
LLNL-TR-642612

Monte-Carlo Generation of Time
Evolving Fission Chains

J. M. Verbeke, K. S. Kim, M. K. Prasad, N. J.
Snyderman

August 20, 2013



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Monte-Carlo Generation of Time Evolving Fission Chains

LLNL-TR-642612

Monte-Carlo Generation of Time Evolving Fission Chains
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1 Introduction

About a decade ago, a computer code was written to model neutrons from their “birth” to their final “death”
in thermal neutron detectors (3He tubes): SrcSim had enough physics to track the neutrons in multiplying
systems, appropriately increasing and decreasing the neutron population as they interacted by absorption,
fission and leakage. The theory behind the algorithms assumed that all neutrons produced in a fission chain
were all produced simultaneously, and then diffused to the neutron detectors. For cases where the diffusion
times are long compared to the fission chains, SrcSim is very successful. Indeed, it works extraordinarily
well for thermal neutron detectors and bare objects, because it takes tens of microseconds for fission neutrons
to slow down to thermal energies, where they can be detected. Microseconds are a very long time compared
to the lengths of the fission chains. However, this inherent assumption in the theory prevents its use to
cases where either the fission chains are long compared to the neutron diffusion times (water-cooled nuclear
reactors, or heavily moderated object, where the theory starts failing), or the fission neutrons can be detected
shortly after they were produced (fast neutron detectors). For these cases, a new code needs to be written,
where the underlying assumption is not made.

The purpose of this report is to develop an algorithm to generate the arrival times of neutrons in fast neu-
tron detectors, starting from a neutron source such as a spontaneous fission source (252Cf) or a multiplying
source (Pu). This code will be an extension of SrcSim to cases where correlations between neutrons in the
detectors are on the same or shorter time scales as the fission chains themselves.

2 Rate equation for the internal neutron population

We will start from the rate equation given in [1]. The probability of obtaining n neutrons in the system at
time t +∆t is determined from the number of neutrons at time t:

Pn (t +∆t) =
(

1−n
∆t
τ

)
Pn (t)+q(n+1)

∆t
τ
Pn+1 (t)+ p

8∑
ν=0

(n+1−ν)
∆t
τ
CνPn+1−ν (t) (1)

where q= 1− p is the probability for a neutron to leak out of the medium or to be absorbed without inducing
a subsequent fission.

3 From the rate equation to a Monte-Carlo algorithm

In a Monte-Carlo simulation of a fission chain, we know the number of neutrons we have at time t, let’s say
n. For ∆t small compared to τ , we calculate the number of neutrons at time t +∆t based on an equation
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which gives us the probabilities of something or “events” occurring. Eq. 1 is not in the right form for
Monte-Carlo sampling, because it does not give us the probabilities that “events” will occur starting with
n neutrons. We will manipulate the indices of Eq. 1 so that it gives us the probabilities of obtaining some
numbers of neutrons at time t +∆t, starting with n neutrons at time t. If one has n neutrons in the system at
time t, the probability of getting n−1 neutrons in the system at time t +∆t is

Pn−1 (t +∆t) = qn
∆t
τ
Pn (t)+ pn

∆t
τ
C0Pn (t) (2)

qn ∆t
τ

in the first term on the right side of the equation represents the probability of loosing one of the n
initial neutrons to either leakage or absorption by a nucleus without fissioning it. pn ∆t

τ
C0 in the second

term represents the probability that one of the initial n neutrons fissions a nucleus and does not produce any
fission neutrons. Starting with the same internal neutron population of n neutrons at time t, the probability
of getting n neutrons in the system at time t +∆t is

Pn (t +∆t) =
(

1−n
∆t
τ

)
Pn (t)+ pn

∆t
τ
C1Pn (t) (3)

(
1−n ∆t

τ

)
in the first term on the right side of the equation represents the probability that none of the n initial

neutrons interacts with matter in the time period ∆t. pn ∆t
τ
C1 in the second term represents the probability

that one of the n initial neutrons fissions a nucleus and produces a single fission neutron. The probability of
getting n+1 neutrons in the system at time t +∆t is

Pn+1 (t +∆t) = pn
∆t
τ
C2Pn (t) (4)

where pn ∆t
τ
C2 is the probability that one of the n initial neutrons fissions a nucleus and produces two fission

neutrons. And so on for fissions producing more neutrons.
In summary, the time-dependent probabilities of getting n−1 through n+ν−1 neutrons at time t +∆t

starting with an internal neutron population of n neutrons at time t is given by
Pn−1 (t +∆t) =

