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Abstract: 

Anisotropy of interfacial energy is the principal driving force for thermally driven 

microstructure evolution, yet its origins remain uncertain and a quantitative description 

lacking. We present and justify a concise hypothesis on the topography of the functional 

space of interface energies and, based on this hypothesis, construct a closed-form 

function that quantitatively describes energy variations in the 5-space of macroscopic 

parameters defining grain boundary geometry. The new function is found to be universal 

for the crystallography class of face-centered cubic metals. 
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1.  Introduction 

Grain boundaries (GB) affect a great many physical, chemical, and mechanical 

properties of crystalline solids including electrical and thermal conductivity, thermal 

coarsening, corrosion resistance, impurity segregation, hydrogen embrittlement, stress 

corrosion cracking, and mechanical strength and ductility [1]. The specific contribution of 

each given boundary to the material property is largely defined by its excess energy per 

unit area that depends primarily on boundary geometry or crystallography. The 

geometric character of a boundary is defined by five macroscopic degrees of freedom 

(DOFs) that allow several alternative representations, the most common of which is in 

terms of grain misorientation (three DOFs) plus boundary plane inclination (two more 

DOFs) [2,3,4]. The GB energy is known to be anisotropic and can vary significantly with 

both the misorientation and the inclination, especially in face-centered cubic (FCC) 

metals [5,6,7].   
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Despite its recognized importance and an extensive body of literature on the subject, 

both experimental and theoretical, the GB energy anisotropy has not been 

systematically quantified. Particularly lacking is a sense of the GB energy dependence 

on plane inclination, which is difficult to quantify experimentally. Reflecting this poor 

understanding, and with very few exceptions, current models of GB network evolution 

disregard GB energy anisotropy altogether or account only for the misorientation 

dependence of the GB energy. Yet, depending on the GB plane orientation, boundaries 

of the same grain misorientation can have vastly different energies [6,7]. Furthermore, 

except for nanocrystals in which the grains can rotate, it is precisely the variations of the 

GB energy with plane inclination – and not misorientation – that define the capillary 

force driving boundary motion. 

Previous attempts to relate the GB energy anisotropy to lattice geometry have been 

unsuccessful raising legitimate doubts about the very existence of a concise relationship 

[8]. The primary difficulty stems from the high dimensionality and intricate topology of 

the “misorientation + inclination” 5-space making it difficult to decouple the inclination-

dependent variations from the anisotropy in the misorientation subspace. In addition, for 

a given set of five macroscopic degrees of freedom, the GB energy depends on 

translations along the boundary plane (microscopic degree of freedom) and can be 

affected by various modes of atomic relaxation, e.g. symmetry-breaking atomic 

reconstructions, free volume re-distribution, etc [1]. Nevertheless, both experimental 

observations and atomistic calculations reveal certain common and consistent trends in 

GB energy variations among materials of a given crystallography class (FCC, BCC, 

etc.) suggesting that lattice geometry does play a role in defining the GB energy 

anisotropy. Particularly noteworthy are observed close correlations between the GB 

energy and the spacing between lattice planes parallel to the boundary and the 

magnitude of the planar unit cell area [9,10,11,12]. Yet the strongest impetus to 

continue to seek a purely geometric description of the GB energy anisotropy was a 

recent observation of a close scaling among the energies of 388 geometrically distinct 

boundaries computed for four FCC metals Ni, Al, Au and Cu [6,7]. The observed scaling 

suggests that a functional relationship between the GB energy and five geometric DOFs 

does exist but we do not know what it is.   
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Existing geometric models relate the GB energy anisotropy to a measure of lattice 

coincidence [13], plane inter-locking [14], hard-sphere packing [15], excess free volume 

[9], boundary proximity to symmetric cusp orientations [10,16] and others. While these 

models capture interfacial energy variations within limited sub-sets of the 5-space, all 

our attempts so far to extend the same models to the entire sample of 388 boundary 

geometries have failed, prompting us to consider an entirely different approach. 

