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1 Introduction

Fluid-structure interaction problems appear in many acfagience and engineering.
Adequately understanding these problems is crucial tottiatysof such disciplines as
aeroelastic flutter, wind turbine performance, implosiand explosions, and hemody-
namics, to name a few. One technique to explore these prahbietime use of numerical
simulations. Although methods for the accurate and efftaireimerical simulation of
many problems involving only flexible structures or thoseoining only fluids have
existed for a long time, the simulation of coupled problemsyhich a flexible struc-
ture (or structures) interact with fluids remains challewgiThe source of the difficulty
with these problems is the construction of schemes for tluplatg between the fluid
and the solid that are both accurate and stable. There argemneral approaches to
designing a coupling procedure. In the first, the so-callesatithic approach, a sin-
gle solver is implemented that handles both the fluid eqoaténd the solid equations
in a single framework. In this scheme, the solver handledltie and solid equations
simultaneously, resulting in strongcoupling between the two. The second approach,
named the partitioned approach, handles the fluid and ateictomains separately.
Whereas in the monolithic scheme there is a single solver dtn the fluid and the
structure, in the partitioned scheme there are separawersolor the fluid and the
structure. This separation heavily restricts the commatioa and coordination that
can occur between the two solvers. Typically the only comication done in these
schemes is through the application of boundary conditisrtse(e the fluid applies a
boundary condition on the fluid, and the solid one (or more)hanfluid). This makes
the implementation of partitioned schemes easy, espgdialtause they can take ad-
vantage of existing algorithms and software developedHersimulation of fluid flow
or computational mechanics. However, they have a weaknassuracy and stability
are much harder to achieve. Stability is a particular pnobler these schemes, as they
are prone to the so-called added-mass effect.

This document examines these issues for partitioned schemeverlapping grids.
The use of overlapping grids is profitable for fluid-struetimteraction because it ob-
viates the need for complex and time consuming remeshiggstaecessary in purely
body conforming methods, while at the same time avoidingctivaplicated boundary
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2 PRELIMINARIES

conditions (and accompanying instabilities or inaccwggrthat are required for em-
bedded (or immersed) boundary methods. With an overlapgiity there are two or
more meshes used for the fluid domain. The first is a body fitteshnaround the de-
formable structure (or meshes around deformable strustifrthere is more than one
structure). It is on this mesh that the kinematic conditiaresapplied, and where the
load transfer is done. As the structure deforms, this medéfisrmed so that it remains
body conforming. The second mesh, the background meshjnsriineed. It is on this
mesh that inflow, outflow, and wall (for non-moving walls) Inglary conditions are
applied. The meshes communicate information in tbeérlapareas. In these areas,
the fluid flow solver handles the interpolation of the necassariables between the
meshes as necessary. Having two meshes also provides al ficomework to handle
structures that significantly deform our undergo large prtiBecause the first mesh,
which surrounds the structure, is structured, it is easyetgenerate when the body
moves and deforms. After this remeshing, the only furthesmreg operation required
is the recomputation of the overlap areas between the mesima@ithe structure and
the background mesh(es). Because all of these meshes wrtustd grids, this op-
eration is fast. These properties therefore make oventapgiids aptly suited for the
computation of highly nonlinear fluid-structure interactiproblems.

In section 2, we describe a model incompressible flow probigaracting with a
flexible beam, building on the work of [2], in order to elucidahe issues involved
with the coupling procedure. We utilize the theory devebbpesection 2 in section 3,
in which we propose and validate an implementation of ounbs®del and coupling
procedure in the overlapping grid package consisting ofrbve and CG. Section 4
describes an extension to this model to handle beams thatoarfixed in one place
(that is, free to fly around like a sheet of paper). Sectiong€cdbes a more sophisti-
cated nonlinear beam model, and its coupling with the CGfsiftw solvers. Finally,
section 6 describes future extensions that can be donestavtirk. All of the sections
contain a plethora of verification and validation data destating the good perfor-
mance obtained with the family of beam models implementadernCG framework.

2 Preliminaries

In this first section, we describe a model problem for incaespible flow interacting
with a flexible Euler-Bernoulli beam, in which the flow is iseid, incompressible,
and in which the nonlinear convective acceleration termegligible. We analyze its
properties, prove some stability results, and examine tlde@mass effect on this
problem. This section relies heavily on the work of P. Cawsial. [2].

Consider the problem:

Find w=w(x,t), u = u(xy,t), p= p(x,y,t) such that

EIZW 1 psbh®¥W — p(x,H)b=0 in(0,T)x Qs

pid +0p=0 in (0,T) x Qf
O-u=0 in(0,T) x QF 1
u-n=%¥(xt) onz

W(@Qs) = V\//(aQs) =0
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whereZ = Qr N Qs. We will take Qf to be a rectangleQg = (0,L) x (0,H). For sim-
plicity let us assume periodic boundary conditions on tlieded right of the domain.
First we use the divergence condition to introduce the piresBoisson equation:

0?p=0 in(0,T) x Qf
%:0 onl
- —pi Y onz )

p(0.y) = p(L,y)
%(Ovy) = —%(L,y)

Now consider the function space

W = {w € H§(Qs),w"(0) =w'(H) = 0} 3)

Q={aeH'(@y). [ ador=0.q0y) =a(L.y) @

The weak form of the problem consisting of (2) and the firstegun of (1) is
Find (w, p) € [(0,T);W] x [(0,T); Q] s.t.¥(v,q) e W x Q,

ar (p,q) = —pt fy FPadz 5)
psbh(W,v) +Elag(w,v) = [5 p(X, t)v dx
where
ap(lo,q):/Q Op-0q dQr (6)
F
0°w 9%v
as(w,v) = o 02 02 S (7

By the Lax-Milgram theorem there exists an operador the first equation
Z:(—pW) — p

that is given av'there exists a uniqup satisfying the pressure Poisson equation. Now
letMNs : W — Hl(Qs) be the restriction operator gfto the boundary 0. Then the
operator

MNsZ

is positive, and self-adjoint with respect to th& Qs) inner product. Positivity follows
from

(M2, W) = /wpdz—— (p,p) >0

and likewise self-adjointness:
pia,c(ZWZv /Wﬂzzvdz——/vl_lzzwdz:(ﬂzzw,v):(l_lzZV,W)
s

Using the operatorlzZ we can rewrite the second equation of (5) as

((psbhI + psMsZ)W,v) + Elag(w,v) =0 (8)
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Now, let the operatoF be defined such that
(1,8) =ag(Tl,&) 9)
Now T is self adjoint with respect to the inner product definedabfy, -), because
as(Tvw) = (v,w) = ag(v, Tw)
Applying (9) to transform equation (8),
as(T (psbhl + p;MNsZ)w,v) + Elag(w,v) =0 (10)
Then becaus& andpsbhl + p;MsZ are self-adjoint operators, so is
A=T(psbhI +pMNsZ)W (11)

so thatA has an orthonormal set of eigenvectors and eigenvalges; ). Then we can
decompose and € W as

w=" a@ 12)
2
Using this decomposition in (10), we get
& +Elg=0 (13)

This forms a sequence of linear, constant coefficient ODE®se solutions therefore
always exist for alt. Thus the solution of the original coupled problem exist&wN
consider the implicit time stepping scheme

WL = W 4 At

14
Wt = w4 At a4
Using the expansion af into the eigenvectors of A, we have
a]_ﬂ+1 — ain +Ataln+l
. ., El (15)
n+1 n n+1
[T =48 — —Ata;
g 8, m g

This is a system with an amplification matrix

[ 1 —At} -
El

WA’[ 1
whose eigenvalues are defined by the equation

1-A1= iiAtZE
v

Clearly the eigenvalues satisfy
Al<1
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and so the time stepping scheme is unconditionally stablprdctice, however, we do
not have the eigenvalues and eigenvectors. Rather, we wiustequations (8), (15)
using an iterative method:

0= ((psbhI +ps M2t v) + Elag(W 2 v) Y e W
WL = W At (16)
Wt = w4 At
One classic method is a fixed point method, in which at eachtita the system
(psbhi™ 2 v) + At?Elag(W 2 v) =

. a7
(—pfMNs2W ™K v) — Elag(W",v) — ElAtas(W", v)

is solved, and then the estimate for the solutwh1”is updated as (where is a
relaxation parameter)

WKL) — ofH 4 (1 — o)Lk

It is desirable to analyze this iterative procedure to deiee under what conditions it
converges. Our analysis will differ slightly from that of][2n that we consider a more
complicated structural model. To handle these complioatitet us introduce

M:V -V
as the operator s.t.
MW = (psbhi*2,.) + At?Elag(WL, )

and
V'35 F = Elag(W",-) + ElAtag(W", -)

and
(I—IZZ)/W(n-l-l.k) — (I—lzzw(n-!-l,k)’ )

Then we have .
M\i\fH—l — _ps (HZZ)/W(n+17k) —E

and so B
W = —M~tpg (Ns2) W - M—1F (18)

Then we can write
VLD L) [1—w(I+Mps (N52))] (W) Lk 1)y
This iteration is guaranteed to converge when
w||I+Mps (Mz2)']| <2
Rearranging, we have the constraint

2
w<
1+ptM-1(Ns2)|

(19)
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Now we can estimate the norm of the operabr (MsZ)’ by computing the maximum
possible value of
M~ (NZ) w|
([wi

For simple geometries this can be done by hand. Consider aftfmightH and length
L, with the beam located on the top of the boxyat H). Further suppose the beam is
pinned on both ends. For this geometry, we can decompasi® a Fourier sine series:

weV.

)

il . /TX
w= Y wgsin( — (20)
3 wesin(T)
A simple calculation (i.e., solving the pressure Poissama¢ign) shows that

N e L . kmx
MsZ = P -
(Mz2)'w) =5 w e sm( C )

& “knttan
Now computingM—1f’ corresponds to solving the ODE

P _
ox4

Writing the functions in terms of their Fourier series, we trusve

psbhw-+ At?E | f

psbhw + At?E|l ki—fwk = fy (21)

so that

hd L 1 . [ kix
M~ (Nz2)'w= > sm<L>

Wi
& krtanh<H pophw+ AZE 1T

Thus we can establish the bound

L 1

M~1(M:2) || <
M7 ([ =2) | mtanh’! psbhw-+ AEIT

(22)

Then recalling (19), we have the condition for convergence:

2
w<
1+pi[M-1(MsZ)|

where|[IM~1(MsZ)’|| is now given by equation (22). Let us now examine the effect
that a higher order structural integration algorithm hagonstability and convergence
results. Consider the Newmark beta time integration atlyori

WL = W At [(1— y)W" + Wit
2
W= w4 A+ % [(1— 2B + 2B
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Expandingw again in the eigenvalues/vectorsAyfwe have the following relations:

2
't =al + Ata + % [(1—2B)& +2pa ]

L= &l A [(1— )&+ v
..ln+]_ — _E
i Hi

A simple calculation shows that the eigenvalues of the dination matrix for this
case are

n+1

g

1
0, *m(Pi \@)
with
P=EIAt?(1—4B+2y) —4u
Q= EI?At*(1— 163 + 4y + 4y?) — 16At°E lu
For the paramete = 1/4,y = 1/2 the Newmark beta algorithm is unconditionally
stable (for uncoupled problems) and second order accUfatehis choice ofd andy,
P=EIAt®>— 4u
Q= —16At’Elp
S0

1
" EIAZB+4p
=1

P2_Q

A1l

Thus for this case (with added mass), the Newmark beta #étgois still uncondition-
ally stable. The linear system we have to solve in practicgnslar to (16); we still
use a fixed point iterative method to solve this system, exeey the update equation

is
(psbhW™1 v) 4+ BAL?E lag(W'L,v) =

(—ptNzZWt™ 1K) v) — Elag(W",v) — E IAtag(W", v)

which is the same as in the Backward Euler case (equatioreg@@pt that th& | term
is now multiplied byp. The bound (19) still holds, but with

L 1
mtanh’! psbhw-+ BALE I

(23)

M (Nz2)| <

(24)

3 Finite Element Discretization

3.1 Structural Equation
Consider again the structural equation of 1:

0*w 0w

7
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We can derive the weak form of this problem by multiplyingathgh by a test function
v, and integrating by parts:

Elas(w, V) + psbh(v,v) — [V\/’\/ + [W"V] /p (x,t)v dx (25)

The exact spaces € W, v € V for this form depend on the boundary conditions,
butw andv are always taken to lie in some variationl8f(Qs). We now the finite

dimensional subspacew cw, Vc 7/, to contain functions that consist of cubic
functions on each element, and are continuous and contnindhe first derivative at
element boundaries. Our basis will consist of Hermite cshape functions. With this
basis, at every node we store the displacement and slope b&tim, so that our nodal
displacement vector at nodés
- [5]
| ei

On any element with nodésindi + 1, the displacement is written as

I%(l—E)i(ZJrE)
W(X(E)):[Wi 6 Wiy ei+1} ?1((]]:_‘__5))2((;1_2 :[Wi 6 Wiyl 9i+1]N(E)
E(1+8%E-1)

(26)
whereg € [—1,1] is the natural coordinate for the elemdatis the element length, and
x(&) is the map from the local element natural coordinates toajlobordinates. The
element stiffness matrix is from (7):

le 2N T A2
ke:/ g0 N ON
0

ox2  0x2
12/13 6/12 —12/12  6/12 27)
_ 4/le  —6/15  2/le
- 12/12  —6/I2
4/lg

The mass matrix is

le
me:/ psbhNT Ndx

0

13¢/35 112/210 9¢/70 —132/420

28
B 13/105 132/420 —13/420 (28)
- 13/35 —112/210
13/105
The external force vector is |
fo— / p(x)Ndx (29)
0

Remark. The beam model assumes that the structure is in a state & ptegss.
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Unfortunately, for some 2D problems (for example those living flexible panels),
this is not the correct assumption. For these cases, thetugteuis in a state of plane
strain rather than plane stress. This is hardly a difficliogever, as the equation for a
flexible panel is , ,
El 0*w 0°w
T V2o + psbhﬁ —p(x)b=0,
which is the the beam equation with the substitution

_E
1—v2

Therefore our finite element model is apt to simulate bothilfleXreams and flexible
panels, as long as the elastic modulus used for the comprsat set with care.

E—

3.2 Load Computation

To compute the pressure load, we assume a linear pressmiéutisn within each
fluid element. This requires a map from every fluid node on the searfdthe beam to
a location within an element of the beam. This is done by ke initial fluid node
location,(X,Y), and projecting it onto the neutral axis of the beam,

X=(X-X0,Y—Yo)-t
X =(X=X0.Y ~Yo) (30)
Y =(X-X,Y=Yo)-n
wheren is the intial beam normal, antKo, Yo) is the initial “left” (“left” meaning the
first element) end of the beam. We then approximate the tetafreal forcef as

L
f:/o P(X)Ndx
_ Ne /><4‘+1 pi()N(—)N(itl) _~pi+1(>~(_>~<i)N dX
S/ % X — X1

whereNe is the total number of fluid elements.

