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Abstract

In [2], we proposed a new level-set model for representing multimaterial flows
in multiple space dimensions. Rather than associating each level-set function with
the boundary of a material, the new model associates each level-set function with
a pair of materials and the interface that separates them. In this paper, we extend
the model to represent geometries with non-smooth boundaries. The model uses
multiple level-set functions to describe the shape boundary, typically with one level-
set function per smooth boundary segment. Sign information is collected from all
level-set functions and a voting algorithm is used to determine the interior /exterior
of the geometric shape. The model is well suited for representing boundaries with
singularities; it offers significant improvement over standard level-set approaches,
both in shape preservation and area conservation; and it eliminates the need for
costly redistancing of the level-set function. Numerical examples illustrate the
superior performance of the proposed model.
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1 Introduction

Level-set functions are a convenient tool for modeling geometric regions, for example
identifying regions occupied by different materials in multimaterial flows, representing
the motion of solid geometrical objects in a prescribed flow field, or modeling deformable
bodies subject to exterior forces. The traditional approach associates each level-set func-
tion with a region. The boundary of the region is embedded as a zero level-curve of a
level-set function. The function takes on positive values in the interior of the region, and
negative values in the exterior. In this approach, the interior of each region is character-
ized by exactly one of the level-set functions being positive and all others negative. An
evolution equation governs the dynamics of the region, and the zero level-curve defines
the boundary location at all times.

This approach works reasonably well for smooth geometries. However, for geome-
tries with corners or other singularities, approximate numerical procedures introduce
numerical diffusion that tends to round off sharp corners in the level-set functions. In
multimaterial flows, this often creates ambiguities in material identification near material
triple junctions. In flows around non-smooth geometries, rounding off sharp corners often
introduces large errors in volume as well as inaccuracies in shape representation.

In order to counteract the effects of numerical diffusion, redistancing strategies have
been proposed [4]. Their implementation is largely driven by empirical experience. If used
too aggressively, redistancing has the tendency to spuriously displace the zero level curve;
if use too sparingly, it permits excessive amounts of numerical diffusion. Optimizing the
redistancing implementation is problem-dependent and oftentimes requires parameter
tuning. In the new level-set model, the functions are initially smooth and do not require
redistancing to restore this property.

In [2], we proposed a new level-set model for representing multimaterial flows, which
associates each level-set function with a pair of materials and the interface that separates
them. A voting algorithm collects sign information from all level-set functions and de-
termines material designation. This new approach offers a flexible tool for representing
complex configurations of materials. It is less prone to introducing ambiguities in ma-
terial identification and renders corrective measures such as reinitialization unnecessary.
Numerical results give ample evidence for the superior performance of this approach over
the standard approach.

In this paper, we extend the new approach to the representation of non-smooth ge-
ometries. Instead of attempting to describe the geometrical object by a single level-set
function whose zero level-curve coincides with its boundary, we use multiple level-set
functions to describe the smooth boundary segments. As with multimaterial flows, a
voting algorithm collects sign information from all level-set functions and determines the
interior/exterior of the geometrical shape. A simple projection algorithm may also be
used to construct a corresponding single level-set function from the multiple functions
(see Appendix).

This approach is vastly superior to the standard approach in representing sharp cor-
ners and other boundary singularities, and leads to greatly improved shape and volume
preservation. It also renders costly corrective measures, such as redistancing, unneces-
sary. In Section 2, we briefly discuss the new level-set model for multimaterial flows
and describe the extension of this algorithm to representation of non-smooth geometries.
We proceed by examples and illustrate, step by step, how the voting algorithm is imple-
mented and how the exterior /interior of the geometry is identified. Section 3 outlines our
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Figure 1: Y-junction schematic (left), zero curves of MLS functions (center), numerical
diffusion creates an indeterminate vacuum state (right).

testing strategy and numerical discretization. Results are presented in Section 4.

2 New Level-Set Model

2.1 Representing Multiple Materials

The traditional way for modeling multimaterial flows by level-set functions is to associate
material k£ with a level-set function, ¢y (z,t) so that
> (0 in material k

or(x,t) ¢ <0 outside material k (1)

= (0 on boundary of material k

In this model, material [ is identified uniquely by the state

or >0 , =k

While analytically this model represents a consistent picture, ambiguities may arise due
to approximate numerical procedures, where regions may not be claimed by any material
or are claimed by more than one material. A typical example involves material triple
junction (Figure 1).