Following [6,7] we assume that the GB energy is a continuous function of five 

macroscopic DOFs and, thus, the energy of a given boundary can be approximated by 

interpolation between nearby boundaries with known energies. By itself this proposition 

is hardly constructive given that many more than 388 samples are needed in order to 

enable accurate energy interpolation in the entire 5-space (35≈388). To make 

interpolation practical it is useful to first grasp the global topography of the energy 

function in the 5-space. Here we develop an accurate closed-form expression 

describing variations of interfacial energy in face-centered cubic (FCC) metals as a 

function of GB geometry. Our approach relates interfacial energy anisotropy to the 

global topography and connectivity (topology) of the 5-space dominated by special low-

dimensional subsets termed grofs. The new interfacial energy function uses grofs as 

scaffolding for hierarchical interpolation providing an accurate description of GB energy 

anisotropy in four FCC metals in the entire 5-space. Among the numerical parameters 

defining the GB energy function, only two are found to be metal-specific with the rest 

held universal for the FCC crystallography class. 

The paper is organized as follows.  The concept of grofs and the associated general 

approach of hierarchical interpolation are introduced in section II.  Section III describes 

in detail how hierarchical interpolation is implemented in this particular work for the 

purpose of describing GB energy variations in the 5-space.  The resulting description of 

GB energy anisotropy is then presented and discussed in section IV. Finally, section V 

summarizes our findings. The appendix contains a table of numerical best-fit 

parameters fully defining our interpolation function and describes how to download and 

use its matlab function for computing the energy of an arbitrary boundary in an FCC 

metal.  
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2.  General approach 

2.1. Topography of interface energy variations in 5D 

As a motivation, consider a much simpler yet pertinent example of energy anisotropy 

among crystal interfaces, namely the variations of surface energy as a function of 

surface orientation. Neglecting possible near-surface atomic relaxation and surface 

reconstruction, a simple qualitative model of surface energy anisotropy is obtained by 

counting the density of first nearest-neighbor (1NN) bonds cut by the surface plane 

[17,18] in a perfect lattice. A polar plot of the broken 1NN bond density is given in figure 

1 for the FCC lattice. Defining the topography of the surface energy variations are six 

grooves crisscrossing the otherwise smooth energy function. Each groove corresponds 

to a 1D-set of planes that are parallel to and, thus, do not cut one of the six 1NN bonds 

in the FCC crystal. Orientations for which two or more such grooves intersect 

correspond to cusps: that all cusps seen on the figure lie at the intersection of exactly 

two or three grooves, in 〈100〉  and 〈111〉  directions, respectively, is a consequence of 

the symmetry of the FCC lattice.  

Our hypothesis is that, just like the surface energy in figure 1, the topography of GB 

energy function is defined by grooves, i.e., special sub-sets of the 5-space where the 

energy is minimal with respect to variations locally orthogonal to the set. To avoid 

confusion with the real physical grooves observed at the intersections of GB with crystal 

surfaces, we refer to such locally minimal subsets of 5-orientations as grofs (from Old 

Norse gróf for “pit”). A grof of order k or, simply, k-grof of a function in the N-

dimensional-space is defined here as a contiguous (N-k)-dimensional subset of the N-

space such that most points in the subset possess the following grof property: the 

function is smooth in the (N-k)-subset itself but is a cusp in the complementary k-

subspace. As discussed in the following, certain subsets of high-symmetry boundaries 

appear to be low-energy grofs and are selected as a basis for defining the global 

topography of the GB energy function.  

In the case of surface energy shown in figure 1, there are six distinct 1-grofs and 14 

distinct 2-grofs on the 1NN function. In this 2D case, each 2-grof is a true cusp since its 

dimensionality is zero. Similarly, a 5-grof in the 5-space of GB orientations is a true 
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cusp. In defining the grofs we stated that most but not all points in a grof set must 

possess the grof property. This leaves room for possible intersections of two or more 

grofs. In the 5-space, grof intersections can be grofs of higher order k but not 

necessarily 5-grofs or true cusps. The grofs are important since, as low-dimensional 

subsets of orientations with (locally) minimal energies, they define the topography of the 

energy function in the 5-space. Topology (connectivity) of grofs is defined by crystal 

symmetries.  