(31)

3.3 Kinematics

After the beam has deformed, we must recompute the posifidineosurface of the
beam, so that we can regenerate the overlapping grid. Thenmaltiple ways to do
this. In our scheme we set the new position of a point on thiaseiof the beam to be

= t.
Xx=Xo+1t-q (32)
y=Yo—n-q
with 3 3 3
q = XK+w(X)y+nY (33)

andn’ is the normal of the beam &t in the deformed configuration. The acceleration
of any point on the surface of the beam can likewise be obdalyesimple (though
painful) differentiation.
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3.4 Time Integration

After matrix assembily, the finite element equations for tiecsure are:
MU+Ku =f (34)

The time discretization can be performed with the Newnfagtgorithm. In predictor-
corrector form, the algorithm is as follows: The predictars

Uny1 = Un+Atvy+ %tz(l—ZB)an (35)
Vi1l = Vn+At(1—vy)ay
The correction step requires solving the linear system
(M +BAt*K)an 1 = fne1 — Kiinia (36)
and then updating
Unt1 = Unt1+ PAt%an 1 (37)

Vni1=Vny1+YyNang

This time integration algorithm is second order accuratkwarconditionally stable for
B=1/4andy=1/2.

3.5 Coupling Procedure
Fluid structure coupling is handled as follows:
1. Predict the solid displacement/velocily, 1,Vn1 at timet™+1,

2. While not converged:

(a) Estimate the force on the bedm

(b) Solve
(M +BAt?K)a= fr1 — Klings

(c) Set
(1.0— w)an1 +wa— ant1

(d) If lan+1—al| < &, break.

3.6 Exact Solution

To verify our finite element model and coupling procedure, wik derive an exact
solution to a simple viscous incompressible flow problempted with an elastic beam.
A cartoon of the problem geometry is shown in figure 1. To malkgtroblem tractable,
we will assume that the inertial terms in the fluid are negligi The equation for the
beam is 5 52

EI% - _psbhat—‘;v 4 p(x,H)b (38)

10
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beam

/\//

Periodic bc
Periodic bc

u=>0

Figure 1. Geometry of the domain on which we seek an exactisolto equations
(38), (39)

and in the fluid
ou 2
pfa:—DerpD u (39)
The continuity condition must also be satsified.
O-u=0
This condition gives the pressure Poisson equation:
0?p=0 (40)
We will look for travelling wave solutions of the form
w(x,t) = Wwexp(ikx — iot)
p(x,Y.t) = B(y) explikx —iwt) @)
Uz (XY, t) = G (y) exp(ikx — i)
Uz(X, ¥, t) = Oa(y) exp(ikx — iwt)

Plugging in these solutions, we have
—k? p(y) +Pyy=0
EIK'W = psbhw? W+ p(H)b
—piway +ikp = p(—k20y + Oy yy)
—piwl+ py = U(_kzaz +O2,yy)

(42)

We can immediately integrate theeequation, yielding a general solution

p(y) = Acoshky+ Bsinhky (43)

11
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Using this solution in the equation fap, we can integrate to get

G2(y) = M coshay) + N sinh(ay) + Pcoshky) + Qsinh(ky) (44)
with
priw
=, -7k 45
a m + (45)

Now applying the conditiom;70) = 0 anduz,(0) = 0 gives

M+P=0
Na +Qk=0

so that we can rewrite our solution faog as

U2(Y) = M@u(y) +Nez(y)

where 1
@(y) =  (cosf{ay) —costiky))
¢ (46)
P2(y) = 5 (ksinh(ay) —asinfky))
Now for this solution to satisfy the momentum equations, westiave
%pfiw: —Bk
N—qufi(o: —Ak
S0 2BKi 2AKi
i i
a = — + 47
2(Y) 0@ (v) mwa@@) (47)
We must also have
so that oBKi DAK
i i
—@,(H H)=0
DA+ h(H)
or specifically
5o AB(H)
ag)(H)
Then DAKi w(H)
i
Oo(y) = —— L + 48

The kinematic condition between the beam and the fluid is

—ieoW = Gp(H)

12
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implying
yo _ 2AK [ @(H)
YT pita ( FICIAR +<Pz(H)) (49)
Finally, the beam equation in (42) implies
pH)=A (cosrkH — a%(w) sinth> (50)
1

Solvability thus requires

C(EI—pbhe?) 2K (_%(H) _ G
(Elk* psbhu))pfwza< (dl(H)(pl(H)—i-(pz(H)) (cosrkH mp(l(H)anth)b
This is quite a long equation. To simplify it, let

k
Y= (Elk47psbhw2)m

Rewriting the preceding gives

—% (—%EE%(&(H) +(p2(H)> = coshkH — thtfp(zl(?l-?) sinhkH (51)

Multiplying through byag) (H) gives

*% (—G(H)@r(H) + @, (H)@a(H)) = ag) (H) costkH — g (H) sinhkH
Now
@ (H) = %(asinr‘(aH) — ksinh(kH))
G(H) = (cost(aH) — costkH))
So

~u(H)gh(H) + Gu(H)gh(H) — — % [1—cosfiaH) costiH)] - <+

a@) (H) coshkH — @, (H) sinhkH = %cosr(aH) cosh(kH) (atanhaH) — ktanh(kH))

sinh(kH) sinh(aH)

So we have

y 2ak[1—cost{aH)cost(kH)] + (K? + a?)sinhkH) sinhaH) _
W? a coshaH) cosh{kH) (atanh(aH) — ktanh(kH)) - (52)

To make things less unwieldy, let us write the frequentyn terms of the natural
frequency of the beam, viz.,
W= wp®

13
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with
Elk4
= \/ pebh 3
and
o = ky/1— 1B = kn (&) (54)
with
pr | El
= 55
P="0\/pon (3)
o)

V= uh(1-&) *kh
f
Further the periodicity of the solutions inimply

_2m

k
L

So that our equation becomes

(1—6%) 2n(&) [1— coshn(@)kH) costkH)] + (1+ n(&)?) sinh(kH) sinh(n(G)kH)  ps
7 N (&) cosh{n(®)kH) coshkH) (n(®)tanhn(&)kH) — tanh(kH)) ~ pskh
(56)
Note that solutions to this equation come in pairs. Indfegieihave a solutioi®, then

—®is also a solution. Plugging

ey

O~ —
into the afore equation gives

(1—&?) 2n(—®) [1 - coshn(—&)kH) coshkH)] + (1+n(—@)?) sinh(kH) sinh(n(—&)kH)  py

a2 N(—&) coskn(—@)kH) coshkH) (n(—&) tank(n(—@)kH) — tanh(kH)) ~ pskh

Using the fact that (—w) = n(w), tanhz) = tanh(z), coskz) = coshz), and sinliz) =
sinh(z) demonstrates that bot and —& are solutions. Furthermore, the equation
remains unchanged under the transformation

kK— —k

Then we can write our general solution feras

w(X,t) =Wy exp(ikx —iwp
Wo exp(ikx+ iax
W3 exp(—ikx — iuwpbt )+
Wy exp(—ikx -+ iwo@t )

)+
6t)+

Now for boundary conditions, we will require that the endshe beam be pinned, so
thatw(0,t) = 0, or namely

Wy +W3=0
Wo +Wg =0

14
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Furthermorew will only be real valued everywhere if

Takingw; real for simplicity, we have
w(x,t) = 2 0 (exp(ikx — ioptdt) — exp(—ikx — iapbt)) (57)

Of course, we have not explicitly enforced the moment freed@mon w’(0,t) = 0; but
a simple calculation shows that it is indeed true, by a feotus bit of luck. Completing
the solution gives

s oon i =@ (H)@uy) + @ (H) @ (y)
o) = oo )
e i v ()6 + G (H)B)
5 _ _l ~ _ % — y y
R U i )
() = P wPalW (qiz(H)sinh(ky) —a(p’l(H)cosr{ky)>
2 ~@H)eu(H) + @ (H)g(H)
so that
p(x,y,t) = 20 [A(y) (exp(ikx — itwpbt) — exp(—ikx — iupbdt))] (58)
and
(X, Y,t) = 20 [Ga(y) (exp(ikx — icptit) — exp(—ikx — iwpbt) )] (59)
uz(x,y,t) = 20 [Ga(y) (exp(ikx — iwpbot) 4+ exp(—ikx — it ))] (60)