In [2], we proposed a new level-set model, where level-set functions are defined through
material pairs. The level-set function ¢,, , corresponds to materials m and n and satisfies

(2)

€ material m = Oma(x,t) >0
(x,1) € material n = Oma(x,t) <0 (3)
along (m,n) interface = ¢pn(x,t) =0

If (x,t) is in a region not occupied by either material, the sign of ¢y, ,(x,t) is not con-
strained and may take on an arbitrary value.

As noted in [2], ¢pn(x,t) > 0 does not imply that (x,t) is occupied by material m,
only that it may be occupied by material m. The sign of ¢,, ,, can be viewed as a “negative
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vote”: ¢mn(x,t) > 0 rules out the possibility that (x,t) is occupied by material n. For
the latter to happen, ¢,,,(x,t) would have to be negative. The entire (m,n)-interface at
time ¢ is contained in the zero curve {x(t) : ¢ n(x,t) = 0}. The zero curve also contains
points not associated with the interface.

To determine which material actually occupies (x,t), sign information is collected
from all level set function, and a pairwise voting system is used:

> (0 = Material m receives one vote, Material n is ruled out

Gm.n(X, 1) { . . . .

<0 == Material n receives one vote, Material m is ruled out
Materials are identified by observing that, for M materials and M (M —1)/2 functions
initialized using (3), no material can receive more than M —1 votes and no two materials
can simultaneously receive M —1 votes. Therefore, the material which occupies (x,t)
receives exactly M —1 votes.

The new level set model is naturally suited to handle interface singularities, such as
sharp corners. It exhibits improved accuracy at material triple junctions without the need
for expensive reinitialization algorithms. While in theory, the pairwise identification of
interfaces requires O(M?) level-set functions to represent M materials, in practice far
fewer are actually needed. Savings are made by eliminating material pairs that do not
share an interface and by combining multiple level-set functions that coincide with each
other into a single level-set function.

2.2 Representing Geometrical Figures

In this section, we extend the new level-set model to track the location of moving objects.
The new model can accommodate geometries with boundary singularities, for example
corners, cusps, or changes in convexity. Such singularities are known to contribute to
poor shape preservation and poor volume conservation in standard level-set models. The
new model uses multiple smooth level-set functions as described below. Each level-set
function is assumed to obey an advection equation

o¢ +u(x,t)- V¢ = 0. (5)
ot

where u(x,t) is a prescribed velocity field. In examples, we consider u(x,t) corresponding
to solid body rotation as well as deformations that are arbitrarily large in size.

We proceed by examples of increasing complexity. For each example, we describe how
to set up multiple (smooth) level set functions, collect sign information from all functions
to construct a voting table, and use the table to identify the interior and exterior regions
of the given geometry.

Alternatively, the new model may be formulated in terms of geometric intersections
and unions. The standard single-function model may be recovered from the set of multiple
smooth functions using a simple projection algorithm. A detailed explanation of the
projection algorithm, including examples, is provided in the Appendix.



Triangle

We first consider the simple example of a triangle. We begin by partitioning the domain
into four regions, as illustrated in Figure 2. This partition is not unique, and many
options are available. We observe that region 4 coincides with the interior of the triangle
and regions 1, 2, and 3 with the exterior. Corresponding to each pair of regions, we define
six level-set functions, ¢, ,, where for systematic counting we always use m < n.

3

Figure 2: Domain partitioning for a triangle

We initialize ¢y, , in agreement with (3): it is positive in Region m, negative in Region
n, and is zero on the interface between them. In regions where the sign of ¢,,, is not
constrained, we extend its zero curve so that the function is as smooth as possible. We
illustrate one possible choice for the six functions in Figure 3. Here, and in all subsequent
schematics, the zero level-curve is plotted as a solid line where it represents an actual
interface between regions, and as a dashed line where it does not correspond to an actual
interface.

The sign information of each ¢,, ,, together with (4), enables us to establish whether
a given point is interior or exterior to the geometrical shape. The counting argument is
similar to the multimaterial setup: for a domain partitioned into M regions, the “winning”
region is the only region to receive exactly M —1 votes. In the present example, M = 4;
each region receives at most 3 votes, and only one region receives exactly 3 votes.

The algorithm is complete at this point: all regions are identified by the voting system,
and each region corresponds to either the interior or exterior of the geometry. However,
the algorithm is redundant; six level-set functions are used to describe the geometry,
but three functions are sufficient (see Figure 3). We next describe how functions can be
grouped together to eliminate redundancies.