(
qn ∆t

τ
+ pn ∆t

τ
C0
)
Pn (t)

Pn (t +∆t) =
((

1−n ∆t
τ

)
+ pn ∆t

τ
C1
)
Pn (t)

Pn+ν−1 (t +∆t) = pn ∆t
τ
CνPn (t) for 2≤ ν ≤ 8

(5)

The probabilities for the system to transition from n neutrons to a different number of neutrons is given
by 

Pn−1(t+∆t)
Pn(t)

= qn ∆t
τ
+ pn ∆t

τ
C0

Pn(t+∆t)
Pn(t)

=
(
1−n ∆t

τ

)
+ pn ∆t

τ
C1

Pn+ν−1(t+∆t)
Pn(t)

= pn ∆t
τ
Cν for 2≤ ν ≤ 8

(6)

The right side of the first sub-equation in Eq. 6 gives the probability that the number of neutrons will
decrease by 1 between t and t +∆t. There are two possible causes for this decrease: a neutron can either (a)
be absorbed by a nucleus or leak out of the medium (with probability qn ∆t

τ
), or (b) fission and produce no

fission neutrons (with probability pn ∆t
τ
C0).

The right side of the second sub-equation in Eq. 6 gives the probability that the number of neutrons does
not change between t and t+∆t, this can be the result of two causes: either none of the n neutrons interacted
with matter (with probability

(
1−n ∆t

τ

)
), or 1 of the n initial neutrons fissioned a nucleus (with probability

pn ∆t
τ
C1), which in turn “evaporated” a single fission neutron.
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If we are interested in computing the number of fissions that occurred in the chain, it is important to treat
the different physical events in the first and second sub-equations in Eq. 6 separately.

The probability fevent that anything happens in the time window t to t + dt — as opposed to nothing
happening (with probability

(
1−n ∆t

τ

)
) — is given by:

fevent =

7∑
∆n=−1

Pn+∆n(t+∆t)

Pn(t)
−
(
1−n ∆t

τ

)
7∑

∆n=−1
Pn+∆n(t+∆t)

Pn(t)

=

qn ∆t
τ
+ pn ∆t

τ

8∑
ν=0
Cν

qn ∆t
τ
+
(
1−n ∆t

τ

)
+ pn ∆t

τ

8∑
ν=0
Cν

=
qn ∆t

τ
+ pn ∆t

τ

qn ∆t
τ
+
(
1−n ∆t

τ

)
+ pn ∆t

τ

= n
∆t
τ

(7)

One should note that fevent is independent of t, which is true as long as ∆t is small compared to τ .
To advance the fission chain by one small ∆t step — where ∆t is small compared to τ —, typical Monte-

Carlo algorithms compute the probability that an event happens in the time windows t to t +∆t. In our case,
the Monte-Carlo algorithm will “throw the dice” and generate a random number θ between 0 and . If θ is
greater than fevent, nothing will happen in that time step, and the algorithm will proceed to the next time
step. If θ is between 0 and fevent, a reaction took place. The algorithm will then proceed to determine which
one of the reactions took place. The probabilities for specific reactions to happen in the time window t to
t +∆t can be written as

floss =
qn ∆t

τ

qn ∆t
τ
+(1−n ∆t

τ )+pn ∆t
τ

8∑
ν=0

Cν

= qn ∆t
τ

ffiss. ν neutrons =
pn ∆t

τ
Cν

qn ∆t
τ
+(1−n ∆t

τ )+pn ∆t
τ

8∑
ν=0

Cν

= pn ∆t
τ
Cν

(8)

