
LLNL-CONF-644308

Designing And Implementing
LabVIEW Solutions For
Re-Use

M. Flegel, G. Larkin, L. Lagin, B. Demaret

October 2, 2013

ICALEPCS 2013
San Francisco, CA, United States
October 6, 2013 through October 11, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

DESIGNING AND IMPLEMENTING LABVIEW SOLUTIONS

FOR REUSE*

M Flegel, G Larkin, L Lagin, B Demaret, LLNL, Livermore, CA 94550, USA

Abstract
Many machines have a lot in common – they drive

motors, take pictures, generate signals, toggle switches,

and observe and measure effects. In a research

environment that creates new machines and expects them

to perform for a production assembly line, it is important

to meet both schedule and quality. NIF has developed a

LabVIEW layered architecture of Support, general

Frameworks, Controllers, Devices, and User Interface

Frameworks. This architecture provides a tested and

qualified framework of software that allows us to focus

on developing and testing the external interfaces

(hardware and user) of each machine.

THE NATIONAL IGNITION FACILITY

The NIF is the largest and most energetic laser system

in the world, capable of creating temperatures and

pressures normally constrained to stars, giant planets, and

nuclear weapons with a goal of achieving controlled

inertial confinement fusion in a laboratory setting. In

order to accomplish this, the NIF uses a significant

number of near perfect optics to deliver the laser energy,

and a near perfect capsule used to contain the fuel.

AUXILIARY PRODUCTION FACILITIES

Optics Mitigation Facility (OMF)

In order to achieve “near perfection” with the optics,

the NIF built the “Optics Mitigation Facility” in 2010.

This system guides an operator through the inspection

flaws, examines and characterizes them with a Fetura

microscopes and Basler cameras, and decides whether

they can be mitigated. Mitigations as small as 360

microns are applied using a real-time motion chassis with

a real-time laser light delivery system.

The OMF was implemented in LabVIEW and was the

focus of the highly respected case study – “Using

LabVIEW in a Critical Laser Application for the National

Ignition Facility at Lawrence Livermore National

Laboratory”[1] – co-written between LLNL and National

Instruments (NI). From the success of the OMF, the NIF

undertook to commission four more optics processing

systems, three target processing systems, and one line

replaceable unit (LRU) transporter.

Optics Processing Systems

Grated Debris Shield (GDS) Etch drives an optic

across a set of meniscus processing heads that chemically

treats and rinses a photoresist coated optic to develop and

etch a grating pattern into the glass substrate of the optic.

Photoresist (PR) & SolGel Meniscus Coaters, similar

to GDS Etch, apply a thin layer of a chemical to one side

of an optic. Given the different fluid behaviours the optic

clearance relative to the meniscus process head is much

smaller (0.5mm vs. 2mm) than GDS Etch.

Flaw Inspection and Characterization System

(FICS) scans an optic for flaws (IMS-LS and FADLiB)

and examine the flaws in detail (PSDI). The metrology

information is used to determine how to mitigate the flaw

with a CO2 laser drill on OMF, with a diamond drill on a

Crystal Mitigation System, or chemically removing the

flaw in the coating (with FICS’ Flaw Removal Tool

(FLRT)).

Target Processing Systems

CFTA Cleaning chemically cleans the surface of a

Capsule Fill Tube Assembly (CFTA) using a fine spray

nozzle[2].

CFTA Mapping takes over 350 confocal images of a

capsule surface to characterize the capsule’s surface

features[3][4][5].

CFTA Leaktest monitors temperature, pressure, and

leak rate sensors over time for a capsule under test to

automatically determine the integrity of the capsule.

Transporter Systems

ARC PV Transport & Handling transports, installs

and removes Advanced Radiographic Capability (ARC)

LRUs weighing around one ton in the NIF’s Parabola

Vessel (PV) with clearances as small as 3 mm.

FRAMEWORK

Motivation

The OMF set the stage for the viability of advanced

application development in LabVIEW. It took advantage

of:

 Prebuilt drivers for hardware and instruments;

 Highly customizable drag-and-drop user interfaces;

 Easy, rapid prototyping for testing and demonstrating

new features and concepts;

 Built-in vision and analysis routines;

 Easy manipulation for large data sets with built-in

array functionality.

Software engineering best practices including

requirements analysis, design, test, and change

management were used; and the system was delivered in

15 months, roughly one-third of the estimate to develop

using Java or C++.