We first observe that ¢, 2 and ¢; 4 may be initialized so they are identical. Since they
are evolved by the same rule, they will remain identical for all time. We may combine
them into a single function, ¢, and amend the voting system to reflect the fact that ¢,
has the “voting power” of the two functions ¢, 2 and ¢; 4:

>0 = Region 1 gets 2 votes
d1(x,t) (6)

<0 = Regions 2 and 4 get one vote each

Similarly, ¢23 and ¢34 may be combined into a single function, ¢, and ¢34 and -¢; 3
combined into ¢3. The amended voting system for all functions is summarized in Table
1.
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Figure 3: Level-set initialization for a triangle

Function  Sign Votes for Region

1 2 3 4

2 - - _

1 T S

+ - 2 - -

P2 N ] _ : 1

- - 5 -

¢3 i - :

Table 1: Voting system for 3 ILS functions to represent a triangle.

To determine if (x,t) is an interior or exterior point to the shape, we appeal to Table
1 and tally the total votes that each region receives. Denote by S; the sum of all the
votes that region ¢ receives and recall that, for this example, the “winning” region is the
one and only region that receives 3 votes. It then follows that S; — 3 is zero for some



region i and negative for all other 7. In particular, at point (x,t)
(i) If S4 —3 =0, (x,t) is in region 4, and is an interior point.
(i) If (S1—3)(S2 —3) (55 —3) = 0, (x,t) is in one of regions 1,2, or 3, and is an
exterior point.

More generally, for a domain partitioned into M regions, denote by I;,, the set of region
indices corresponding to interior regions, and by I, the set of indices corresponding
to exterior regions. For this example, I;, = {4} and I, = {1,2,3}. Then one of the
following mutually exclusive conditions holds:

H (Si — (M — 1)) =0 = (x,t) is an interior point.

iEIin

H (Si — (M — 1)) =0 = (x,t) is an exterior point.

\ iGIO1Lt

Zalesak Disk

This has been a popular example in the literature [1, 3, 6]. We construct the voting table
similar to the triangle example. Table 2 gives the final tally in concise form and is the
only table that is needed in order to implement the algorithm.

1 ' '

Figure 4: Domain partitioning for Zalesak disk

We begin by partitioning the domain into five regions, as illustrated in Figure 4.
Regions 2, 3, and 4 are interior, and Regions 1 and 5 are exterior. Other ways to form a
partition are possible.

As before, we define level-set functions corresponding to all possible regions pairs,
in this case ten functions. The functions are initialized according to (3), with voting
system given by (4) to identify regions. Figure 5 illustrates all level set functions ¢, ,,
1<m<n<5.

We next collapse the 10 functions to only 4 by identifying equivalencies (see Figure 5).
For instance, the signs and zero curves of ¢ 9, ¢13, ¢1.4, and ¢y 5 coincide, and we may
initialize them to be identical. We combine them into a single function ¢;, and combine
their individual votes in (3) into

(8)

>0 = Region 1 gets 4 votes
¢1 (X> t) .
<0 = Regions 2, 3, 4 and 5 get one vote each

7
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Figure 5: Level set initialization for Zalesak disk and grouping of redundant functions.
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Figure 6: Initial smooth level set functions for Zalesak disk.

Similarly, ¢24 and ¢, 5 are combined into a single function ¢,, and ¢34 and ¢35 are
combined into ¢3. For uniformity of notation, we rename ¢4 5 as ¢4 and retain its original

voting rule.

One function, ¢ 3, still needs to be accounted for. Since Regions 2 and 3 do not share
a boundary in this example, the zero curve of ¢, 3 is unconstrained; the function need
only be positive in Region 2 and negative in Region 3. We have some freedom here, and
choose to initialize ¢, 3 so that it coincides with ¢4 and ¢, 5. We include it in the group
represented by ¢, and amend the voting system of ¢, to reflect that. (We could have
incorporated ¢35 with ¢35 and use —¢q 3 for sign consistency). The votes for each of the
combined functions is given in Table 2.

Finally, to determine if a point is interior or exterior to the shape, we use (7), with



Function  Sign Votes for Region

2 3 4 5

4 - - - _

o1 i _ S

- 3 _ N .

é2 i _ _ S

- - P - -

&3 i _ _ : -
T

Table 2: Voting system for 4 smooth functions to represent the Zalesak disk.

M =5, I, = {2,3,4}, and L, = {1,5}.



5-Point Star

We walk through setting up the voting table one final time for the example of a 5-point
star. We partition the domain into 11 regions, as illustrated in Figure 7. This partition
produces 55 region pairs and 55 total level-set functions ¢,,,, 1 < m < n < 11. Five
level-set functions are sufficient to represent the boundary of the star. We describe below
how to collapse the 55 functions down to five functions, and amend the voting procedure
to reflect that. The process of eliminating redundancies is not unique and can be carried
out in any number of ways.