If real, the proposed grof topography should greatly simplify interpolation in the 5-space 

by allowing, at least in principle, to approximate the energies of various boundaries by 

their proximity to grofs. As a first step, we used the datasets of 388 computed GB 

energies to identify important grofs of low energy and/or high symmetry. Precise 

conditions defining energy grofs in the 5-space remain uncertain. On one hand, the 

excess energy must account for bond distortion related to the degree of lattice 

coincidence between the two grains  (lattice coincidence is commonly quantified by the 

inverse Σ–number or Σ-1 [1,13]). On the other hand, the energy must also depend on the 

area density of bonds cut (or distorted) by the interface and, thus, on the boundary 

plane orientation.  

Based on the GB energy data presently available, we hypothesize that many rational 

grain misorientations of high lattice coincidence are 3-grofs (cuspy in the 3-subspace of 

grain rotations but smooth in the 2-subspace of plane inclinations). Of these, Σ1, Σ3, Σ5, 

Σ11, and Σ17 grofs will be partially accounted for in the resulting 5D function, whereas 

all other 3-grofs of this type are deemed too shallow and ignored. Some 1d subsets of 

twist boundaries (for which the rotation axis is perpendicular to the boundary plane) 

appear to be 4-grofs. In particular, excess energies of all 〈111〉-twist boundaries are low 

because a twist rotation around any of the four 〈111〉  axes leaves three 1NN 〈110〉  

bonds intact (in the boundary plane). Likewise, twist rotations around 〈110〉  and 〈100〉  

axes leave intact one and two 1NN bonds, respectively. Tellingly, the mentioned 

subsets of symmetric twist boundaries correspond to the three most widely spaced 

{111}, {100}, and {110} boundary planes with well-documented low energies [10,11,12]. 

These three high-symmetry 4-grofs are also accounted for in the 5D function. Some of 
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the grofs intersect. For example, a coherent twin boundary is simultaneously a Σ3 

boundary and a 〈111〉-twist boundary: this boundary is a true cusp (5-grof).   

2.2. Hierarchical interpolation 

However impressive, the set of 388 boundaries examined in [6,7] was selected based 

on criteria favoring high symmetry boundaries of high lattice coincidence (low Σ) and/or 

with low index boundary planes. Such selection rules generally disfavor GBs vicinal 

(adjacent) to the high-symmetry subsets and other low-symmetry boundaries, leaving 

attribution of boundary subsets as grofs somewhat uncertain. At the same time, many of 

the high-symmetry low-dimensional subsets in the 5-space, including the above 

mentioned 3- and 4-grofs, are well sampled. Leaving precise attribution of grofs for 

future work, our present interpolation approach is: (a) quantify and fit the GB energy 

variations within several well-sampled low-dimensional subsets (preferably grofs) of the 

5-space and (b) use the so-fitted subsets as scaffolding onto which the global 5- 

dimensional interpolation function is stretched. For constructing our interpolation 

function we opted to use three rotational subsets of highest symmetry: the 〈100〉 , the 

〈111〉  and the 〈110〉  rotation sets. Here, by a rotation set we mean all possible 

boundaries that can be produced by a rotation around the set axis. Even though it 

remains uncertain whether the three selected scaffolding 3D-sets are actually grofs, 

some of their low-dimensional subsets are nearly certainly grofs. Whatever the case, 

our particular choice is justified, postfactum, by observing that variations of GB energy 

within each of the three selected scaffolding sets are relatively featureless and simple to 

parameterize.  