In most practical cases, we can assume the beam is reasatiéfbgo that
B>1

Furthermore, if the fluid is light, (e.gps/p+ > 1) we can approximate

where

Then we can further approximate
n(@) ~ v —ip

We will follow the convention
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In this case,
tanh/—ipkH) ~ 1

Utilizing this in the equation fof, and neglecting higher order termsdnwe have

—26( 21— iB+( —|BtandkH)) 47%#1—i8—\/1—uhandkH»
Then
Pt —iB—+/1—iBtanh’kH)

~ pskh 4\/T (4 2iB)tanhkH)

_pr 2iBy/iB—iptanif(kH)\/—iB+ B?tantf (kH)
2pskh ZBZtank?(kH)

Pt ﬁ

where we have again taken advantage of the facfhatl.
Example.
Consider a square domain, length and width

L=H=03m
and a beam with rectangular cross section, with

E = 1.4e6 Pa

ps = 10000 kg/nd
h=0.02m

|/b=6.67x10 'md
and a fluid with properties

pt = 1000 kg/n?
v =0.001 n¥/s

The natural frequency of the beam is
Wy = 29.9654 rad/s
We can calculate the value Bfas
B = 68313005
Solving foré gives

6= 0.8907148069- 9.135887123« 103

16



3.7 Compressible flow: shock hitting3 fIEMEIEEDEREIMENT DISCRETIZATION

h u \Y
0.1 1.44(-4) | 1.03(-4)
0.05 5.19(-5) | 3.89(-5)
0.025 | 1.08(-5) | 7.87(-6)
0.0125| 2.26(-6) | 1.45(-6)
rate 2.26 2.37

Table 1: Max-norm errors in velocity for the verification ptem

Our approximate solution (61) gives
5= —0.1193-10.212x 103

which is somewhat off, although in this case the beam isivelgtlight and flexible,

S0 our assumptions made in deriving the approximadiane not optimal.

We can simulate this case in order to verify the implemeaotsith CG and to examine
the rate of convergence. The computation is performed onq@esee of uniform over-
lapping meshes of increasing refinement. The structures@elized with 30 elements
in all runs. The max-norm errors (&£ 0.1) and the corresponding convergence results
are shown in figure 2 and table 1.

0.01

Error (ﬁ) —
Error (v)
Reference Order 2

0.001 |

0.0001 ¢

Error

1e-05 A

le-06 -
0.01 0.1

Mesh size

Figure 2: Convergence results

3.7 Compressible flow: shock hitting a flexible panel

We can also validate our model on a compressible flow problgmubning the sim-
ulation proposed by [3]. In this simulation, a Mach 1.21 dhotair hits a 40 mm
flexible panel. The air is initially al = 293 K andp = 1 x 10° Pa. The panel has
elastic modulu€ = 220 GPay = 0.3, andp = 7600 kg/n¥, and is 1 mm thick. A
diagram describing the simulation is shown in figure 3. A ndoa schlieren plot is
shown in figure 4 for a time after the shock has passed the b&@wing the position
of the shock wave and its reflections, as well as the vortdupajenerated by the tip
of the beam. Also visible is the deflection of the beam. A pfahe tip displacement
is shown in figure 5. Note that the times in this figure (and tieeeding ones) do not

17
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flexible panel

/

inlet wall

80 mm

base

15 mm

*
‘ 35 mm _|15mm‘ 250 mm

Figure 3: Diagram describing the simulation proposed by [3]

N

Figure 4: Numerical schlieren after the shock has hit therbslaowing the location of
the shock and the vortex rollup downstream of the beam

necessarily correspond (in an absolute sense) to the ortke paper by [3], because
it is not clear from their paper how far from the step the alitshock is. Thus we
have located it (arbitrarily) a short distance from the st&b course this positioning
of the shock does not affect the response beyond introdiciimge shift in the results.
The peak tip displacement is8lmm, and the period of oscillation8 ms. The pre-
dicted tip displacement is somewhat different than the ewpntal tip displacement,
2.4+0.4 mm. The period of oscillation predicted by our simulatiswery close, how-
ever, to the measured experimental period .8frhs. To elaborate on this discrepancy,
we first note that our results are mesh converged. A compadéthe tip displacment
obtained for a fine fluid mesh and a coarse fluid mesh are shotiguire 6. Further,
we can compare our results to those obtained by modellindpélaen as a bulk solid
and running CGMP. To run CGMP, we had to significantly thickesmbeam (to 5 mm)
due to meshing considerations. The density and elastic lngdvere reduced corre-
spondingly to maintain the same dynamics. The comparisehdg/n in figure 7. The

18
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Tip displacement (mm)

_2 1 1 1
0O 05 1 15 2 25 3 35 4 45 5

Time (ms)
Figure 5: Tip displacement of the panel
results obtained from the new implementation and CGMP argsisilar. The period
of oscillation predicted by CGMP is slightly shorter, altlgh this discrepancy is not

surprising due to the extra thickness of the beam used in CGidialation. These
facts give us confidence in the correctness of our implentienta

4 Euler-Bernoulli beam with rotation

4.1 Development

Consider an Euler-Bernoulli beam, which is free to rotatet the center of mass of the
beam to be located akg, and the neutral axis go through this point, at an angé

Let the axis normal to the beam béWNe can then measure deformations of the beam
with respect to this neutral axis. Any point on the beam can te written as

X = Xre+ NW(X) +tX (62)

with
/ W(x)dx =0

Now additionally we will require that
/ XW(X)dX = 0

19
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Tip displacement (mm)

Coarse Mesh ———
IFine IMesh fffffffffff

0 05 1 15 2 25 3 35 4 45 5

Time (Ms)

Figure 6: Tip displacement of the panel, demonstrating ncesliergence

Then _ _
X = XRrB+ n(v'v(i) +>?6) — tw(i)e

To derive the equation of motion, we can use Hamilton’s ppiles which says that

1.
/ ” [OWa+ 5T — 3U + ASW(X) + A, Xdw(X)] dt = 0 63)
t1
where
1 o
T— épsbh/pq dx
1 _ , . o . ~
= 5Psbh / [1XrB|® + (W(X]) 4 XB)? +W(X)?6” — 2Xra- (tw(X)8 — (X)) dX
= 5psbh [ e+ (W(R) + X0)2 + (262 X

and 1
U= é/Ew\/’()a?d)?_ psbh/g-xdi

W — / P(X)3 - ndX
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0.5

Tip displacement (mm)
. o
[E al

-1.5

FSI w/ Beam Model ———
FSI w/ $o|id Modell fffffffffff

0 1 2 3 4 5

Time (Ms)

Figure 7: Tip displacement of the panel, comparing CGCNSanbmodel and CGMP

Further

5T = %psbh [ [25me B+ 207 + %0) B+ X00) +

+ 2w (3wB +wdh) | dx
and
S = / P(X) [(BXRp- N + X6+ W] dX
U —El / W (X)5W(X)dX — psbh / 9+ (Xga -+ NdW)dX
—E1 W (x3w(x)] "%+ E1 [W/(x3W ()],

The term

el [ (Row (]

“L/2

is zero for clamped beams, pinned beams, and beams withrfd=e &herefore it will
be dropped from here on. The other term,

—El W (Raw(x)] "%,
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4.1 Development 4 EULER-BERNOULLI BEAM WITH ROTATION

is zero for free ends of beams, but non zero for beams thatianeg or clamped. For
these beams, we can use the fact that

BX(£L/2) = 3xrg-+ NOW(LL/2) +W(L/2)(—t36) + n%ée

We can enforce this condition by the use of a penalty termenftimctional forJ, so
that