If θ is between 0 and floss, one neutron will be lost by absorption or leakage, the internal number
population will decrease by 1. If floss≤ θ < floss+ ffiss. 0 neutrons , one neutron caused a fission with no fission
neutrons produced, the number of neutrons in the internal population will decrease by 1. The changes in
number of neutrons in the internal population can be summarized by

n(t +∆t) =


n(t)−1 for 0≤ θ ≤ floss

n(t)+∆n for floss +
∆n∑
i=0

ffiss. i neutrons < θ ≤ floss +
∆n+1∑
i=0

ffiss. i neutrons

n(t) for θ > floss +
8∑

i=0
ffiss. i neutrons

(9)

where ∆n is the number of neutrons by which the internal population changes between t and t +dt. ∆n can
take any value between -1 and 7, inclusively. Using the definitions of floss and ffiss. ν neutrons explicitly, we
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can write

n(t +∆t) =


n(t)−1 for 0≤ θ ≤ qn ∆t

τ

n(t)+∆n for qn ∆t
τ
+ pn ∆t

τ

∆n∑
i=0
Ci < θ ≤ qn ∆t

τ
+ pn ∆t

τ

∆n+1∑
i=0
Ci for −1≤ ∆n≤ 7

n(t) for θ > n ∆t
τ

(10)

While there are two equations to decrease the internal neutron population by 1, they correspond to two
different physical events. Eq. 10 can be reduced to a single equation

n(t +∆t) = n(t)+


∆n for θ


> qn ∆t

τ
H [∆n]+ pn ∆t

τ

∆n∑
i=0
Ci

≤ qn ∆t
τ

H [∆n+1]+ pn ∆t
τ

∆n+1∑
i=0
Ci

0 for θ > n ∆t
τ

(11)

where H [n] is a step function, also known as the discrete Heaviside function defined as

H[n] =

{
0, n < 0,
1, n≥ 0,

(12)

where n is an integer. Unfortunately, using this last equation directly does not distinguish the two different
ways of loosing one neutron in the time step ∆t.

4 Onto a more efficient Monte-Carlo algorithm

While this works when the time step ∆t is small compared to τ , it fails for larger ∆t, because these equations
were derived with the assumption of ∆t small compared to τ . This can easily be seen for the probability(
1−n ∆t

τ

)
that none of the n neutrons interacted with matter will eventually become negative for large ∆t,

which is unphysical.
Using small ∆t time steps can become prohibitively expensive. For most time steps, nothing will happen,

and we will move on to the next time step. We can use a faster algorithm. Instead of generating a random
number θ and compare it with the probabilities 6 and 7 for a small ∆t, we could determine the required time
step size ∆t for an event to happen. Let us rewrite the time-dependent probabilities 5 for the internal neutron
population to change from n neutrons at time t to a different number of neutrons at time t + dt in a more
accurate way.

Revisiting the probabilities Pn (t +∆t) in the rate equation 1, we see that instead of using
(
1−n ∆t

τ

)
for the survival probability of the n neutrons between t and t +∆t, it is more accurate to use a different
expression, from which the approximation

(
1−n ∆t

τ

)
was derived. The survival probability of a single

neutron between t and t +∆t is given by P0
(

∆t
τ

)
= e−

∆t
τ , i.e. the Poisson probability that 0 event will occur

in ∆t given the average event frequency 1
τ
. The survival probability of n neutrons between t and t +∆t is

thus simply
(
P0
(

∆t
τ

))n
= e−n ∆t

τ . We easily see that this new expression reduces to
(
1−n ∆t

τ

)
for small ∆t

compared to τ . Moreover, it is not an approximation, it is valid for both small and large ∆t
τ

, and does not
become negative for large ∆t

τ
. Similarly, we can use Poisson probabilities for the other terms as well. The
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new rate equation reads

Pn (t +∆t) =
(

e−
∆t
τ

)n
Pn (t)+q

(
n+1

1

)(
1− e−

∆t
τ

)(
e−

∆t
τ

)n
Pn+1 (t)

+ p
8∑

ν=0

(
n+1−ν

1

)(
1− e−

∆t
τ

)(
e−

∆t
τ

)n−ν

CνPn+1−ν (t)
(13)

where the second term is the probability that out of n+1 neutrons, n will not leak out, nor be absorbed, and
1 will leak out. There are n+1 ways of choosing 1 neutron out of n+1, so the factor

(n+1
1

)
. The third term

is to be interpreted similarly.
We can follow the same logical steps as previously to compute the time-dependent probabilities of

getting n− 1 through n+ ν − 1 neutrons at time t +∆t starting with an internal neutron population of n
neutrons at time t. These new equations are the counterparts of Eq. 5:

Pn−1 (t +∆t) = (qn+ pnC0)
(

1− e−
∆t
τ

)
Pn (t)

Pn (t +∆t) =
(

e−n ∆t
τ + pn

(
1− e−

∆t
τ

)
C1

)
Pn (t)

