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DESIGNING AND IMPLEMENTING LABVIEW SOLUTIONS 

FOR REUSE* 

M Flegel, G Larkin, L Lagin, B Demaret, LLNL, Livermore, CA 94550, USA

Abstract 
Many machines have a lot in common – they drive 

motors, take pictures, generate signals, toggle switches, 

and observe and measure effects. In a research 

environment that creates new machines and expects them 

to perform for a production assembly line, it is important 

to meet both schedule and quality. NIF has developed a 

LabVIEW layered architecture of Support, general 

Frameworks, Controllers, Devices, and User Interface 

Frameworks. This architecture provides a tested and 

qualified framework of software that allows us to focus 

on developing and testing the external interfaces 

(hardware and user) of each machine. 

THE NATIONAL IGNITION FACILITY 

The NIF is the largest and most energetic laser system 

in the world, capable of creating temperatures and 

pressures normally constrained to stars, giant planets, and 

nuclear weapons with a goal of achieving controlled 

inertial confinement fusion in a laboratory setting. In 

order to accomplish this, the NIF uses a significant 

number of near perfect optics to deliver the laser energy, 

and a near perfect capsule used to contain the fuel. 

AUXILIARY PRODUCTION FACILITIES 

Optics Mitigation Facility (OMF) 

In order to achieve “near perfection” with the optics, 

the NIF built the “Optics Mitigation Facility” in 2010. 

This system guides an operator through the inspection 

flaws, examines and characterizes them with a Fetura 

microscopes and Basler cameras, and decides whether 

they can be mitigated. Mitigations as small as 360 

microns are applied using a real-time motion chassis with 

a real-time laser light delivery system. 

The OMF was implemented in LabVIEW and was the 

focus of the highly respected case study – “Using 

LabVIEW in a Critical Laser Application for the National 

Ignition Facility at Lawrence Livermore National 

Laboratory”[1] – co-written between LLNL and National 

Instruments (NI). From the success of the OMF, the NIF 

undertook to commission four more optics processing 

systems, three target processing systems, and one line 

replaceable unit (LRU) transporter. 

Optics Processing Systems 

Grated Debris Shield (GDS) Etch drives an optic 

across a set of meniscus processing heads that chemically 

treats and rinses a photoresist coated optic to develop and 

etch a grating pattern into the glass substrate of the optic. 

Photoresist (PR) & SolGel Meniscus Coaters, similar 

to GDS Etch, apply a thin layer of a chemical to one side 

of an optic. Given the different fluid behaviours the optic 

clearance relative to the meniscus process head is much 

smaller (0.5mm vs. 2mm) than GDS Etch. 

Flaw Inspection and Characterization System 

(FICS) scans an optic for flaws (IMS-LS and FADLiB) 

and examine the flaws in detail (PSDI). The metrology 

information is used to determine how to mitigate the flaw 

with a CO2 laser drill on OMF, with a diamond drill on a 

Crystal Mitigation System, or chemically removing the 

flaw in the coating (with FICS’ Flaw Removal Tool 

(FLRT)). 

Target Processing Systems 

CFTA Cleaning chemically cleans the surface of a 

Capsule Fill Tube Assembly (CFTA) using a fine spray 

nozzle[2]. 

CFTA Mapping takes over 350 confocal images of a 

capsule surface to characterize the capsule’s surface 

features[3][4][5]. 

CFTA Leaktest monitors temperature, pressure, and 

leak rate sensors over time for a capsule under test to 

automatically determine the integrity of the capsule. 

Transporter Systems 

ARC PV Transport & Handling transports, installs 

and removes Advanced Radiographic Capability (ARC) 

LRUs weighing around one ton in the NIF’s Parabola 

Vessel (PV) with clearances as small as 3 mm. 