U=U+ %y|x(iL/2) —Xo|?
and
80 = 8U +y(X(£L/2) — Xo) - (5%re+ NdW(+£L/2) +W(L/2)(—t56) + n%ée)
Now denoting
m= psbh / dx (64a)
J= psbh / Rdx (64b)
we must have

mige = | PUONGR-+ Mg~ Y(x(+L/2) - xo)

(65a)
J6+ / psbh [2ime +w?8] dx = / p()?))?d)?fy(x(iL/Z)fxo)~(7W(L/2)tin%)
(65b)
psbh(W+ XB — w8?) + EIW"” + X + A X= p(X) 4+ psbhg - n (65¢)
W (£L/2) = Fy(X(£L/2) — X0) - N (65d)

(wherey is taken to be zero for free ends). Integrating the third Eéqnaand using
equation forkgrg (65a), we must have

A= ?XRB- n (66)

Likewise, we find that
_ psbhd / o
Ar="5-5; | psbh w2Bdx (67)

If the beam displacement is small, we can approximate

/ W28dx~ 0
so that

)\r - 0

22



4.2 Example 5 NONLINEAR BEAM MODEL

4.2 Example

As an example, consider a flexible beam falling under the énfbe of gravity ¢ =
(0,—1)). The properties of the beam are

L=05
h=0.02
E=2x10*
ps=1

| =6.667x 10/

and it is initially oriented at a declination ef30° from thex axis (see figure 8(a)). The
fluid properties are

v=1072
pr=1

The inflow is at the bottom, with a parabolic profile with a ntaxim velocity ofv;, =

0.3 (in the+y direction). Plots of the velocity at four representative times are shown
in figures 8(a) - 8(d). Note the deflection of the beam in 8(djiclv is due to the build
up of pressure on the underside of the beam as it is falling.

5 Nonlinear beam model

5.1 Finite element development

The implemented nonlinear beam model is based on the salcalbatinuum based
beam element” (CB beam element). The basic idea of the CB Ineaahe! is to con-
struct a beam element as a reduction of a two dimensional. gQad exposition is a
simplified version of the one presented by Belytsckkal. [1]. The beam is defined
by a set of master nodes along the center of the beam. Assdacidth each master
nodei is its location,xj, and a rotationf;. The rotation6; is used to define a unit
vectorp;, known as a director:

pi = cosBje, +sinbje, (68)

The director is used to define “slave nodes”, whose positioas

h.

X" =X+ Elpi (69a)
h.

X[ =X — 5P (69b)

whereh; is the thickness of the beam at nodeThese slave nodes are used to
construct the quads needed for the CB beam approximatiorpatticular, the two
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omprassble NS, ru=1002-02 v
t=0.500, dt=9.09e-03

compressiple N3, nu=100e-02 v
=0.000, ¢=7.25e-03

s

(a) t=0 (b) t=0.4

compressitle NS, nu=100e-02 « lncompressble NS, rnu=1.002-02 v
=100, dt=d e 15 =200, d=20%-04

(©) t=1.0 (d) t=1.7

Figure 8: Contours of velocity for the falling stick test case at representatinees

noded beam element defined by nodés- 1 has an associated four noded quad whose
nodes are (in counter-clockwise order):

=y oyt gt
Xi Xy X1 X

It is possible to construct beam elements with three (or inooees, but the elements
used herein are two-noded beams and their associated ddedrquads. Following
Belytschko, we use a (primarily) updated Lagrangian foatioh. The general form
of the internal nodal force at a noden this formulation in a slave element whose
domain isQ is _

fint /Q N1y Niy] odQ (70)

whereN; is the shape function associated with nddeThis integral is done using
Gaussian quadrature. Let use natural coordingas) for our quad. In order to avoid
locking, only one quadrature point is used in the directitong the beam axis (at
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5.1 Finite element development 5 NONLINEAR BEAM MODEL

& = 0), with multiple points (e.g., 3) in the direction. Then we can approximate
nt_ NSy N Jodewb 71
=— 0Jswib;
| hO I;[ I,X I,y] e Wil ( )

wherew; are the quadrature weightsg,is the beam width at the quadrature point loca-
tion, andJg is the Jacobian of the map from the element natural cooresntat global
coordinates. The extra terhyhg is, to quote Belytschko, “a factor that accounts ap-
proximately for the change in thickness”. On an element wales, i +1, | use

h 1
o ~ §\|pi+pi+1|| (72)

Now the key to the beam approximation is the assumption bHeahbrmal stress per-
pendicular to the axis of the beam is zero. This must be eatbexplicitly in the
computation of the internal force. To do this, let us definatih called daminar co-
ordinate system at each quadrature point. The basis véctor this system is defined
to be tangent to lines of constamt The basis vectog, is then perpendicular té,.
Now further let
3 43

&8 &8
Note that we construct a new coordinate systgrd, at each quadrature point. Then
we can rewrite!Nt as

(73)

. nQ
t h N
fint — e i;[M % Nig] 6RT Jewiby (74)

Now we enforce normal stress perpendicular to the axis ob#daam is zero by setting
oyy = 0, so that

~ Osx  Ogy
- Ozy 0 (75)
In this basis, we can also compute the deformation gradient
-~ 0X
F= = 76
3R (76)
and the Green-Lagrange strain
A 1 ara
E=Z(FTF-I 77
5 ( ) (77)

Now generally we have some constituitive law that maps
E—6
But of course now we have a problem, becakiseas three degrees of freedom, but

& only two! We get around this problem by modifying the ten&oso that we can
maintainagy = 0. Consider the isotropic SVK material law:

S= ArE +2uE (78)
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5.1 Finite element development 5 NONLINEAR BEAM MODEL

We assume that the beam is in a state of plane stress, so that
Ogs = 0y3 =0 =0

Now let&, & be a basis aligned with the beam (so thapoints along the axis of the
beam) in the undeformed configuration. FurtheRgjlt be a rotation matrix from the
&, § basis to the,§, basis. Then

E= RdefERgef (79)

Now in the continuum beam model, it is the comporé)@,twe will modify to enforce
oyy = 0. Writing the stress in terms of the Piola-Kirchhoff streas ¢he deformation

gradient, we have
1 fnn

A T
0= 7\](62/62)2 FSF (80)
whered = detF, and
(0z/0Z) = /1— ZV?S& (81)

is a term to approximately correct for the deformation of bieam in they andz di-
rections. Note that there is still an inconsistency betweemdE (because we have
have modifiecE); in theory we could have modifiefd to begin with, but it is not im-
mediately obvious which components to modify. Further, \weehalready made some
modelling assumptions. Then we have

1 . ~ ~ .

6= —5FRT (AMrE+2UE) RyaiF' 82

J(02/0Z)2 def( + 2| ) def (82)

Now this is a set of six linear equations, in which our unknewreags, Oz, Eyy,Exz.Eyz,

andE;,. Hence we can solve for the unknowns, and thereby computgrises tensor.
After obtaining the nodal forces at the slave nodes, we nrasisform them in

order to obtain the forces at the master nodes. This is doesbyple transformation:

f';(/ T .

fmaster,= | i | =T f'x* (83)
my |y+
fi

where[f* f ] is the nodal force at the slave nogle) corresponding to master node
i (and likewise for slave nodet)), and

1 0 vi—y
0 1 x —Xx

T= ! _ 84
1 0 yi—y (84)
0 1 x" -y

The mass matrix can be written as a transformation of the mmgsx of the two-
dimensional quad. Denoting this mass matri>Ma§ave, we define (per Belytschko)

Me=TIMSIAVer, (85)
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where
T
Te= 86
¢ [ T|+J (86)
To compute the inertial force, we first note that we must have
inertia T
femaster= Tefeslave (87)
Now
inertia__ d /,,slav
fe,slave_ dt (Me qje.slave)
d .
=gt (M glavereue,mastea (88)
where
X
Yi
u _| &
emaster= |y
Yi+1
141
and -
X
Vi
X
yi
u =2
I slave X1
y|++1
X|++1
Y14

