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Abstract—An unscented Kalman filter (UKF) for geoacoustic
inversion using scalar and vector sound fields created by a
passing ship is discussed in this paper. The continuous sound field
emitted by a ship of opportunity is processed by the sequential
filtering technique to estimate slowly changing environmental
properties along the source range. The inversion problem is
solved by the UKF with a random-walk parameter model, which
is expected to perform well when dealing with highly nonlinear
problems. Synthetic geoacoustic inversions are performed using
multi-frequency pressure, vertical particle velocity and waveguide
impedance (a ratio between pressure and vertical particle ve-
locity) data for the geoacoustic model of a mud environment
offshore at the mouth of the Amazon river in Brazil (CANOGA
12). For the preliminary tests, the sound source is composed of a
flat spectrum. Numerical results demonstrate that the sequential
filtering technique is capable of estimating the evolution of
environmental properties along the source range. In practice,
ship data have complex time-varying spectral characteristics that
can greatly limit the accuracy of broadband or multi-frequency
passive applications. Since the vertical waveguide impedance
is independent of the source spectral level, it is preferred for
environmental characterization by the sound field generated from
a ship of opportunity. Because of this independence property, the
vertical waveguide impedance is expected to yield a more reliable
inversion than that of pressure or vertical particle velocity field.

I. INTRODUCTION

The capacity of a vector sensor in simultaneously measuring
the scalar and vector sound fields at the same point of a
waveguide [1] makes it is possible to use the relationship
between them for geoacoustic inversion, which may be in-
dependent of source characteristics [2]. The vertical wave-
guide impedance is a ratio of pressure and vertical particle
velocity and demonstrated to be source spectrum independent
but highly correlated with environmental properties [3]. Such
impedance is emphasized here for geoacoustic inversion using
source of opportunity, e.g., surface ship.

Geoacoustic inverse problem is usually high dimen-
sional and non-linear problem and solved by matched-field-
processing (MFP) technique [4]–[6] with global or local op-
timization algorithms [7]–[9], to estimate the range-averaged
properties of the waveguide over different scales.
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Here, an unscented Kalman filter (UKF) [10] is used to
estimate environmental properties by observing the range vari-
ations of scalar and vector sound fields created by a moving
ship. To take advantage of the continuous ship sound field
along range, the inverse problem is solved by a random walk
parameter model [11], which formulate the environmental
parameters in a recursive state-space form along source range.
For each range point, their values are estimated through
sequentially filtering ship sound field data.

Synthetic tests for geoacoustic inversion are performed for
the geoacoustic model of a mud environment offshore at the
mouth of the Amazon river in Brazil (CANOGA 12) [12]
using multi-frequency pressure, vertical particle velocity and
waveguide impedance data. For the preliminary tests, the
sound source is composed of a flat spectrum.

The following of the paper is organized as: Section II
briefly introduces the scalar and vector acoustical observables.
Sequential unscented Kalman filter is presented in Sec. III.
Synthetic geoacoustic inversion tests are given in Sec. IV.
Sec. V is the conclusions.

II. SCALAR AND VECTOR ACOUSTICAL OBSERVABLES

The received acoustic complex pressure field P and vertical
particle velocity Vz at ranges r and generated by an omni-
directional point source at depth z0 emitting a single tone at
angular frequency of ω, received at depth z can be respectively
expressed as [13]

P (ω, r, z) = πiS (ω)
∑
l

φl (z0)φl (z)H
(1)
0 (ξlr) (1)

and

Vz (ω, r, z) =
−1

iωρ

∂

∂z
P (ω, r, z)

=
iS (ω)

ωρ

∑
l

κl,zφl (z0)φ
′

l (z)H
(1)
0 (ξlr)(2)

where
• S (ω) is the source amplitude at ω
• ρ is the medium density
• φl and ξl represent the modal function and eigenvalue for

the lth mode
• φ

′

l is the derivative of φl with respect to z
• H

(1)
0 is the zero order Hankel function of the first kind



Table I: Scenario geoacoustic model for the CANOGA 12
experiment area.