1A2 .
A TR AR

10>< 9

Figure 7: Domain partitioning for a 5-pointed star
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Figure 8: Initial smooth level set functions for 5-point star.

Consider Region 1 and all Region pairs (1,n), 2 < n < 11. Region 1 has three smooth
boundary segments corresponding to three types of boundaries (see Figure 9): (i) shared
with Region 2 and Region 7; (i) shared with Region 6; and (iii) shared with Region 5.
The functions @19, @17, ¢16, and ¢; 5 represent actual region interfaces. Six regions do
not share an interface with Region 1: Regions 3, 4, 8, 9, 10, and 11. To maintain the
integrity of the counting algorithm, it is necessary to account for those too. We have ad-
ditional freedom in initializing these functions, as their zero curves may be placed based
on convenience.

We group level-set functions ¢, , as follows:

(i) The same zero curve that identifies the Region-(1,2) interface also identifies the
Region-(1,7) interface. We use this to initialize ¢12 = ¢1 7.
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The same zero curve also separates Region 1 from Regions 3, 8, 9, 10, and 11, all
of which do not share an interface with Region 1. We choose to initialize ¢; 3, ¢1 s,
®1.9, 01,10, and @1 11 to be equal. Other choices are possible.

(17) ¢16 is initialized so that its zero curve identifies the region-(1,6) interface.

The zero curve also separates Region 1 and Region 4. We choose to initialize
$14 = ¢16. (Again, the zero curve is unconstrained by (3) and we have some
freedom in this decision.)

(74i) Finally, ¢1 5 is initialized so that its zero curve identifies the (1,5)-interface.

All pairs involving Region 1 are accounted for, and all corresponding level-set functions
are smooth.

’ ~
' 8 N
11 ™
1 ~
/ 3 5 a
1 “‘
10 9 ~
1 \\
1
) e
’ “~
1 ‘\
’ ~
1 ~\
. 4 .
r ~

Figure 9: Smooth zero curves representing the boundary of Region 1.

Now consider Region 2 and all region pairs (2,n), 3 < n < 11. Region 2 also has
three smooth boundary segments. One has already been accounted for in the Region 1
bookkeeping. The two that remain are (i) a boundary shared with Regions 3 and 8, and
(77) a boundary shared with Region 7 (see Figure 10).

Figure 10: Smooth zero curves representing the boundary of Region 2.

We group the level-set functions associated with Region 2:

(i) The same smooth zero curve identifies the region-(2,3) and region-(2,8) interface.
We initialize ¢g3 = ¢ 3.

11



The zero curve also separates Region 2 from regions 4, 6, 8, 9, 10, and 11. We
choose to initialize the corresponding level set functions to be identical.

(#7) The smooth zero curve identifies the region-(2,7) interface and initializes ¢ 7.

The curve also separates Region 2 from Region 5. We choose to initialize ¢y 5 = ¢ 7.

All region pairs involving Region 2 are now accounted for.

We repeat the grouping process region-by-region and summarize results in Table 3.
The left column corresponds to region pairs which share an interface. The right column
contains region pairs which do not share an interface and have unconstrained zero curves.
We refer to such functions as Tag-Alongs. All functions listed on the same line are
identical.

Region Region Interfaces Non-Interface Tag-Alongs
P12, P17 P13, P18, @195 1,10, P11
1 P16 P14
P15 -
9 P23, P28 G245 G265 P29, D210, P2,11
P27 P25
3 P34, P39 ®35, P36 375 310, P311
P38 -
A Pa5, Pa0 Pa6, Pa7, Pas, Pann
P -
5 P56 P57, P58, P59, D511
$s5,10 -
6 P6,11 P67, P68, P69, P10
7 P71 P18, G179, 97,10
8 Ps,11 P89, ¢s,10
9 Po,11 ®9,10
10 P10,11 -

Table 3: Region boundaries, organized into real interfaces and non-interface pairs. All
functions listed on the same line are set equal.

At this point, we have reduced the number of level-set functions from 55 down to 16.
The model can be reduced further. For instance, the level-set functions ¢;2, ¢17, 9611,
and ¢5 19 and all of their tag-alongs are identical; they may be grouped together into a
single function, ¢; (see Table 4 and Figure 8). When ¢, is positive, we consider each
function ¢,,, in Table 4 and assign Region m one vote. Similarly, when ¢, is negative,
each region n receives one vote. The votes from each of the 13 functions are tallied and
the voting power of ¢; is amended (see Table 5).