Now Belytschko suggests neglecting the dependendg ofi time, so that

inertia .
fe,masteI: Melemaster

However, | found that this causes the rotational degreesetibom to become unstable.
Therefore, | use the correct expression for the inertiaddor

inertia : T\ Slaver .
femaster= Meligmastert TeMS' @V T elle master (89)

Te can be formed by noting that

0 0 x—Xx

= _ a0 0 -y

Te=8 0 0 x—x" (90)
0 0 yi—y'

27
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The element stiffness matrix (in the deformed coordinastesy) can be written as the
sum of two parts, material and geometric. For the materifihess, we note that in a
reference configuration

kmat_ / B] CSEB0dQo @1)

whereCSE are the tangent moduli, (so th&t= CSE: E) andB is the standard matrix
relating the displacement vector to strains in the refezaramfiguration. Now we must
have agairogy = 0 and therefore
Doy
Dt
Theoretically, we should enforce this condition by choggi¥E so that this condition
is satisfied. In practice, | just approximate this conditiath

Sy =0

which seems to work well. Then if we take the deformed conéigjan to be instanta-
neously the reference configuration we have

Rmat_ / Bl.ClaMB;,da 92)
where
Nig O
B, = |\ 93
' [Nw N.,J (53)

WhereCIarn corresponds to the tangent stiffness modulus resulting tminating
E using the constraint

% =
The geometric stiffness is easier, and is
R9eo_ / BT 58,00 (94)
’ Q
where
B' = [Nig Ny

The total stiffness is then the sum of the two parts, matandl geometric:

- slave mat geo
Keig  =Keii +Kegig

Now the element stiffness matrix is computedaminar coordinates, so we have to
rotate it back to global coordinates.

slave_ slav T
K3i3Ve=RK3TVR

Then we can apply a similar reduction as that used for the mas$sx (c.f. equation
(85)) to obtain the stiffness matrix for the master nodes:

K (renaster: TgKglave]-e (95)
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5.2 Time integration

Time integration is again done with the Newm#rklgorithm, except that we must use
the nonlinear variant, rather than the linear one. In thdinear case, the predictors
and correctors are still the same, except that now the eaqufati the state at timg"1,

is now nonlinear (c.f. equations (35),(36),(37)) :

sinertia_ fext(un+1) Jrfint(unﬂ) -0 (96)

Technically the mass matrix changes with time. For simylidi evaluate it at the
beginning of a time step and then leave it fixed for that iteratand solve the nonlinear
system resulting from inserting (89) into (96):

Mun+1_fext(un+1)+fint(un+1)+-|-TMsIave'mn+1 -0 (97)

This equation can be solved using Newton’s method. The dacal equation (97) is
required for Newton’s method. | use approximate one,

A =M + BAt?K (98)

whereK is the Jacobian of the internal force vector. Note that weehdropped the

Jacobian with respect to the external force vector (whiaeis for many problems, but
not for FSI coupled problems). Rayleigh damping is also sugpl, and is sometimes
useful for stabilizing the structure. This damping term msitted from the Jacobian.
For static problems (used for debugging purposes), théahéerm in equation (96) is

zero, so we must simply solve the nonlinear system

— Xy +fiNty) = 0 (99)
We still use Newton’s method, but in this case, we simply sstha Jacobian
A=M-+K (100)

The reason for usiniyl + K rather than simplK is that for some configuration&

is singular. UsingVl + K, though slightly less inefficient, guarantees a non-siagul
Jacobian matrix in any configuration. In practice it is simes necessary to relax the
updates obtained from Newton’s method, especially forcspabblems involving large
displacements.

5.3 Static test cases

1. Straight beam extension.

Consider a beam of length= 1 aligned with thex-axis, with a cantilevered left
end, pulled on the right end (which is free) with a force in thdirection of
F /b = 1000. The thickness of the beamhs= 0.02, andE = 2.1 x 10’. The

stress in the beam is .

Oxx = bh
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Z

Figure 9: Schematic for the static deformation of a curveahhe

An exact solution can be derived for this case. Xeformation gradient is

_0X
oX
and satisfies the nonlinear equation
1 E(°—1)s
21-v(E-1) (1oh)
For this example, the exact solution is
0x
—— =1.002369138
oX

so that the end displacementds= 0.002369138. The nonlinear beam model
yieldsd = 0.00236913912189, which is very close.

2. Straight beam extension (+ rotation).

We consider the same beam as before, except now the left isrisginstead

of cantilevered. Further, we apply the force in thg direction instead of the
+x direction. This is a somewhat harder case because the beato hatate
down from the undeformed configuration, to the final confitjorain which it

is oriented in they direction. The displacement of the end is the same, however
(though now in the-y direction instead of the-x direction). The model yields

an end displacement &= —0.00236913801753 which is again very close to
the exact answer.

3. Curved Beam.

Now consider a curved beam, in the shape of a quarter cirdhe I&@ft end is
cantilevered, and the right end is loaded with a downwardd®x A schematic
is shown in figure 9. This problem has a semi-analytic sofytgven in Timo-
shenko’sStrength of Materials, Vol.[The displacement in the vertical direction
(in the direction ofP) is

=—— (102)
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and the horizontal displacement (to the right) is

Pr3
O = 57 (103)

Consider a beam with
| /b=6.66667x 10’

E=21x10"
r=1

loaded with a force
P/b=1

The semi-analytica} displacement from (102) is
8y = 5.6099866x 10°
and thex displacement from (103) is
8 = 3.571428x 10°°

Discretizing this beam with 30 elements and simulating, etfiggm the nonlin-
ear finite element model
3y =5.614x 10°°

and
8, = 3.57533x 106

which is in very good agreement with the solution from Timesko’s book.

4. Turek & Hron CSM Benchmark (1).

The paper by Turek and Hron [5] also contains two static tases. Both cases
use a 0.35 m beam, which is 0.02 m thick, cantilevered on thehe and free
on the right end. Furthermore, in both cases the beams adedoanly with a
gravitational body forceg = (0, —2) m/<.

In the first case, the properties of the beam are
p = 1000 kg/n?

v=04
E=56x10°kg/m &

Now it appears that the benchmark case provided assumethéhatructure is

in a state of plane strain, whereas the beam model descrédrethrassumes that
the beam is in a state of plane stress. To get comparabldsethdn, we must

adjust the elastic modulus slightly:

E

m
|

5 = 6.666x 10° kg/m &
\Y)

31



5.4 Dynamic test cases 5 NONLINEAR BEAM MODEL

For their simulation, Turek & Hron obtain a tip displacement
3 = —0.4690x 103 m

and
3 =—1697x103m

For our model, we obtain
& = —0.4669x 10 3 m

and
3y = —16.904x 103 m

Our model yields the same result to two/three decimal placBEsis is good
agreement considering that we use a simplified beam modekeah the refer-
ence solution uses solid elements.

. Turek & Hron CSM Benchmark (2).

The second benchmark is similar to the first, except that ldégtie modulus is
setto
E=14x10°kg/m &

We again have to adjust the elastic modulus slightly, yirejdi
E = 1.666x 10° kg/m &

For their simulation, Turek & Hron obtain a tip displacemehtor our model,
we obtain
O =—7.187x103m

and
3 = —66.10x 103 m

For our model, we obtain
8 =—7.165x 10 3m

and
3y = —65875x 103 m

For this case, we see agreement to roughly two decimal places

Dynamic test cases

. Turek & Hron CSM Benchmark (3).