Pn+ν−1 (t +∆t) = pn
(

1− e−
∆t
τ

)
CνPn (t) for 2≤ ν ≤ 8

(14)

The probabilities for the system to transition from n neutrons to a different number of neutrons is simply the
above expressions divided by Pn (t), as we did previously for Eq. 6:

Pn−1(t+∆t)
Pn(t)

= (qn+ pnC0)
(

1− e−
∆t
τ

)
Pn(t+∆t)
Pn(t)

= e−n ∆t
τ + pnC1

(
1− e−

∆t
τ

)
Pn+ν−1(t+∆t)

Pn(t)
= pnCν

(
1− e−

∆t
τ

)
for 2≤ ν ≤ 8

(15)

Using these new expressions for the Pn (t +∆t)’s, we can now write the survival probability fsurvival that
nothing happens to the n neutrons in the time window t to t +∆t:

fsurvival (t +∆t) = e−n ∆t
τ (16)

Given the random number θ , we can determine ∆t by equating Eq. 16 to θ . This time step ∆t will be
such that nothing will have happened in the time window t to t +∆t. We will then use another random
number θ ′ to check which specific event occurred at time t +∆t. For that purpose, we will now compute the
probabilities for specific reactions to happen at time t +∆t:

floss (t +∆t) = qn

qn+pn
8∑

i=0
Ci

= q

ffiss. ν neutrons (t +∆t) = pnCν

qn+pn
8∑

i=0
Ci

= pCν

(17)

The changes in number of neutrons in the internal population at time t +∆t can be summarized by

n(t +∆t) =


n(t)−1 for 0≤ θ ′ ≤ q

n(t)+∆n for q+ p
∆n∑
i=0
CiPn (t)< θ ′ ≤ q+ p

∆n+1∑
i=0
Ci

(18)
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or

n(t +∆t) = n(t)+∆n for θ
′


> H [∆n]q+ p

∆n∑
i=0
Ci

≤ H [∆n+1]q+ p
∆n+1∑
i=0
Ci

(19)

∆n is the number of neutrons by which the internal population changes between t and t +∆t, ∆n can take
any value between -1 and 7, inclusively.

While we could use the equations above in a Monte-Carlo simulation to track n neutrons at once, tracking
a single neutron at a time has some advantages. In terms of algorithm implementation, treating a single
neutron at a time leads to a recursive algorithm, where each fission branch is followed all the way to the
leaves before moving to the next fission branch. In this case, some of the first detected neutrons produced by
the recursion could be detected last, i.e. neutrons are not produced in chronological order by the algorithm.
On the other hand, treating the entire population of n neutrons at once leads to following all the branches at
once. Consequently, neutrons are produced in chronological order by the non-recursive algorithm.

Tracking a single neutron at a time is paramount to treating each neutron as a singleton neutron popula-
tion as soon as it is generated. While the Eqs. 17 that determine the destiny of a neutron does not change in
this case, Eq. 16 becomes

fsurvival (t +∆t) = e−
∆t
τ (20)

for a neutron population of 1. The time constant τ is the total neutron lifetime that determines the time scale
for the time evolution of each neutron and thus of the fission chain. For each neutron, the time between
events is determined from the Poisson probability to have a time gap, e−t/τ . The probability that a neutron
survives without interaction for a time u, and then has an interaction within du is given by∫ t

0
e−

u
τ

du
τ

= 1− e−
t
τ (21)

where du
τ

is the neutron interaction probability in a small time window du. The time interval t is determined
by equating the cumulative distribution to a random number θ , between 0 and 1,

t =−τln(1−θ) (22)

After the time t, Eqs. 17 are used: either the neutron is lost with probability q, or the neutron induces a fission
with probability p. This decision is determined by a random number. If fission is selected, the number of
emitted neutrons is sampled from the probability distribution, Cν . The times of each event are recorded.

5 Detection of neutrons

We have so far focused our attention on the internal neutron population. However, we are also interested
in the detection of neutrons by our detectors. Every time a neutron is lost ( floss in Eq. 8 and Eq. 17), the
algorithm will decide whether the lost neutron is detected. The detection probability of a lost neutron is ε .
1− ε represents the probability for a lost neutron to go undetected.