To construct a 5D energy function, first we accurately parameterize variations of the GB 

energy within the three rotational 3D-sets1. The approximating 3D-sets are 

parameterized hierarchically: first in their special 1D sub-sets, then in their 2D sub-sets 

                                                             
1 Note that these sets are not in general linear vector spaces; in fact it is difficult to 
define a natural, unambiguous notion of a linear combination in the 5D configuration 
space. Rather, they are manifolds with nontrivial (and somewhat arbitrary) metrics but 
well-defined dimensionality. While in some representations (e.g. Rodrigues space) the 
1D sub-sets will appear as straight lines, in others (e.g. Euler-angle space), they will not 
in general. 
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and finally in the entire 3D-sets. As illustrated in Fig. 2(a), the lower dimensional sub-

sets serve as scaffolding for the higher dimensional sub-sets. Once fully parameterized, 

three rotational sets provide a 3D scaffolding for energy interpolation in the entire 5-

space: the energy of a boundary that is not in any of the three scaffolding sets is 

approximated by the boundary’s proximity to the sets. Interpolation can be accurate 

provided no boundary in the 5-space is too far away from all three scaffolding sets that 

criss-cross the 5-space. Fortunately, the high symmetry of the cubic lattice enhances 

the coverage of the 5-space by the three 3D sets. Interpolation between the scaffolding 

sets requires a measure of distance between the boundaries - a metric in the 5-space. 

As detailed in the next section, we circumvent the notorious uncertainty in defining such 

a metric [19,20,21] by using two sub-metrics to evaluate the proximity: one sub-metric in 

the misorientation 3-space and another sub-metric in the 2-space of boundary plane 

inclinations.  

Fig. 2(b) illustrates topology and symmetries of the 5D space and the scaffolding sets 

therein. The shaded volume is a representation of the fundamental zone in Rodrigues 

space [22]. In a cubic crystal, with 24 rotations and 24 rotation-reflections in its point 

group, one is free to choose a single representation of the misorientation axis-angle pair 

(ψ, ax, ay, az) such that ψ is as small as possible and ax ≥ ay ≥ az ≥ 0 (to break ties, such 

as on the kite-shaped front face, we select the representation with the smaller az). 

Under such rules every possible grain misorientation is represented by a point in the 

fundamental zone of Rodrigues vector space defined as (ax, ay, az)tanψ/2 (the shaded 

truncated tetrahedron in the figure). The boundary plane normal in the frame of grain 1 

can be conveniently depicted as a unit vector emanating from the misorientation point, 

thus capturing all five degrees of freedom in a single representation: a twist boundary 

will now have its plane normal vector aligned along its Rodrigues vector while a tilt 

boundary will have its plane normal vector aligned perpendicular to its Rodrigues vector. 

If desired, one could also add a unit vector representing the boundary plane normal in 

grain 2, thus improving the symmetry of the representation at the cost of some 

redundancy. In addition to the Σ1 origin (null misorientation) shown in fig. 2(b), other 

symmetrically equivalent representations of Σ1 (e.g. the 90° [100] point shown in the 

figure) could also be taken as the origin of the coordinate system, thus the same 
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boundary may sometimes be represented as a twist boundary with respect to one 

rotation axis and a tilt or mixed boundary with respect to another axis. In fig. 2(b), the 

red, green, blue, and violet dots and associated unit normal vectors (arrows) give a few 

examples of boundaries in the 5D space. 

Given the cubic symmetry, all boundaries in the three selected scaffolding sets have 

their Rodrigues vectors aligned along 5 of the 9 edges of the fundamental zone. Three 

of the five edges (thick black lines) are immediately recognizable as <100>, <110>, and 

<111> rotation axes from the definition of Rodrigues vectors. The others two (thick blue 

lines) are extensions of the <110> edges associated with nearby zones (fig. 2(b) shows 

one such neighboring zone with dashed lines). The entire misorientation space includes 

1152 symmetry-equivalent copies of the fundamental zone, each one of them having 5 

of its 9 edges lying along the scaffolding sets. The black dot near the center of the 

fundamental zone depicts the misorientation that is most distant from all of the 

scaffolding sets: its angular distance d3 (to be defined later) from the four nearest 

scaffolding edges is 20.12°. Thus, all grain misorientations in a cubic crystal are within 

20.12° of some scaffolding set (edge). From an unbiased random sampling of possible 

misorientations, we estimate that over 53% of all boundaries lie within 10° of at least 

one of the scaffolding sets. Our interpolation function is constructed as a weighted 

average of contributions from all of the scaffolding sets throughout Rodrigues space 

(within a cutoff distance, as described in more detail below). This weighted average is 

dominated by the nearby sets. 