Observing that OMF’s success was based on re-using

LabVIEW’s built-in routines and applying software

engineering best practices, a reusable layered architecture

of additional abstractions and components was designed

*This work performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract

DE-AC52-07NA27344. #LLNL-ABS-632634

LLNL-CONF-644308

and used to build the next eight systems, with LabVIEW.

This approach was introduced at NIWeek 2011[6] (a

major international conference), applied to the eight

systems described above, and summarized in the

configurations and reuse metrics listed in Table 1.

Table 1: System Configurations and Reuse Factors

System

Release

Common

Release

System Common Total Reuse

Classes VIs Classes VIs Classes VIs Classes VIs

Common 186 1294

CFTA

Mapping
1.1.0

1.0.7

RC002
45 448 86 650 131 1098 66% 59%

CFTA

Cleaning
1.1.0

1.0.3

RC002
17 101 66 510 83 611 80% 83%

GDS Etch 2.0.0
1.0.6

RC004
60 628 83 703 143 1331 58% 53%

FICS 2.0.2
1.0.4

RC003
69 378 104 788 173 1166 60% 68%

CFTA

Leaktest
1.1.0

1.0.6

RC003
69 378 104 788 173 1166 60% 68%

PR Coater 2.0.0
1.0.6

RC004
25 216 58 436 83 652 70% 67%

SolGel

Coater
2.0.0

1.0.6

RC004
57 322 104 788 161 1110 65% 71%

TH ARC 1.0.0
1.0.7

RC002
41 225 75 658 116 883 65% 75%

Average 47 337 85 665 133 1002 64% 66%

There are three major components to the architecture:

 Layering fosters efficient reuse of code[7];

 Abstractions codify regularly occurring patterns

such as actors, hardware abstractions, recipes, user

interfaces, applications (that pull everything

together), etc.;

 Components codify regularly occurring capabilities

such as configuration, logging, mail, communication,

database, device models (e.g. actuators, motors,

regulators, cameras, sensors), etc.

Layering

Layers provide a narrow and well-defined interface to

layers below it [7], with each layer defining a

progressively more abstract machine and permits

retargeting[8]. There are seven layers to the architecture

(see Figure 1) consisting of:

1. Support – basic classes and utilities;

2. Frameworks – basic abstractions and components;

3. Framework Services – generalized services;

4. Controllers – interfaces to external systems;

5. Devices – device behaviour and commonly used

devices;

6. Application Support – glue that holds the entire

system together; and

7. Systems – the unique requirements of each

application.

Figure 1: Layering

Abstractions

Abstractions describe recurring themes, but lack the

concrete details to stand on their own. There three key

abstractions at the centre of the Framework.

Actors represent resources that have state. The

resource can be a single device or a supervised collection

of devices; it can change value and/or state, and publish

this to interested subscribers. Figure 2 is a high level class

diagram of the actor design.

Figure 2: Actor Class Diagram

Hardware Abstractions insulate device

implementations from the actual hardware: the Device

models the behaviour of the hardware; the Controller

implements the concrete interface to the hardware; and

the Channel adapts the Device to the Controller. The

same Device implementation can be used with different

Controllers (e.g., Aerotech, Newport, Wago, etc.). Figure

3 is a high level class diagram of the hardware abstraction

design.

Figure 3: Hardware Abstraction Class Diagram

Application and User Interfaces encapsulate the rules

for building the program and allowing the program to

interact with operators, testers, and developers. With a

graphical user interface (GUI) Framework, user interfaces

implemented to provide Device control (see above) can

be reused within the same application as well as in other

applications. Figure 4 is a high level class diagram of the

application and GUI design.

Figure 4: Application and GUI Class Diagram

EXPERIENCES

What Comments May Be Encountered Along the

Way

LabVIEW applications are ‘sub-standard’ and are

unstable for production. LabVIEW is a programming

language. Good software engineering practices, a good

design methodology, and trained engineers are what make

quality systems that meet DOE Order 414.1D[9].

Why is it taking so long? Early systems are on the

hook for creating the Framework. Once the base

Framework is in place, migration to a more agile

development process allows the delivery of manual

control of the machine, followed incrementally by more

complex solutions to meet needs and expectations.

You implemented what I asked for, but that’s not

what I want! Customers often don’t know what they

want until they see what they are getting. Working with

customers to develop the user interfaces helps to

understand the requirements and expectations, and helps

the customers buy into the system being built.