Similarly, we denote by ¢, the group of identical functions ¢9 3, ¢ s, 711 and ¢y 6 as
well as all their tag-alongs. We repeat the process for ¢3, ¢4 and ¢5, with each function

12



Real Region Interfaces Non-Interface Tag-Alongs

G12, P17 13, P18, P19, P110, P11
®6,11 G6,7, P68, D69, D610
®5,10 -

Table 4: The 13 identical level set functions, organized by type, that collapse to ¢;.

Votes for Region
2 3 4 5 6 7 8 9 10 11

¥y |7 - - - 1 5 - - - - -
— |- 1 1 - - - 2 2 2 3 2

Function  Sign

b1

Table 5: Voting system for ¢, in 5-point star example.

corresponding to one of the five edges of the star. The grouping for each function is
summarized in Table 6, and the amended voting algorithm is summarized in Table 7.

Function Real Region Interfaces Non-Interface Tag-Alongs
$12, P17 P13, P18, P19, D110, P111
1 P11 P67, P68, P6,9: 96,10
®s,10 -
P23, P28 P24, P26, P29, D210, P2.11
P2 d711 P78, P79, P7.10
®1,6 ®1,4
P34, P39 P35, P36, P37, P310, P3.11
3 P27 P25
®g,11 ?8.9, Ps,10
Pa5, Pa,10 Pa6y Pa7, Pag, Pan
P4 P38 -
®9,11 ®9,10
®5.6 P57, P58, P59, 511
b5 Do -
®10,11 -
—P15 -

Table 6: 55 original level set functions, organized by type, and collapsed to 5 functions.

Finally, to determine if a point is interior or exterior to the shape, we use (7) with
M =11, I, = {1,2,3,4,5}, and 1I,,, = {6,7,8,9,10,11}.

We conclude by emphasizing again that the only table that is required for shape
identification is Table 7. All other tables are purely illustrative of its construction.
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Function Sign Votes for Region
2 3 4 5 6 7 8 9 10 11
+ 7 - - - 1 5 - - - §
" - -1 1 - - - 2 2 2 3 2
¢ + 2 7 - - - _ 4 _ _ B _
2 - - 1 2 - 2 - 2 2 2 2
¢ + - 2 7 - - - _ 3 _ _ _
’ - - - -1 2 1 2 - 2 2 2
+ - -1 6 - - - -2 - -
o - - - - - 1 1 1 2 - 2 2
+ - - - 1 6 - - - - -
b5 N S 2

Table 7: Voting table for 5-point star example.

3 Numerical Preliminaries

3.1 Quantification of Error

Let deract be the (single) level set function which identifies the analytic boundary of some
geometry. And let ®" = {¢7,..., 0%} give the set of computed level set functions at
some discrete time n for the new model. We denote the analytic area of the geometric
object by

A= dA
/SZH(¢ezact) )

and the computed area at time level n by

A”:/H((P”)dA
Q
with
Aoz/H(Q)O)dA.
Q

denoting the computed area at the initial time. We measure the error using the corre-
sponding metrics:

(i) Ly error: This measures the discrepancy between the computed and exact geometry
boundary. We use the formulation in [1, 3]:

Bi = [ |H(Gunm) — H@]A. )

(ii) Relative error in computed area compared to exact area:

A — A
eract =~ (10)

exact A )

14



(iii) Relative error in computed area compared to initial computed area:

. Ar — AO
Ediscrete = T’ (11)

Integrals are computed over the full computational domain €2 in a manner similar to
[1]. Each grid cell is partitioned into 100 x 100 sub-grid cells, with ®" interpolated
onto each sub-grid cell center. The voting algorithm is used to determine if a sub-grid
cell is inside/outside the given geometry. The Heaviside function H(®™) is computed as
constant in each sub-grid cell i:

1 , sub-grid cell ¢ inside geometry

e - {

0 , sub-grid cell 7 outside geometry '

Integration for a single mesh cell amounts to summing over each sub-cell contribution .

3.2 Flow Field Examples

We present numerical examples of two-dimensional solid and deformable geometries em-
bedded in prescribed velocity fields. All level set functions are evolved by solving (5)
with the underlying velocity field u(x,y,t) = (u,v)(x,y,t) specified for each test. The
following velocity fields are considered:

(i) Solid Rotation: The velocity field corresponds to a constant-vorticity flow cen-
tered at (1/2,1/2):
u(z,y) = (7/314)(0.5 —y)
v(z,y) = (7/314)(x —0.5)

A particle completes one full rotation every ¢t = 628 time units.