The coherent Σ3 twin boundary is a pure-twist 60° [111] boundary, thus its unit normal 

vector is aligned along the <111> edge of the fundamental zone. Yet the very same 

boundary is also a symmetric tilt grain boundary obtainable by any of the three distinct 

<110> rotations; the same purple arrow is simultaneously perpendicular to the three 

thick blue lines representing the <110> edges of the fundamental zone. This 

extraordinary symmetry shows why the Σ3 twin is such a special boundary: it lies at the 

intersection of four distinct low-index rotation sets (which we are taking to be grofs) and 

is either a pure twist or a symmetric tilt boundary in all four. Any deviation from this 

point, in either misorientation or boundary normal, damages this symmetry. Only the Σ1 
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null boundary exceeds the Σ3 twin in terms of symmetry. 

3.  Implementation 

In the following subsections we first define three special 3-dimensional sub-sets of the 

5-space that form scaffolding for our interpolation function (section 3.1), then proceed to 

define appropriate measures of distance between a general boundary and a scaffolding 

3-set and describe our procedure for finding, within each scaffolding set, a best-

matching boundary that is nearest to the general boundary being interpolated (section 

3.2), define variables and parameterization of energy variations within the selected 

scaffolding 3-sets (section 3.3) and finally present our interpolation function in an 

analytical form (section 3.4).  

3.1. Scaffolding sets 

Our energy function is based on interpolation between three special subsets of the five-

dimensional space (or simply 5-space) that include all boundaries obtainable by 

rotations about any of the three high-symmetry axes <100>, <110>, and <111>. Each of 

the three selected scaffolding "sets" is a three-dimensional subset of the full 5-space: 

any boundary in a given scaffolding set is fully defined by the angle ξ of rotation around 

the set axis (say [100]) and two additional angles η and ϕ (defined below) that fix the 

boundary plane inclination. 

Each 3-set contains sub-sets of still lower dimensions, such as the subset of pure-twist 

boundaries for which the misorientation axis is normal to the boundary plane. This latter 

subset is one-dimensional, fully defined by the rotation angle, ξ. Tilt boundaries are 

defined as a subset of boundaries for which the rotation axis lies in the plane of the 

boundary: two tilt angles ξ and η are used to specify a tilt boundary within a given 3-set. 

The two-dimensional subset of tilt boundaries is further subdivided into symmetric tilt 

grain boundaries (STGB), with η = 0 (for such boundaries the boundary plane is a plane 

of mirror symmetry), and asymmetric tilt grain boundaries (ATGB), with η ≠ 0. The 

energies of boundaries within the two one-dimensional subsets (twist boundaries and 

STGBs) are explicitly curve-fit for each 3-set. Then the energies of boundaries in the 

two-dimensional subsets of ATGBs are interpolated from their corresponding one-
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dimensional subsets of STGBs. Finally, boundaries of mixed characters (neither pure 

twist nor tilt) in each set are further interpolated between their ATGB and pure-twist 

components. Once the three 3-sets are fully parameterized, the general boundaries with 

rotation axes other than <100>, <110>, and <111>, are approximated as weighted 

averages of the energies of the nearest elements in the three scaffolding 3-sets.  A 

schematic showing the set-theoretical relationship among the various boundary subsets 

in the full 5-space is given in Fig. 2.   

3.2. Distance between boundaries and scaffolding sets 

To enable interpolation, we need to define distance, i.e., a metric, in the 5-space. A 

variety of equally useable metrics can be defined, separately, for the 3-subspace of 

grain misorientations (d3) [23] and for the 2-subspace of plane inclinations (d2). For d3 

we follow the definition given in [24] that is re-written below in a different form more 

convenient for our purposes. Our choice for d2 will be described in the following. Even 

though both d3 and d2 can be defined separately, it is far from obvious how to combine 

any two such sub-metrics into a measure of distance in the entire 5-space [24-26]. To 

avoid ambiguity in mixing the two sub-metrics, we regard the misorientation sub-metric 

d3 as the primary measure of distance with the inclination sub-metric d2 being 

secondary. Accordingly, for a given boundary A (with misorientation R) and for a given 

high-symmetry rotation axis [hkl] (of type <100>, <110>, or <111>), we first find the 

rotation R' about [hkl] that minimizes the distance d3 between R' and the actual grain 

misorientation R. Then, among all boundaries with misorientation R' we find the 

boundary B that is nearest to A in the inclination 2-subspace (i.e. that minimizes d2). 