FRAMEWORK 

Motivation 

The OMF set the stage for the viability of advanced 

application development in LabVIEW. It took advantage 

of: 

 Prebuilt drivers for hardware and instruments; 

 Highly customizable drag-and-drop user interfaces; 

 Easy, rapid prototyping for testing and demonstrating 

new features and concepts; 

 Built-in vision and analysis routines; 

 Easy manipulation for large data sets with built-in 

array functionality. 

Software engineering best practices including 

requirements analysis, design, test, and change 

management were used; and the system was delivered in 

15 months, roughly one-third of the estimate to develop 

using Java or C++. 

Observing that OMF’s success was based on re-using 

LabVIEW’s built-in routines and applying software 

engineering best practices, a reusable layered architecture 

of additional abstractions and components was designed 
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and used to build the next eight systems, with LabVIEW. 

This approach was introduced at NIWeek 2011[6] (a 

major international conference), applied to the eight 

systems described above, and summarized in the 

configurations and reuse metrics listed in Table 1. 

 

 

Table 1: System Configurations and Reuse Factors 

System 

Release 

Common 

Release 

System Common Total Reuse 

Classes VIs Classes VIs Classes VIs Classes VIs 

Common     186 1294       

CFTA 

Mapping 
1.1.0 

1.0.7 

RC002 
45 448 86 650 131 1098 66% 59% 

CFTA 

Cleaning 
1.1.0 

1.0.3 

RC002 
17 101 66 510 83 611 80% 83% 

GDS Etch 2.0.0 
1.0.6 

RC004 
60 628 83 703 143 1331 58% 53% 

FICS 2.0.2 
1.0.4 

RC003 
69 378 104 788 173 1166 60% 68% 

CFTA 

Leaktest 
1.1.0 

1.0.6 

RC003 
69 378 104 788 173 1166 60% 68% 

PR Coater 2.0.0 
1.0.6 

RC004 
25 216 58 436 83 652 70% 67% 

SolGel 

Coater 
2.0.0 

1.0.6 

RC004 
57 322 104 788 161 1110 65% 71% 

TH ARC 1.0.0 
1.0.7 

RC002 
41 225 75 658 116 883 65% 75% 

Average 47 337 85 665 133 1002 64% 66% 

 

There are three major components to the architecture: 

 Layering fosters efficient reuse of code[7]; 

 Abstractions codify regularly occurring patterns 

such as actors, hardware abstractions, recipes, user 

interfaces, applications (that pull everything 

together), etc.; 

 Components codify regularly occurring capabilities 

such as configuration, logging, mail, communication, 

database, device models (e.g. actuators, motors, 

regulators, cameras, sensors), etc. 

Layering 

Layers provide a narrow and well-defined interface to 

layers below it [7], with each layer defining a 

progressively more abstract machine and permits 

retargeting[8]. There are seven layers to the architecture 

(see Figure 1) consisting of: 

1. Support – basic classes and utilities; 

2. Frameworks – basic abstractions and components; 

3. Framework Services – generalized services; 

4. Controllers – interfaces to external systems; 

5. Devices – device behaviour and commonly used 

devices; 

6. Application Support – glue that holds the entire 

system together; and  

7. Systems – the unique requirements of each 

application. 

 

Figure 1: Layering 

Abstractions 

Abstractions describe recurring themes, but lack the 

concrete details to stand on their own. There three key 

abstractions at the centre of the Framework. 



Actors represent resources that have state. The 

resource can be a single device or a supervised collection 

of devices; it can change value and/or state, and publish 

this to interested subscribers. Figure 2 is a high level class 

diagram of the actor design. 

 

Figure 2: Actor Class Diagram 

 

Hardware Abstractions insulate device 

implementations from the actual hardware: the Device 

models the behaviour of the hardware; the Controller 

implements the concrete interface to the hardware; and 

the Channel adapts the Device to the Controller. The 

same Device implementation can be used with different 

Controllers (e.g., Aerotech, Newport, Wago, etc.). Figure 

3 is a high level class diagram of the hardware abstraction 

design. 