(12)

(ii) Single Vortex: The velocity field ug(z,y) = (uo, vo)(z,y) corresponds to a vortex
centered at (1/2,1/2):

u(z,y) =  cos(mt/T)sin(rz) C(.)S(ﬂ'y) (13)
v(xz,y) = —cos(mt/T)cos(mz)sin(mwy)

where T gives the final time. The vortex field is counterclockwise for the first 7'/2
time units and clockwise for the last 7'/2 time units. This reverses the deformation
on the geometry in the flow and returns it to its original state in 7" time units.

3.3 Numerical Solver Details

We use a second-order flux-corrected upwind scheme with double minmod flux limiter [5],
and employ dimension by dimension splitting. All the tests are computed on a unit box,
using an N x N square mesh and solid wall boundary conditions. The specified velocity
fields have zero normal velocity at the boundaries.

Results from the new model are compared to the standard single-function level set
model. Wherever indicated, we use a redistancing scheme to restore smoothness to the

15



level-set functions. This step is necessary in order to reduce the effects of numerical
diffusion on the standard level set model. The new model performs very well without
redistancing, and has little to gain from incorporating a redistancing step. We employ
a second-order-accurate version of the Sussman-Fatemi scheme [3] at each time step.
Two iterations of redistancing are performed using a CFL number of 0.2 to compute
pseudo-timesteps.

4 Numerical Results

4.1 Zalesak Disk

Following [1], we consider a disk of radius 0.15 centered at (0.5,0.75), with a notch of
width 0.05 and length of 0.25. The area of the disk is 5.822e-2. We have implemented
the new level-set model, using four level-set functions as described in section 2.2, with
initial level set contours given in Figure 6 and voting table given in Table 2.

Solid Rotation:
Figure 11 compares the final location of the disk to the analytic solution after one, two,
and three rotations on a grid of 100 x 100 cells. The top row corresponds to the standard
level set model with redistancing. The shaded region is a filled contour of H(®") evaluated
at each cell center. Round-off at the corners of the notch becomes more prominent and
causes the solution to deteriorate with each rotation. Redistancing is necessary in order
to be able to resolve the notch, but doing so results in displacement and distortion of
the zero curve over time. By comparison, results by the new model (bottom row) are in
near-perfect agreement with the analytic solution, with little difference is observed from
one rotation to the next. Redistancing is not required for the new model, and is not used.
Tables 8 and 9 summarize the error in the boundary location after one, two, and
three rotations under grid resolution. We observe that while redistancing leads to im-
provements in overall disk area computed by the standard scheme, the shape of the disk
is not accurate, and is visibly distorted. The new level-set model does an excellent job
preserving sharp corners, and gives excellent agreement with the exact solution both in
terms of area preservation and shape preservation. Since the level-set functions in the new
model are smooth, there is no need, and indeed little to be gained, from using redistancing.

Deformation by a single vortex:
Figure 12 shows the computed location of the disk at intermediate times t =0.5, 1, 2, 3,
3.5 and at final time T = 4 using the new level set model on a grid of 100 x 100 cells.
We compare the results by the level set models using the time-reversed single-vortex
flow field (13) with final time T = 4, both with and without redistancing. Figure 13 gives
the final locations of the disk on a 100 x 100 grid along with the analytic boundary. We
observe that without redistancing, the standard model is unable to represent adequately
the notch. Redistancing recovers the notch, but also displaces the zero curve. By contrast,
numerical diffusion has minimal effect on the new model. Computed results preserve the
boundary shape extremely well, both with and without redistancing.
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Figure 11: Location of Zalesak disk for solid rotation flow after 1, 2, and 3 revolutions.

Grid cells  Area % Area Change L; Error

50 5.484e-2 -5.81% 1.764e-1

One revolution 100 5.731e-2 -1.56% 3.245e-2
200 5.821e-2 -0.01% 3.744e-3

50 5.593¢-2 -3.94% 2.363e-1

Two revolutions 100 5.671e-2 -2.59% 4.576e-2
200 5.821e-2 -0.01% 6.656e-3

50 5.691e-2 -2.25% 2.729¢-1

Three revolutions 100 5.618e-2 -3.50% 6.906e-2
200 5.820e-2 -0.03% 8.320e-3

Table 8: Solid rotation: standard model with redistancing applied to Zalesak disk

4.2 5-Point Star

We consider a regular 5-pointed star, centered at (1/2,1/2) with radius (center to point
tip) of 0.3. We use five level set functions to represent this shape, initialized as described
in Figure 8 and voting system given by Table 7.