This specifies a boundary B that is the closest match of A in one of the considered high-

symmetry 3-sets <hkl>. Thus, we factorize the task of finding boundaries nearest to 

boundary A: for each scaffolding 3-set we first find which rotation ξ most closely 

matches A in the misorientation 3-space and then find which particular boundary of 

misorientation ξ is the closest match of A in the inclination 2-space. We use the 

energies of the so-matched boundaries as approximations (interpolants) to produce an 

estimate of the energy of boundary A.     
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For any given boundary, grain misorientation is represented in the reference frame of 

one of two grains as a rotation matrix R or, equivalently, as an axis-angle pair (ψ, a), 

which rotates the <100> directions in grain 1 to the <100> directions in grain 2. Because 

of symmetry, R is actually just one representative of an entire coset Ri = SiR, where Si 

are the 24 rotational symmetries of FCC crystals. The boundary is also defined by the 

boundary plane inclination given by its unit normal vectors n1 and n2 in the reference 

frames of grains 1 and 2, respectively, related by n2 = Rin1 (figure 3(a)). 

We now wish to approximate a general boundary A by another boundary B obtainable 

by rotation around one of the selected rotation axes Aj (Aj can be one of three distinct 

<100> axes or one of four distinct <111> axes or one of six distinct <110> axes). The 

approximating boundary B is characterized by its axis-angle pair (ξ, Aj) (figure 3(b)) or, 

equivalently, rotation matrix R' and the unit normals m1 and m2 defining the boundary 

plane, with m2 = R'm1.  

We first find which lattice misorientation R'(ξ) obtainable by rotation around axis  Aj 

most closely matches (approximates) misorientation R(ψ) of boundary A. A non-unique 

but mathematically convenient definition of distance d3 between two rotations was given 

in [21] and can be expressed as d3 = 2sin(δ/2), where δ is the angle of product rotation 

R'-1(ξ)R(ψ) minimized as a function of rotation angle ξ. This is schematically shown as a 

vector sum in Fig. 3(b), though of course this is only a schematic since the product of 

two rotations is non-commutative and does not follow the rules of vector addition. 

Straightforward algebra yields for the minimal distance 

!! = 2 sin !
! 1− ! ∙ !!

!
!
!        (1)!

and for the minimizing rotation angle  

tan !
! = ! ∙ !! tan!(!!).        (2) 

Note that the minimizing rotation specifies not a single best-matching boundary B, but 

rather an entire 2-set of boundaries with the same misorientation R(ξ) but with different 

boundary plane inclinations. Our second step is to find, among all such boundaries, the 

best-matching plane inclination: this is achieved by minimizing an inclination distance 
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defined here as 

!! = 2−m1 ∙ n1 −m2 ∙ n2.        (3) 

The above distance is small when each of the two plane normal vectors ni of boundary 

A is nearly parallel to the corresponding plane normal vector mi of the approximating 

boundary B (i=1,2).  In such cases the so-defined distance d2 is approximately equal to 

the one half of the sum of squared angles between the corresponding normal vectors ni 

and mi. The best-matching inclination is then obtained by minimizing d2 as a function of 

mi. It is straightforward to show that, the pair of plane normals mi that minimizes d2 is 

(not normalized)  

m1 = ! + !!!! ! ! ! n1,m2 = ! + !! ! !!! ! n2 .                 (4) 

Thus, d2 reaches its minimal value when normal vector m1 of the approximating 

boundary points midway between n1 and R'-1(ξ)n2 (similarly for m2). The procedure for 

finding the best-matching inclination is illustrated geometrically in Fig. 3(b), where the 

residual rotation δ is equally partitioned between two grains to yield two new grain 

orientations, while orientation of the boundary plane in the laboratory frame remains 

unchanged. For small δ the two deviation angles approach ±δ/2.  