 

Figure 3: Hardware Abstraction Class Diagram 

 

Application and User Interfaces encapsulate the rules 

for building the program and allowing the program to 

interact with operators, testers, and developers. With a 

graphical user interface (GUI) Framework, user interfaces 

implemented to provide Device control (see above) can 

be reused within the same application as well as in other 

applications. Figure 4 is a high level class diagram of the 

application and GUI design. 

 

Figure 4: Application and GUI Class Diagram 

EXPERIENCES 

What Comments May Be Encountered Along the 

Way 

LabVIEW applications are ‘sub-standard’ and are 

unstable for production. LabVIEW is a programming 

language. Good software engineering practices, a good 

design methodology, and trained engineers are what make 

quality systems that meet DOE Order 414.1D[9]. 

Why is it taking so long? Early systems are on the 

hook for creating the Framework. Once the base 

Framework is in place, migration to a more agile 

development process allows the delivery of manual 

control of the machine, followed incrementally by more 

complex solutions to meet needs and expectations. 

You implemented what I asked for, but that’s not 

what I want! Customers often don’t know what they 

want until they see what they are getting. Working with 

customers to develop the user interfaces helps to 

understand the requirements and expectations, and helps 

the customers buy into the system being built. 

Individuals had their own software ‘toolbox’. 
Standalone developers tend to have their own collections 

of software tools that they upgrade and fix each time they 

are reused, but the changes are rarely applied to previous 

systems. Usually only the developer understands their 

own tools. A common shared and configured toolbox 

allows these tools to be tracked and understood amongst 

many developers, and many systems. 

How To Do This 

“good engineering practices”. A team trained in 

software engineering skills – project planning, 

requirements analysis, object oriented design and 

programming, code reviews, independent test, 

configuration management (Jira change 

management[10][11] and AccuRev source code 

control[12]) – is essential. These skills are used to create 

plans, estimates, and schedules that are tracked and 

communicated with management and customers. The 

focus of the development effort should be on the systems, 

with reuse in mind. Items identified for reuse are 

refactored into the Common Framework when needed 

and/or mature for reuse. 

Track How It’s Going 

Collecting metrics is important to measure the effects. 

Table 2 illustrates our metrics order of the earliest (CFTA 

Mapping) to most recent (TH ARC) systems, and 

correlates the effort (in days) with the artefacts of the 

systems – number of classes and control points (devices 

and controllers) – required to implement each system. 



Table 2: Development Metrics 

 Effort 

Total 

Effort 

per 

Class 

Effort 

per 

Control 

Point 

Control 

Points 

1 

CFTA 

Mapping 585 4.1 45.0 13 

2 

CFTA 

Cleaning 199 2.4 8.3 24 

3 

GDS 

Etch 486 3.0 5.3 91 

4 FICS2 321 2.5 14.6 22 

5 

CFTA 

Leaktest 98 1.2 9.8 10 

6 

PR 

Coater 109 0.6 0.9 119 

7 

SolGel 

Coater 109 0.6 0.9 123 

8 TH ARC 249 2.1 2.1 120 

As the systems are built, each contributes something to 

the Framework. Earlier systems are taxed with more 

significant contributions than later systems. At first, 

customers were uneasy as they felt their systems were 

being unfairly taxed and taking significantly longer than 

they expected. 

 Figure 5: Development Trends 

However, they were pleased with the quality – “These 

are some of the most stable systems we have seen.” 

Customers of later systems were also pleased that “the 

time required to generate a product of the same 

complexity [and quality] was significantly reduced”. 

National Instruments is taking a keen interest in this 

process and the results. 

WHAT NEXT 

The metrics indicate that the approach is successful. 

The next steps are to: 

Continually Improve – more agile development, 

subdivide the Framework into packages, encourage 

developers to enhance their skills with training and 

certification. 

Rapid Prototyping – develop a process that allows 

prototypes to be deployed that are needed for proof of 

concepts for machines and machine processes. 
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