For thermal neutron detection, it often takes times of the order of microseconds for fast neutrons to
thermalize. While we could in principle include a delay between the last neutron interaction in the system
and its detection using a thermalization time constant, we will consider here that neutrons are immediately
detected after their last interaction in the material. This is a reasonable approximation for fast neutron
detectors.
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6 Reconstruction of neutron and fission populations

For fission chains initiated by single neutrons, the evolutions of the populations of internal neutrons, external
neutrons and fissions as a function of time are given analytically in Ref. [2]. To briefly summarize, the fission
chain distribution Pk,m,s (t) tracks the populations of internal neutrons k , of neutrons that have escaped from
the evolving chain m, and of fissions s, starting with a fission chain initiated by a single neutron. Taking
derivatives with respect to x, y and z of its generating function

f (t,x,y,z) =
∞∑

k=0

∞∑
m=0

∞∑
s=0

Pk,m,s (t)xkymzs, (23)

and setting the different population variables to unity, we can obtain the moments of the different popula-
tions.

For instance, the first 3 combinatorial moments of the internal neutron population are given by

∂ f
∂x

= e−αt

1
2

∂ 2 f
∂x2 =

M−1
ν̄

ν2e−αt (1− e−αt)
1
3!

∂ 3 f
∂x3 =

(
M−1

ν̄
ν2

)2

e−αt (1−2e−αt + e−2αt)+ 1
2

M−1
ν̄

ν3e−αt (1− e−2αt)
(24)

where y and z were set to 1.
To check the equations against our code, we ran a Monte-Carlo simulation of a large number of fission

chains, and kept track of the number of internal neutrons in the system as a function of time. The simu-
lated system was a random source emitting a single neutron at a time, the multiplying isotope was 235U, it
multiplied with a multiplication of M=10. The distribution of numbers of fission neutrons for the induced
fission of 235U was coming from nuclear data evaluated at 1 MeV. The average time τ it takes for a neutron
to disappear in the medium was set to 10 ns.

The red markers with error bars in Fig. 1 shows the results of this simulation along with the moments
given by the above Eqs. 24 in green. We observe that the analytical equations precisely track the Monte-
Carlo results.

As for the external neutron population, that is the population of neutrons that are detected, the first 3
combinatorial moments of that neutron population are

∂ f
∂y

= qM
(
1− e−αt)

1
2

∂ 2 f
∂y2 = (qM)2 M−1

ν̄
ν2
(
1−2αte−αt − e−2αt)

1
3!

∂ 3 f
∂y3 =

1
2
(qM)3 M−1

ν̄
ν3
(
2+(3−6αt)e−αt −6e−2αt + e−3αt)

+(qM)3
(

M−1
ν̄

ν2

)2(
2−
(

2(αt)2 +2αt−1
)

e−αt − (2+4αt)e−2αt − e−3αt
)

(25)
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Figure 1: Time evolution of the internal neutron population with its 3 first moments. The Monte-Carlo
simulation was a random source emitting single neutrons, the multiplying isotope was 235U of multipli-
cation 10. The nuclear data for the induced fission of 235U were evaluated at 1 MeV. τ=10 ns, source
strength=1000 neutrons/sec, data time=12 hours.

Fig. 2 shows the moments given by the above Eqs. 25, along with the Monte-Carlo simulation results in red.
A detection efficiency of 100% was used for both the simulation and the equations. Again, the analytical
equations track the Monte-Carlo results within the uncertainty. In the first quadrant of Fig. 2, it is interesting
to note the lonely track: a particularly large fission chain produced a huge fluctuation in terms of numbers
of neutrons detected.

Lastly, the first 3 combinatorial moments of the fission population, i.e. the number of fissions, are given
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Figure 2: Time evolution of the external neutron population with its 3 first moments. The Monte-Carlo
simulation was a random source emitting single neutrons, the multiplying isotope was 235U of multiplication
10. The nuclear data for the induced fission of 235U were evaluated at 1 MeV. τ=10 ns, detection efficiency
ε=100%, source strength=1000 neutrons/sec, data time=12 hours.

by these 3 equations:

∂ f
∂ z

= M
(
1− e−αt)

1
2

∂ 2 f
∂ z2 =

(
M−1

ν̄

)2 M−1
ν̄

ν2
(
1−2αte−αt − e−2αt)+(M−1

ν̄

)2

ν̄
(
1− e−αt −αte−αt)

1
3!