Water column depth (dw) 13.5 m
thickness (h) 2.0 m

Sediment density (ρsed) 1.27 g/cm3

sound speed (Csed) 1450 m/s
attenuation (αsed) 0.2 dB/λ
density (ρbot) 1.6 g/cm3

Half space sound speed (Cbot) 1530 m/s
attenuation (αbot) 0.25 dB/λ

• κl,z is the vertical wavenumber for the lth mode
For clarity, the dependence term (ω, r, z) of sound fields is
omitted in the following text.

Simply, the vertical waveguide impedance component, being
the ratio between P and Vz can be written as:

Zz =
P

Vz
=

−iωρ
∑

l φl (z0)φl (z)H
(1)
0 (ξlr)∑M

m κm,zφm (z0)φ
′
m (z)H

(1)
0 (ξmr)

. (3)

Due the ratio operation, source term effect S (ω) presents
in Eqs. 1 and 2 is eliminated. Consequently, the Zz is
source spectrum independent but its range variation is highly
correlated with environmental terms, e.g., H(1)

0 (ξlr). Z is
demonstrated to be more sensitive to geoacoustic parameters
than that of P and Vz , especially for bottom densities [3].
These advantages make Zz a valuable physical variable to be
observed for passive environmental inversion.

III. RANDOM WALK PARAMETER MODEL

The Kalman filter [14] usually estimates unknown variables
by observing a series of noisy measurements in a two-step pro-
cess: prediction and updation (or correction). It first estimates
the current state variables as well as their uncertainties and
then used in the second step with new measurement to update
the estimates. The filter can operate recursively to produce a
statistically optimal estimate of the underlying system state.
In other words, this filter can intrinsically run on continuous
data using only the current inputs and previously estimation.

In our model, the state vector m contains environmental
parameters, and the measurements Y are the Zz for several
frequencies at different ranges:

mrk = F
(
mrk−1

)
+ W (rk−1) , (4)

Y (rk) = J
(
mrk−1

, f
)
+ V (rk−1) , (5)

where f is a vector of frequency bins observed, W and V
are zero-mean Gaussian noise terms with noise covariances
of Rww and Rvv , respectively. The model becomes a random
model when F is identity in Eq. 4. The acoustic propagation
model is embedded in measurement function J, which outputs
the Zg at different range for the observed frequencies with
environmental properties contained in state vector m.
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Figure 1: Predicted P , Vz and Zz for the geoacoustic model
of CANOGA 12 environmental model.

The UKF is used in paper due to its robustness for high
nonlinear problems, which uses an unscented transform to first
pick a minimal set of sample points around the mean and
then propagates these samples through non-linear functions to
recover the true mean and covariance of the estimate. Besides,
the UKF does not require the calculation of Jacobians, which
are particular difficult for complex sound propagation model
and need to be calculated numerically as in extended Kalman
filter [15] that may give poor performance [10].

IV. NUMERICAL SIMULATIONS FOR GEOACOUSTIC
INVERSION

Numerical simulations were conducted for environmental
model of a mud environment offshore at the mouth of the
Amazon river in Brazil (CANOGA 12).Based on prior infor-
mation, the environmental parameters of the experimental area
are given in Tab. I. Figure 1 is the predicted P , Vz and Zz for
the CANOGA 12 geoacoustic model for a sound frequency of
150 Hz, with source (ds) and receiver (dr) depths set as 0.8 m
and 4.0 m, respectively. Their range variations are dependent
on the waveguide and are observed here by the sequential UKF
for environmental characterization.

For the preliminary simulations, acoustic data of six fre-
quencies (125 Hz, 150 Hz, 175 Hz, 200 Hz, 225 Hz and 250
Hz) are used. The filter analyses acoustical data from 23 m to
73 m and with new data input for each 1 m-increment. The
bottom attenuation were not considered due to their mirror
effects on the low-frequency sound fields in this very shallow
waveguide. However, geometrical parameters of water depth
dw, the source (ds) and receiver (dr) depth are included.

In the test, synthetic P , Vz and Zz data were first generated
by the UKF simulator [16] with these parameters in Tab. I, and
UKF estimator is then used to recover these parameters change
along range. The initial state for the UKF estimator is slightly
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Figure 2: Tracked results for environmental parameters using
P , Vz and Zz , black solid line is the true values for each
parameter, green star are the result obtained from P , red
dashed line for Vz and blue dash-dotted line for Zz .