The above matching procedure is performed for each of the four <111> axes, three 

<100> axes, and six <110> axes, and for each of the 24 symmetry-related 

representations of boundary A. The resulting list of 13x24 approximating boundaries B 

is culled to remove redundant symmetry-equivalent variations along with any 

boundaries B with distances d3 to A exceeding some pre-defined cutoff distance !!!"!"#. 

As will be described in section 3.4, the interpolated boundary energy ϵ is then written as 

a weighted average of the remaining ϵhkl(B) values, with the weights that depend on 

associated misorientation distances d3 only. 

3.3. Parameterization of energy variations within scaffolding sets 

While it is perfectly possible to use m1 (or m2) to specify inclinations of the best-

matching approximating boundaries, it is rather more common to express the geometric 

character of a boundary as either twist, or tilt, or mixed. As shown in Fig. 3(b), the tilt 

angle φ is the angle (taken in the first quadrant) between the rotation axis ±Aj and the 
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unit normals m1 (or m2) of the approximating boundary. As defined, φ = 0 for a twist 

boundary, φ = π/2 for a tilt boundary, and φ takes on intermediate values for mixed 

boundaries. While the inclination of a twist boundary is fully defined by the condition φ = 

0, one more parameter is needed to define the inclination of the tilt and mixed 

boundaries.   

For non-twist approximating boundaries we find it convenient to introduce two angles θ1 

and θ2 obtained by projecting m1 and m2 onto a plane perpendicular to Aj (Fig. 3(c)): the 

two angles are obviously constrained to the total best-matching rotation angle ξ=θ2 −θ1.  

In order to define an origin and the sense of rotation in the perpendicular planes, for 

each symmetry axis Aj we define a crystallographic reference direction Dj perpendicular 

to it; for example, for Aj = [100] we set Dj = [010]. While in principle arbitrary, by 

convention Dj is always taken to be an axis of (at least) two-fold rotational symmetry. 

Thus, Dj is a <100> direction when Aj is a <100> or <110> direction, and Dj is a <110> 

direction when Aj is a <111> direction. The third direction Ej = Aj x Dj completes a 

Cartesian coordinate frame associated with axis Aj in which θ1 and θ2 are defined as 

shown on Fig. 3(c). We complete our specification of the boundary inclination for any 

non-twist boundary by defining a tilt asymmetry angle η = θ2 + θ1, which is obviously zero 

for a symmetric tilt boundary (STGB). By convention, η is also set to zero for all twist 

boundaries. This way any boundary obtainable by rotation around axis Aj is fully defined 

by three angles φ, ξ and η. To avoid redundancy, we account for the existing 

symmetries and fold all points in the (η, ξ) plane into a minimal symmetry-equivalent 

zone as shown in Fig. 4. 

Energy variations within each scaffolding 3-set are parameterized hierarchically, starting 

from their one-dimensional subsets of pure twist and symmetric tilt boundaries, then 

expanding to the two-dimensional subsets of tilt boundaries, then to the three-

dimensional scaffolding sets of <100>, <111> and <110> boundaries.  

To describe energy variations within the one-dimensional subsets we use the Read-

Shockley-Wolf (RSW) function proposed by D. Wolf [27] as an empirical extension of 
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the classical Read-Shockley solution for the energy of the low-angle and vicinal 

boundaries. The RSW function is defined as 

!!"# !;!!"#,!!"# ,! = sin !
!

!!!!"#
!!"#!!!"#

1− ! log sin !
!