∂ 3 f
∂ z3 =

(
M−1

ν̄

)3

ν2
(
1−2αte−αt − e−2αt)+(M−1

ν̄

)3

ν̄
2 (1− e−αt)(1+αt +

1
2
(αt)2

)
+

(
M−1

ν̄

)3

(M−1)ν2

(
3−3e−2αt −2αte−2αt −4αte−αt −2(αt)2 e−αt

)
+

(
M−1

ν̄

)3 M−1
ν̄

ν3

(
1+

1
2

e−3αt −3e−2αt +
3
2

e−αt −3αte−αt
)

+

(
M−1

ν̄

)3(M−1
ν̄

ν2

)2(
2− e−3αt −2e−2αt −4αte−2αt + e−αt −2αte−αt −2(αt)2 e−αt

)
(26)

Fig. 3 shows the simulation results in red along with the moments given by the Eqs. 26 in green. Again, the
analytical equations track the Monte-Carlo results.
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Figure 3: Time evolution of the fission population with its 3 first moments. The Monte-Carlo simulation was
a random source emitting single neutrons, the multiplying isotope was 235U of multiplication 10. The nuclear
data for the induced fission of 235U were evaluated at 1 MeV. τ=10 ns, source strength=1000 neutrons/sec,
data time=12 hours.
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One can also calculate correlations between different populations of the time-evolving fission chain. The
moments of the correlated internal neutron and fission population are

∂ 2 f
∂x∂ z

= (M−1)αte−αt +2
(

M−1
ν̄

)2

ν2
(
e−2αt +αte−αt − e−αt)

1
2

∂ 3 f
∂x2∂ z

=

(
M−1

ν̄

)
ν2e−αt (1− e−αt)+(M−1

ν̄

)2

ν̄ν2e−αt (1+αt− e−αt −2αte−αt)
+3
(

M−1
ν̄

)2

ν3e−αt (0.5− e−αt +0.5e−2αt)
+

(
M−1

ν̄

)3

ν
2
2 e−αt (2αt−1+4e−αt −4αte−αt −3e−2αt)

1
2

∂ 3 f
∂x∂ z2 = (M−1)2 e−αt

[
(αt)2

2
+

(
M−1

ν̄

)
D2
(
2−2e−αt +αt (αt−2)

)]

+
1
2

e−αt
(

M−1
ν̄

)2

ν̄

[
4D2

(
αt−1+ e−αt)+3D3

(
M−1

ν̄

)(
−e−2αt +4e−αt +2αt−3

)
+2D2ν2

(
M−1

ν̄

)2 (
3e−2αt +8αte−αt −3+2αt (αt−1)

)
+2
(

M−1
ν̄

)
ν2
(
6e−αt +4αte−αt −6+αt (2+αt)

)]
(27)

Fig. 4 shows the simulation results in red along with the moments given by Eqs. 27 in green.
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Figure 4: Time evolution of the correlated internal neutron population and fission population. The Monte-
Carlo simulation was a random source emitting single neutrons, the multiplying isotope was 235U of multi-
plication 10. The nuclear data for the induced fission of 235U were evaluated at 1 MeV. τ=10 ns, 1000 neu-
trons/sec, data time=12 hours.
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The moments of the correlated internal neutron and external neutron populations are

∂ 2 f
∂x∂y

= 2
(

M−M−1
ν̄

)
(M−1)D2

(
(αt−1)e−αt + e−2αt)

1
2

∂ 3 f
∂x2∂y

=

(
M−M−1

ν̄

)
((M−1)D2)

2 ((2αt−1)e−αt +4(1−αt)e−2αt −3e−3αt)
+

3
2

(
M−M−1

ν̄

)
(M−1)D3

(
e−αt −2e−2αt + e−3αt)

1
2

∂ 3 f
∂x∂y2 = 2

(
M−M−1

ν̄

)2

((M−1)D2)
2
[(

(αt)2−αt− 3
2

)
e−αt +4αte−2αt +

3
2

e−3αt
]

+
3
2

(
M−M−1

ν̄

)2

(M−1)D3
(
(2αt−3)e−αt +4e−2αt − e−3αt)

(28)

Fig. 5 shows the simulation results in red along with the moments given by Eqs. 28 in green.
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Figure 5: Time evolution of the correlated internal neutron population and external neutron population. The
Monte-Carlo simulation was a random source emitting single neutrons, the multiplying isotope was 235U of
multiplication 10. The nuclear data for the induced fission of 235U were evaluated at 1 MeV. τ=10 ns, source
strength=1000 neutrons/sec, data time=12 hours.
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The moments of the correlated external neutron and fission populations are