This is the same as the static benchma@idkek & Hron CSM Benchmark (2)
except that it is dynamic. The beam is started from a straigideformed con-
figuration, with zero velocity, and then permitted to falldamscillate under the
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influence of gravity. They present an oscillatory respong#) an x displace-
ment of the tip varying between

3 €[0,—2861 x10>m
and ay displacement varying between
3y € [1.553 -1288] x 103 m

and a period of
T =0.9095s

Performing the simulation in our code, we get the followirgte for the tip
displacement (c.f. the plots in the Turek & Hron paper):

0.005 0.02

0 0

Displacement x
Displacement y
)
=4
8

2 8 0 e 2

5 4 6
Time Time

(a) X displacement (b) Y displacement

Figure 10: Tip displacements for the Turek & Hron CSM Benchkr(8)

Displacement x
Displacement y
)

o
8

85 95 0 e 85 95 0

.9 -9
Time Time

(a) X displacement (b) Y displacement

Figure 11: Tip displacements for the Turek & Hron CSM Bencha(8)

Qualitatively, these plots demonstrate that our model igdnd agreement with the
model from Turek & Hron. Quantitatively, our response isoadscillatory, with thex
displacement during the tintec [8,10] varying between

dy € [0.005,—29.3] x 103 m
and ay displacement varying between

3y € [1.5726 —1296] x 10 3 m
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The measured period for thedisplacement (e.g., between the two extrema in the time
periodt € [8,10]) is 0.90687 s, and for thedisplacement 0.91258 s. There is a slight
discrepancy in the periods because our model seems to hawala second mode
(which can be seen in figure 10(a)). This mode does not seeseren the model

of Turek & Hron. Despite this, both computed periods are \@oge to the reference
value given by Turek & Hron.

5.5 FSI Coupling

The overall coupling procedure is the same as in the lineambease. Two elements
are worthy of note however: (1) The construction of the bamdnesh, and (2) the
integration of the fluid loads.

5.5.1 Boundary mesh construction

A naive approach to constructing the fluid boundary mesh, (itee wetted surface)
would be to simply connect adjacent slave nodes with sttdiigiss. While appealing,
this would result in a boundary mesh that is not smooth. &thteur construction will
consist of two steps which will guarantee the smoothnessi@frésulting boundary
mesh. First, on each elemeBtwith master nodes andi + 1, we construct a cubic
Bezier curve connecting these two nodgés). We then the boundary curve is defined
to be

X = Bx(s) +cos(0(s))d(s) — x(s) (104a)
¥ = By(s) +sin(6(s))d(s) — &y(s) (104b)

wherese [0,1]. The functionsl(s), &x(s), anddy(s) are defined using the initial bound-
ary mesh from the mesh generator. For any boundary pmiat (X 0, Vi 0), we deter-
mine at the beginning of the simulation (in the undeformetfiguration) which master
elementE the boundary point is closest to (note that the master eleEBé&ngeomet-
rically a line segment). This poirg is then projected onto the elemdst yielding a
distanced;, and a natural coordinat&;,, which describes where the projectionmfis
within the elemenE. There is a one-to-one correspondence betveserdg,

S =345

The functiond then satisfies
d(s)=d

The functionsdy(s), anddy(s) are defined so that at= 0, X = X0 andyi = yio. It
remains now to construct the Bezier cuBés). A cubic Bezier curve takes the form

B(S) = (1—35)3Py+3(1—5)?sP; + 3(1—5)°P2 4 S°P3 (105)

This curve goes throughy ats= 0, andP; att = 1. In addition, it is tangent to the line
segmenPyP; ats= 0, and tangent to the line segmdntP; ats= 1. To guarantee
smoothness, we will require that the curve pass throughwhlentaster nodes and

34



5.5 FSI Coupling 5 NONLINEAR BEAM MODEL

i + 1, and that the curve be perpendicular to the directors aethedes. To construct
this curve between master nodes definedpyyi) and(X+1,Yi+1), we first set

Po= (%,Vi) , P3 = (Xi+1,Yi11)

We wish B(s) to be perpendicular to the directpr at Py, and perpendicular to the
directorpj atPs. This requires that

P1=Po+p;- (1062)
P2 = P3—Ipi, (106b)
(106¢)

wherep;- is a vector perpendicular o pointing in the direction froni to i + 1. The
scale facto is somewhat arbitrary. | choose

1
Z=§||P3—P0H (107)

though | imagine many other choices are possible. One aagartf using this sort
of curve for the boundary mesh is that in addition to beingydasconstruct, it is
also simple to obtain the acceleration of points on the bagnfvhich is necessary to
perform the FSI coupling). From (104a), (104b), we have

. 0°B(s) cosB] . [—sin®
=3 +d(s) (-wZ [Sme] +w[ o D (108)
The partial of the Bezier spline can be computed:
9%B(s) 402Pg , 02P; 0°P; | 30°P3
sz = (1-9757 +31-9s 5 +3(1fs)szat—2 +§ﬁ (109)
Now 1
Po = Xi + > opi
so 52
Sz —at Eho( W pi — aip; ) (110)
and )
0“P 1
Tz?, = a1+ Eho (*‘*)iz+1pi+1 - Gi+lpﬁ1) (111)
Now | approximate
0°P1 _ 0°Po N
o2 o +¢ (“qupi +a.p,> (112)
and 5 5
%P P
5 = 5z (-ehapttaiapia) (113)

Note that this ignores the dependencé oft, but | think this effect is minimal at best.
If desired this can be rectified either by using a formulaZftinat does not depend on
or by including the dependence ©bnt in the derivative formulas. | see no evidence
that this is necessary, however.
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5.5.2 Load computation

The computation of the external load is actually simplenthas for the linear beam.
The external load is first computed at the slave nodes. Orothsurface of the beam
(which corresponds tg = 1) we have

0s

fe,slave:/N(E71)t 5
wheret is the traction vector. At the moment, | assume

t=pEn

thereby neglecting viscous forces. Further, | assp(§g to be a piecewise linear func-
tion, in particular linear on each element of the boundargim@ot each element of
the structural mesh). | also taketo be constant on each boundary mesh element. As
before, | assume other (or better) approximations are plesfir p(§) andn; however,
I have no evidence that these are necessary. Clearly, thowegftecting the viscous
forces is not a good approximation. For studying FSI couplim viscous incom-
pressible flows, however, in which the pressure forces angirlant (and the dominant
causes of instability), it is reasonable. This is not to $&t aidding the viscous forces
is difficult; rather it is quite trivial.

The external forces at the master nodes can then be obtaiitiethg a similar
transformation as that used for the internal forces.

f

dg (114)

X
eslave,l
fy
eslave,l
X
%slave,k
eslave,

T
fe,master,I: T
f

5.6 FSltestcases

1. Turek & Hron FSI Benchmark (1).

This test case involves a thin, flexible beam, mounted on #do& bf a cylinder
(e.g., like a streamer). The beam has the same geometry las dyhamic test
caseTurek & Hron CSM Benchmark (19.35 m long, 0.02 m thick. The density
of the beam ips = 10* kg/m?®, with Poisson’s ratio = 0.4 and elastic modulus
E = 1.4 x 1(° Pa. Note that as before we must adjust the elastic modutrglsii
to account for the fact that our beam model assumes plangsstrhereas the
Turek & Hron results are presented for a structure in plararsfor they appear
to be).

