 

P2/P0 [%] -14 -11 +7.5 -6 +16 -20 

P4/P0 [%] -10 +3 +15 -20 +3 0 



Warm shot hotspots “round” (P2 small) for less Δλ 
than similar to low-foot cryos  
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Shot N130509 
2DConA 

N121219 
2DConA 

N130211 
2DconA 

N130405  
symcap 

N120726**  
symcap 

N120705  
symcap 

Elas [MJ] 1.34 1.34 1.33 1.27 1.37 1.85 

Ppeak [TW] 379 345 358 367 412 523 

(λ23, λ30)-λout   [Å] 3.5, 3.5 8.1, 6.6 8.1, 6.6 3.5, 3.5 9.7, 8.5 8.5, 7.3 

Hohlraum, LEH Au -300, small Au -300, small Au +700, large Au nom, large Au nom, large U nom, small 

Hotspot 
Xray BT [ns] 22.32 22.91 22.90 22.44 24.31 23.83 

P0 GXD [um] 57.8 52.1 54.9 64.4 43.78 46.56 

P2/P0 [%] -14 -11 +7.5 -6 +16 -20 

P4/P0 [%] -10 +3 +15 -20 +3 0 

Warm 
cryo 



Polar shape in Hydra: large M0, broad profile but no 
donut 
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Measurement at bang time 

N130405_ps03 post-shot N130405: warm symcap 