∂ 2 f
∂y∂ z

= 2qM
(

M−1
ν̄

)2

ν2
(
1−2αte−αt − e−2αt)+qM (M−1)

(
1− e−αt −αte−αt)

1
2

∂ 3 f
∂y2∂ z

= 3(qM)2
(

M−1
ν̄

)3

ν
2
2

((
1−2αt−2(αt)2

)
e−αt − (4αt +2)e−2αt +2− e−3αt

)

+(qM)2
(

M−1
ν̄

)2

ν2ν̄

(
3−
(

2(αt)2 +4αt
)

e−αt − (2αt +3)e−2αt
)

+
3
2
(qM)2

(
M−1

ν̄

)2

ν3
(
(3−6αt)e−αt −6e−2αt + e−3αt +2

)

+(qM)2 M−1
ν̄

ν2
(
1−2αte−αt − e−2αt)

1
2

∂ 3 f
∂y∂ z2 =−6qM

(
M−1

ν̄

)2(M−1
ν̄

ν2

)2(1
2

e−3αt +(1+2αt)e−2αt +

(
(αt)2 +αt− 1

2

)
e−αt −1

)

+3qM
(

M−1
ν̄

)2 M−1
ν̄

ν3

(
1
2

e−3αt −3e−2αt −
(

3αt− 3
2

)
e−αt +1

)

−2qM
(

M−1
ν̄

)3

ν̄ν2

(
(2αt +3)e−2αt +

(
2(αt)2 +4αt

)
e−αt −3

)

−2qM
(

M−1
ν̄

)2

ν2
(
e−2αt +2αte−αt −1

)

−qM
(

M−1
ν̄

)2

ν̄
2
((

1
2
(αt)2 +αt +1

)
e−αt −1

)

(29)

Fig. 6 shows the simulation results in red along with the moments given by Eqs. 29 in green. One should
point out that due to what appears to be computer memory limitations, the multiplication was not set to 10
in this case, but to 5.
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Figure 6: Time evolution of the correlated external neutron population and fission population. The Monte-
Carlo simulation was a random source emitting single neutrons, the multiplying isotope was 235U of mul-
tiplication 5. The nuclear data for the induced fission of 235U were evaluated at 1 MeV. τ=10 ns, source
strength=1000 neutrons/sec, data time=12 hours.

7 Conclusion

Starting from the rate equation describing the time evolution of neutron populations, we developed an al-
gorithm to simulate fission chains. The algorithm correctly reproduced the moments of three different
populations taken individually: the internal neutron population, the external neutron population, and the
fission population; as well as moments of two correlated populations.
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A Internal neutron population

Ref. [2] lists the differential equations for the populations of internal neutrons, external neutrons, and fis-
sions. These differential equations were solved numerically with two independent codes: Mathematica [3]
and a solver due to one of the co-authors M. Prasad. In the next 3 sections, the numerical solutions due to
M. Prasad are shown in red against the solutions obtained by Monte-Carlo in blue.
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Figure 7: Distribution Pν of internal neutrons. The Monte-Carlo simulation (blue) was a random source
emitting single neutrons, the multiplying isotope was 235U of multiplication 10. The nuclear data for
the induced fission of 235U were evaluated at 1 MeV. τ=10 ns, source strength=1000 neutrons/sec, data
time=12 hours. In red, M. Prasad’s numerical solution to differential equation in Ref. [2].
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B External neutron population
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Figure 8: Distribution Pν of external neutrons. The Monte-Carlo simulation (blue) was a random source
emitting single neutrons, the multiplying isotope was 235U of multiplication 10. The nuclear data for
the induced fission of 235U were evaluated at 1 MeV. τ=10 ns, source strength=1000 neutrons/sec, data
time=12 hours. In red, M. Prasad’s numerical solution to differential equation in Ref. [2].
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C Fission population
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Figure 9: Distribution Pν of number of fissions. The Monte-Carlo simulation was a random source emitting
single neutrons, the multiplying isotope was 235U of multiplication 10. The nuclear data for the induced
fission of 235U were evaluated at 1 MeV. τ=10 ns, source strength=1000 neutrons/sec, data time=12 hours.
In red, Mathematica’s [3] numerical solution to differential equation in Ref. [2].
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