Figure 14 shows results for the 5-point star in a time-reversed single-vortex flow (13)
with final time 7" = 8 on a both 50 x 50 and 100 x 100 grids. The tips of the star
round off due to numerical diffusion using the standard model, leading to loss of area.
Redistancing reduces area loss but distorts the zero level curve over time, leading to poor
shape preservation. By stark contrast, the new model does an excellent job maintaining
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Grid cells  Area % Area Change L; Error

50 5.826e-2 0.07% 2.330e-2

One revolution 100 5.809e-2 -0.23% 2.163¢-2
200 5.818¢-2 -0.06% 2.080e-4

50 5.995¢-2 2.96% 2.4966-2

Two revolutions 100 5.802¢-2 -0.35% 2.330e-2
200 5.819¢-2 -0.06% 4.160e-4

50 6.120e-2 5.12% 3.495e-2

Three revolutions 100 5.808e-2 -0.25% 2.413e-2
200 5.820e-2 -0.04% 8.320e-4

Table 9: Solid rotation: new model (without redistancing) applied to Zalesak disk

t=10.5 t=1.0 t=2.0

t=3.0 t=3.5

Figure 12: Smooth level set model: location of Zalesak disk and zero curves over time for
the single vortex flow.

the sharp corners of the star and its overall shape, even without redistancing. Results
from the new model on the coarser mesh even appear qualitatively better than results
from the standard model on the finer mesh.

Error histories in the enclosed area are shown in Figure 15 and summarized in Table
12. In each, we compare the new model without redistancing to the standard model
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Figure 13: Location of Zalesak disk for single-vortex flow at final time 7" = 4.

Grid cells  Area % Area Change L Error

50 6.782¢-2 16.5% 1.398e-1

No redistancing 100 6.724e-2 15.5% 7.988¢-2
200 5.904e-2 1.40% 3.079¢-2

50 6.302¢-2 8.25% 2.496e-1

Redistancing 100 5.762¢-2 -1.03% 7.988¢-2
200 5.823c-2 0.01% 1.955¢-2

Table 10: Single vortex: final time T' = 4, standard model applied to Zalesak disk

with redistancing. The new model exhibits significant improvement in all error metrics.
We note that the relative error in area computed by the new model increases up to
the maximum deformation of the geometry at t = 4 and decreases afterwards. In the
standard model, errors continue to accumulate, as numerical diffusion prevents the star
from recovering its original shape during the reverse deformation.
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Grid cells  Area % Area Change L; Error

50 6.059¢-2 4.07% 9.319¢-2

No redistancing 100 5.904e-2 1.41% 4.576e-2
200 5.865¢-2 0.74% 1.851e-2

50 5.883¢-2 1.04% 9.152¢-2

Redistancing 100 5.845e-2 0.39% 4.160e-2
200 5.839¢-2 0.28% 1.518e-2

Table 11: Single vortex: final time T" = 4, new model applied to Zalesak disk

No Redistancing Redistanced

50x50 100x100 50x50 100x100

Standard LS Model
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N W W
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Figure 14: Location of 5-point star for single vortex flow at final time 7" = 8.
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Figure 15: Relative errors in enclosed area over time under grid refinement, 5-point star.

4.3 Cusped Triangle

In this example, we consider a “triangle” with cusp vertices, centered at (1/2,1/2). We
use four level set functions initially set as in Figure 16, and the voting table given in
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Grid cells  Area % Area Change L; Error

Standard Model 50 1.168e-1 15.6% 6.225e-2
(redistancing) 100 1.113e-1 10.2% 3.722e-2
200 1.062¢-1 5.13% 1.688e-2

New Model 50 1.013e-1 0.27% 1.009e-2
(no redistancing) 100 1.020e-1 0.99% 6.309¢-3
200 1.017e-1 0.69% 3.838e-3

Table 12: Single vortex: final time 1" = 8, 5-point star

Grid cells  Area % Area Change L Error

Standard Model 50 3.495¢-2 3.27% 8.640¢-2
(redistancing) 100 3.490e-2 3.12% 4.440e-2
200 3.416e-2 0.96% 2.070e-2

New Model 50 3.311e-2 -2.16% 3.840e-2
(no redistancing) 100 3.352e-2 -0.96% 1.192e-2
200 3.380e-2 -0.12% 1.320e-2

Table 13: Single vortex: final time 7" = 4, cusped triangle

Table 1.

3

Figure 16: Domain partitioning for a cusped triangle.

Figure 17 gives the final location of the shape for the solid rotation flow (12) after 2,
4, and 8 revolutions on a grid of 100 x 100 cells. Error histories in the enclosed area are
shown in Figure 18. Table 13 compares absolute errors in enclosed area and L; errors.