A cartoon of the problem geometry is shown in figure 12. Forladesciption

of the problem geometry, the reader is referred to the caigdaper. The inflow
flow profile (at the left) is set to be parabolic and time demsridwith flow in

thex direction, with velocity:

—y(H—y) lcosit o
u(t,0,y) = 1.50 2 _ 115
(t,0.y) (H/2)2 X { 1 otherwise (115)
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Incormpressible NS, nu=100s-03
t=0.000, dt=385e—04, od2={1.0,1.0)
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Figure 12: Geometry of the Turek & Hron FSI Benchmark (1)

whereH = 0.41 m is the height of the domain akflis the average inflow ve-
locity. For this casel is set to 1 m/s. Further, the fluid uses has a density
pf = 10° kg/m? and kinematic viscosity" = 10-3 m?/s. After a period of time,
the beam enters into a steady (or nearly steady) oscillafitve oscillatory re-
sponse presented by Turek & Hron is characterized by displacement of the
tip varying between

O € [~2.14,27.02 x 10 ® m

with a period of
Tx=026s

and ay displacement varying between
3y € (8183, 7937/ x 10 3m
with a period of
T,=050s

Performing the simulation in our code, we get the followirigte for the tip
displacement (c.f. the plots in the Turek & Hron paper):

From these plots, th& displacement in the (nearly-) steady state oscillation
varies between
O € [-1.97,—385] x 10 m

with a period of
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Figure 13: Tip displacements for the Turek & Hron FSI Benchaoga)
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Figure 14: Tip displacements for the Turek & Hron FSI Benchaoga)

and ay displacement varying between
8y €[-89.9,929] x 10 3 m

and a period of
Ty=052s

The measured periods are nearly identical. However, thepoted oscillations
of the beam are about 10% larger (based orytdisplacement) than those from
the Turek & Hron reference. This is not surprising, thougggduse in our model
we have not added the viscous forces to the load computattois. actually
expected, therefore, that there is some discrepancy bettheeaesults from our
model and the Turek & Hron reference.

2. Turek & Hron FSI Benchmark (2).

This case is very similar to the previous caberek & Hron FSI Benchmark (1)
Furthermore, the density of the beampis= 10° kg/m®, with Poisson’s ratio

v = 0.4 and elastic modulus = 5.6 x 10° Pa. Note that as before we must adjust
the elastic modulus slightly to account for the fact thatlbesm model assumes
plane stress, whereas the Turek & Hron results are presémtedstructure in
plane strain (or it appears to be). The problem geometry and firoperties
are the same as before. The initial conditions are also tme sexcept that the
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mean inflow velocity is increased th= 2 m/s. After a period of time, the beam
enters into a steady (or nearly steady) oscillation. Thsdillatory response is
characterized by andisplacement of the tip varying between

3 € [-0.16,—5.22] x 10 > m

with a period of
Tx=0.0917 s

and ay displacement varying between
8y € [~3290,3586 x 10 *m

and a period of

Performing the simulation in our code, we get the followirgte for the tip
displacement (c.f. the plots in the Turek & Hron paper):
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; -0.002 | ; 002
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2 | & o
-0.004
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1 2 .3 4 5 1 2 .3 5
Time Time
(a) X displacement (b) Y displacement

Figure 15: Tip displacements for the Turek & Hron FSI Benchn{a)
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Figure 16: Tip displacements for the Turek & Hron FSI Bencho{a)
From these plots, th& displacement in the (nearly-) steady state oscillation

varies between
3« € [~0.08,—5.82] x 10 3 m
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with a period of
Tx=0.089 s

and ay displacement varying between
8y € [-3331,37.1 x 10 3m

and a period of

We get a relatively good agreement between our results andurek & Hron
reference result. Our periods are slightly shorter, andpisekx displacement
is slightly larger than that of Turek & Hron. The plot in figuté(a) also shows
a noticeable second mode, in addition to the one used to dentpe period
of oscillation. This mode is also evident when examining plas from the
Turek & Hron paper, however its amplitude is somewhat less@unced. Thg
displacements agree quite well.

6 Future work

The nonlinear beam model described in the previous sectioneasily be extended
to handle three dimensional beams (also called risers).s&hre general assumptions
made in the two dimensional beam model can be made in thedhremsional model.
We still define the beam using a set of master nodes down thercafithe beam. In
three dimensions, instead of having quads as slave elewentsll have hexes — so
that every master node has four slave nodes associated vathér than two. Further,
whereas in two dimensions the slave nodes were defined uséigke directorp;,
(equations (69a, 69b)), now there are two directors at elavie sodep} andpiz. The
slave node positions are then

1 1

These directors can be defined by creating a local coordgyatem ak; whose rota-
tion is specified by the quaterniap. The internal force calculation (equation (74) in
2D) is very similar, except that we must now enforce boj = 0 andoy = 0. The
plane stress assumption, though, no longer applies. Irr ¢odgatisfy the condition
on the normal stresses, we must modify the strain comporienttrain deformation
components, depending on the material model). In the SVienahimodel, this would
correspond to modifyindeyg, Ez to maintain the zero normal stress condition in the
beam. The existence of complex cross sections (those thabaia box!) is one com-
plication that does not exist in the two dimensional cases ifitegral over the section
necessary to compute the internal force must be split upgroes. My suggestion,
similar to one from the LS-DYNA documentation [4], is to slyppp mesh of the cross
section in simple shapes, either in triangles or quads. idgsich a mesh makes per-
forming the integrals in the internal force formulae possiio do with straightforward
Gaussian quadrature on each shape. The matrix transfomiats well as the stiff-
ness matrices will be slightly different, but maintain tlere form. Caution must be
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exercised when integrating the rotational degrees of fseediue to the nonlinear re-
lationship between the angular velocity and quaterniorptenal derivatives; however,
this relationship is well documented in the rigid body dymesriiterature. A beam
implemented in this way would allow all of the major deforinagl modes possible
for bars: extension, bending about any axis, and torsion.

The load computation is a trivial extension of equation {11Phe update of the
boundary mesh requires some elucidation. We start withhtteetdimensional exten-
sions of equations (104a) and (104b):

%= B(s)+p'(s)d*(s) +p*(s)d*(s) — 3(s) (117)

wherep!(s) andp?(s) are the interpolated directorssfwheresis defined analogously

to the two dimensional case), adgs) is similary defined so that = xp att = 0.

The Bezier curveB(s) is now a three dimensional curve, and is constructed so as to
pass through the appropriate master nodesdx; 1, and to be perpendicular to both
directors at these nodes.

A Nonlinear beam model format

This appendix documents the format of the beam file used énémlinear beam. The
format is as follows:

[# master nodes] [# master elenents]

[density] [nu] [En [omega.structure] [isSteady]

[bcLeft] [bcRight]

[ pressureNorn] [useExactSol ution] [rayleighAl pha] [rayl ei ghBeta]
[X1] [YA] [z1] [©1] [h1]

[X2] [Y2] [22] [©2] [h2]

[X3] [Y3] [23] [©3] [h3]

[XN [YN [ZN [ON [hN

The parameters are

[# master nodes]: Number of nodes placed along the center line of the beam

[# master el enments]: Number of beam elements. This should always be seft#o
mast er nodes]-1

[densi ty] : Density of the beam

[ nu] : Poisson’s ratio for the beam

[ En : Elastic modulus for the beam

[omega_structure] : Relaxation factor used when solving the nonlinear stmattu
equations. Should be set in the range: @ < 1. 1 is typical, except when solving
static equations, in which smaller factors may be necessary

[isSteady] : Setto 1 when solving static problems (for debugging), @otlise (for
FSI).

[becLeft], [bcRight] : Boundary condition on the left/right of the beam. 0 = can-
tilevered, 1 = pinned, and 2 = free.
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[ pressureNorni : Scale factor applied to the pressure obtained from the fluwes
before computing the fluid load on the beam.

[useExact Sol ution] : Notused. Setto zero.

[rayl ei ghAl pha], [raylei ghBeta] : Parameteq, 3 for damping.a =3 =0 cor-
responds to no damping.

[Xd ], [Yd ],[Z4] : Undeformed position of master nodez; should be set to
zero.

[©.1] : Initial, undeformed angle of the director with respecthe x axis. The di-
rector should generally be as perpendicular as possiblestadutral axis of the beam.
[hi] : Thickness of the beam at nodle The total number of lines specifying the
nodes (i.e.N) must be the same as the number of master nodes specifiedrast er
nodes] .
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