30 40 50 60 70
0

0.005

0.01

0.015

Range (m)

|P
| 1

2
5

30 40 50 60 70
0

0.005

0.01

0.015

Range (m)

|P
| 1

5
0

30 40 50 60 70
0

0.005

0.01

0.015

Range (m)

|P
| 1

7
5

30 40 50 60 70
0

0.005

0.01

0.015

Range (m)

|P
| 2

0
0

30 40 50 60 70
0

0.005

0.01

0.015

Range (m)

|P
| 2

2
5

30 40 50 60 70
0

0.005

0.01

0.015

Range (m)

|P
| 2

5
0

Figure 3: A comparison between the measurements (blue)
and predictions by the UKF (red dashed line) for different
frequency P .

different from that of simulator. The Rww and Rvv are the same
for P , Vz and Zz data. For easiest case of estimating only one
parameter and with other parameters fixed, the UKF can easily
find their true values (not shown here), the results presented
here are obtained using UKF to simultaneously estimate all
these parameters.
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Figure 4: A comparison between the measurements (blue)
and predictions by the UKF (red dashed line) for different
frequency Vz .
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Figure 5: A comparison between the measurements (blue)
and predictions by the UKF (red dashed line) for different
frequency Zz .

Figure 2 gives the results obtained from P , Vz and Zz

acoustic data. If only look at the Fig. 2, one cannot say the
UKF was trying to estimate these parameters values, especially
for the results from P and Vz . However, the results from
Zz show that the UKF was trying to find these parameter
values, at least for dw, ρsed, ρbot and dr at the beginning.
This may due to the very small covariance (1e-12) assigned
for Rvv , so the UKF more believes previous estimates than the
measurements and therefore only subtle corrections are made
for current estimate.

Figures 3 and 4 give the comparisons between UKF pre-



dictions and measurements for P and Vz , respectively. The
already good matches between predictions and measurement
along range maybe give the reason why the UKF can not really
update the estimates. However, when looking at Fig. 5, the
UKF was trying to match measurements step by step before
35 m, especially for the bottom densities which are typically
insensitive parameters for traditionally MFP techniques. After
35 m, the predictions and measurements agree well with each
other and is believed the reason why the UKF stopped to
converge as shown in Fig. 2. These results suggests more
tests need to be conducted to test the effects of processing
and measurement noise covariance matrix on the performance
of UKF and the used for real ship noise data processing.

V. CONCLUSION

This paper introduced a sequential UKF for passive geo-
acoustic inversion using pressure and vector noise fields due
to ship of opportunity. This filter analyses the range variations
of different acoustical quantities for environmental character-
ization in shallow water. Numerical results demonstrated that
the sequential filtering technique performs better when applied
to Zz than that of P and Vz treated individually, especially
for the bottom densities. In practice, ship data have complex
time-varying spectral characteristics [17] that can introduce
unexpected measurement noise to the UKF that can greatly
degrade the accuracy of inversion results using P or Vz only.
Due to the independent of the source spectral level for Zz ,
it is preferred to be used for environmental characterization
using the sound field generated from a ship of opportunity
and expected to yield a more reliable inversion than that of P
or Vz .
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elles, Rio de Janeiro, Brazil, Tech. rep., 2012.

[13] L. M. Brekhovskikh and Yu. P. Lysanov. Fundamentals of Ocean
Acoustics, volume 116. Springer, 3rd edition, 2003.

[14] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” ASME J. Basic Eng. 82, 35–45, 1960.

[15] S. J. Julier and J. K. Uhlmann, “A new extension of the Kalman filter to
nonlinear systems,” Int. Symp. Aerospace/Defense Sensing, Simul. and
Controls 3., 1997.

[16] James V. Candy, “Model-based signal processing,” Wiley. com., 2005.
[17] P. T. Arveson and D. J. Vendittis, “Radiated noise characteristics of a

modern cargo ship,” J. Acoust. Soc. Am. 107, 118–129, 2000.

bledsoe2
Typewritten Text
Prepared by LLNL under Contract DE-AC52-07NA27344.