As before, the new model does an excellent job preserving the shape of the cusped
triangle. It outperforms the standard model in all error metrics. Volume errors are
significantly smaller at every timestep and do not appear to accumulate in time.
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Figure 17: Cusped triangle under solid rotation flow after 2, 4, and 8 revolutions.
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Figure 18: Relative error in area for cusped triangle example.

References

[1] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set method
for improved interface capturing. J. Comput. Phys., 183(1):83 — 116, 2002.

22



2] D. Starinshak, S. Karni, and P. Roe. A new level set model. 2013. In Review.

[3] M. Sussman and E. Fatemi. An efficient, interface-preserving level set redistancing
algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci.
Comput., 20(4):1165-1191, February 1999.

[4] M Sussman, P Smereka, and S Osher. A level set approach for computing solutions
to incompressible two-phase flow. J. Comput. Phys., 114(1):146 — 159, 1994.

[5] B. van Leer. Towards the ultimate conservative difference scheme iii. upstream-
centered finite-difference schemes for ideal compressible flow. J. Comput. Phys.,
23(3):263 — 275, 1977.

[6] S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids.
J. Comput. Phys., 31(3):335 — 362, 1979.

Prepared Dby LLNL under Contract DE-AC52-0/NA2/344.

23


bledsoe2
Typewritten Text

bledsoe2
Typewritten Text
Prepared by LLNL under Contract DE-AC52-07NA27344.

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text


® ® max(?, ) min (%,9)

Figure 19: Union and intersection of geometrical shapes via maximum and minimum of
their level set functions respectively.

Appendix: Shape Identification by Projection to a Single Func-
tion

In this section, we describe a method to project multiple level set functions into a single
function, which is positive inside the geometry, negative outside, and preserves the same
accurate figure boundaries as the multiple level set functions. It bears some relationship
to the voting algorithm and offers an alternative approach to the use of sign information
in the multiple level-set model to extract accurate shape information.

The projection is based on computing unions and intersections of convex regions.
Consider two level set functions ¢; and ¢ whose positive parts each define a geometric
region. We may generate new level set functions by taking the minimal and maximal
values of the two functions at every point in space. In particular, the positive parts of
min(¢q, ¢2) and max(¢1, ¢2) define the intersection and union respectively of the original
regions (see Figure 19).

We define the projection method for convex figures first, then generalize to non-convex
ones.

Convex Geometries

We represent each smooth boundary segment by a level set function, ¢;, whose zero
curve contains the corresponding boundary segment and is positive in the interior of
the geometry. Since each boundary segment is smooth, the level set functions may be
initialized as smooth distance functions (see Figure 20). Convexity of the figure ensures
that the intersection of all the positive regions of the set of level set functions determines
the interior of the shape. Thus, the projected function

¢proj - Hllln ¢'L

is positive inside the shape and negative outside. In addition, if each smooth function is
also a distance function with respect to its respective boundary segment, then so is ¢p¢;
with respect to the full boundary.

Non-Convex Geometries

The projection algorithm is generalized to non-convex shapes by representing them as
a collection of convex sub-geometries. We describe the algorithm in stages and use the
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Figure 20: Shape identification as the intersection of positive parts of smooth level set
functions associated with boundary segments.

Zalesak disk example for illustration:

1. Divide the full boundary into smooth segments and define a corresponding level
set function for each segment (see Figure 21). The level set function is positive on
the side of the boundary segment that is interior to the shape and negative on the
other side.

Figure 21: Stage 1: Define a smooth level set function for each boundary segment of the
full figure.

2. Divide the geometry into overlapping convex sub-geometries. This decomposition
is not unique, and many options are available (see Figure 22). Let @, be the set of
level set functions whose intersection forms the k-th convex sub-geometry.

Figure 22: Stage 2: Division of non-convex geometry into overlapping convex regions

3. Define the projected function qb(k)

oroj 10T the k-th convex sub-geometry (See Figure
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Figure 23: Stage 3: Represent convex regions as the intersection of the corresponding
smooth level set functions.

4. Recover the non-convex geometry as the union of its overlapping convex sub-
geometries:
(k)

¢1m"0j = m]?X proj -

Remark: The requirement that the convex sub-geometries overlap is in order to pre-
vent the formation of interior boundaries. If two non-overlapping sub-geometries meet
along a boundary curve, their individual projected functions will be zero there. Taking
the maximal value of the two produces a function that is zero at the common boundary
and positive on either side.
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