Individuals had their own software ‘toolbox’.
Standalone developers tend to have their own collections

of software tools that they upgrade and fix each time they

are reused, but the changes are rarely applied to previous

systems. Usually only the developer understands their

own tools. A common shared and configured toolbox

allows these tools to be tracked and understood amongst

many developers, and many systems.

How To Do This

“good engineering practices”. A team trained in

software engineering skills – project planning,

requirements analysis, object oriented design and

programming, code reviews, independent test,

configuration management (Jira change

management[10][11] and AccuRev source code

control[12]) – is essential. These skills are used to create

plans, estimates, and schedules that are tracked and

communicated with management and customers. The

focus of the development effort should be on the systems,

with reuse in mind. Items identified for reuse are

refactored into the Common Framework when needed

and/or mature for reuse.

Track How It’s Going

Collecting metrics is important to measure the effects.

Table 2 illustrates our metrics order of the earliest (CFTA

Mapping) to most recent (TH ARC) systems, and

correlates the effort (in days) with the artefacts of the

systems – number of classes and control points (devices

and controllers) – required to implement each system.

Table 2: Development Metrics

 Effort

Total

Effort

per

Class

Effort

per

Control

Point

Control

Points

1

CFTA

Mapping 585 4.1 45.0 13

2

CFTA

Cleaning 199 2.4 8.3 24

3

GDS

Etch 486 3.0 5.3 91

4 FICS2 321 2.5 14.6 22

5

CFTA

Leaktest 98 1.2 9.8 10

6

PR

Coater 109 0.6 0.9 119

7

SolGel

Coater 109 0.6 0.9 123

8 TH ARC 249 2.1 2.1 120

As the systems are built, each contributes something to

the Framework. Earlier systems are taxed with more

significant contributions than later systems. At first,

customers were uneasy as they felt their systems were

being unfairly taxed and taking significantly longer than

they expected.

 Figure 5: Development Trends

However, they were pleased with the quality – “These

are some of the most stable systems we have seen.”

Customers of later systems were also pleased that “the

time required to generate a product of the same

complexity [and quality] was significantly reduced”.

National Instruments is taking a keen interest in this

process and the results.

WHAT NEXT

The metrics indicate that the approach is successful.

The next steps are to:

Continually Improve – more agile development,

subdivide the Framework into packages, encourage

developers to enhance their skills with training and

certification.

Rapid Prototyping – develop a process that allows

prototypes to be deployed that are needed for proof of

concepts for machines and machine processes.

REFERENCES

[1] G Larkin, “Using LabVIEW in a Critical Laser

Application for the National Ignition Facility at

Lawrence Livermore National Laboratory”, National

Instruments Case Studies, c2010.

[2] SH Baxamusa, “A Solvent Cleaning Process for the

Outer Surfaces of Plastic ICF Capsules”, 20th Target

Fabrication Meeting, 2012.

[3] NA Antipa, “Automated ICF Capsule

Characterization Using Confocal Surface

Profilometry”, Fusion Science and Technology 63

(2), 151-159, March 2013.

[4] LM Kegelmeyer, “3D Surface Mapping of Capsule

Fill-Tube Assemblies used in Laser-Driven Fusion

Targets”, European Society for Precision Engineering

and Nanotechnology, February 2011.

[5] NA Antipa, “The Capsule-Fill-Tube-Assembly

Mapping System”, 20th Target Fabrication Meeting,

2012.

[6] M Flegel and G Larkin, “Mitigation of Optic Flaws

for NIF Laser”, NIWeek 2011 – Big Physics

Symposium, August 2011.

[7] Phillipe Kruchten, Christopher J. Thompson, “An

object-oriented, distributed architecture for large-

scale Ada systems”, TRI-Ada '94 Proceedings of the

conference on TRI-Ada '94, 262-271, 1994.

[8] John P. Woodruff, “The National Ignition Facility

Integrated Computer Control System”, Presented at

Stanford Linear Accelerator Centre, April 2000.

[9] US Department of Energy, “DOE 414.1D, Quality

Assurance”, April 2011.

[10] Attlassian, “Jira”.

[11] J Fisher, "Utilizing Atlassian JIRA for Large-Scale

Software Development Management", 14th

International Conference on Accelerator & Large

Experimental Physics Control Systems (ICALEPCS),

October 2013.

[12] AccuRev, “AccuRev”.