!!!!"#
!!"#!!!"#

 , (5) 

on segment [θmin, θmax] over which it ranges from 0 to 1 and has an infinite slope at θmin 

and a slope of zero at θmax. Within these limitations, the dimensionless shape parameter 

a can be used to modify the shape of the RSW function for various applications. For 

most of our curve fits we find a = 1/2 to be satisfactory. We use this latter value of a 

except where otherwise noted: the fitting results are rather insensitive to a in part 

because the set of 388 boundaries has relatively few vicinal boundaries whose energies 

are sensitive to the values of a. The RSW function is convenient for approximating 

energy variations within one-dimensional subsets of pure twist and symmetric tilt 

boundaries within the <100>, <110>, and <111> scaffolding 3-sets. These six functions 

stitch together appropriate RSW functions as shown in Fig. 5. The same figure also lists 

all the parameters defining the one-dimensional functions. 

The two-dimensional subsets of all (symmetric + asymmetric) tilt boundaries are linearly 

interpolated between the one-dimensional symmetric-tilt subsets for <100> and <110>: 

!!""!"#! !, ! =

!!""!"#$ !
! − ! + !!"!!"#$ ! − !!""!"#$ !

! − ! 1− !!
!

!
, !!""!"#$ ! > !!!""!"#$ !

! − ! !

!!""!"#$ ! + !!""!"#$ !
! − ! − !!""!"#$ ! !!

!
!
, otherwise

 (6) 

!!!"!"#! !, !

=
!!!"!"#$ !

2 − ! + !!!"!"#$ ! − !!!"!"#$ !
2 − ! !!"#(1−

!
! ,!!!"

!"#$), !!!"!"#$ ! > !!!!"!"#$ !
2 − ! !

!!!"!"#$ ! + !!!"!"#$ !
2 − ! − !!!"!"#$ ! !!"#(

!
! ,!!!"

!"#$), otherwise
 

.            

 (7) 

This approach was found to be less effective for the two-dimensional set of <111> tilt 

boundaries that intersect the deep Σ3 grof. The latter grof appears to be well 
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approximated by an RSW function with a cusp at ξ = π/3, however there is no evidence 

in the available data for any η dependence of the <111> tilt energy for low values of ξ. 

Thus we define, 

!!!!!"#! !, ! =
!!!!!"#$,!"#!!"# !; 0, !!!!!"#!,!"# , !! , ! ≤ !!!!!"#!,!"#!

!!!!!"#$,!! ! + (!!!!!"#$,!"# − !!!!!"#$,!! ! )!!"# !; !! , !!!!
!"#!,!"# , !! , otherwise

, 

            (8) 

where 

!!!!!"#$,!! ! = !!!!!"#$,!! + !!!!!"#$,!!,!"# − !!!!!"#$,!! !!"# !; 0, !!! ,
!
!    (9) 

is the curve fit along the Σ3 grof. This introduces several additional fit parameters, 

including !!!!!"#$,!"#, !!!!!"#!,!"#,  !!!!!"#$,!!,  !!!!!"#$,!!,!"#, and a scaling parameter ! that allows 

to account for the different shapes of the Σ3 grof in low stacking fault energy (SFE) and 

high SFE materials.  

The three-dimensional scaffolding sets of mixed - neither tilt nor twist - boundaries are 

built by interpolation between their twist and asymmetric tilt sub-sets as follows: 

!!!" !, !,! = !!!"!"#$! ! 1− !!
!

!!!"!
+ !!!"!"#! !, ! !!

!
!!!"!

    (10) 

for hkl = <100> and <110>, and as a parabola for hkl = <111> 

!!!! !, !,! = !!!!!"#$! ! 1− ! !!
! + ! − 1 !!

!
!
+ !!!!!"#! !, ! ! !!

! − ! − 1 !!
!

!
 

            (11) 

The variables !!!"! , !!!"! , and α are fit parameters.  

3.4. Full interpolation function 

The energy ε of an arbitrary boundary in the 5-space is approximated as a weighted 

average over the energies !!!" all best-matching boundaries found within the three 

scaffolding 3-sets: 
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! = !! !!!" !! !!!"(!,!,!)!
!! !!!" !!

!!"#,        (12) 

where !!"# is the energy of a hypothetical random boundary. The above interpolation 

function allows a single best-matching boundary to be counted more than once towards 

the weighted average.  However, to reduce multiple counting we remove symmetry-

redundant representations of the same boundary as well as representations that are too 

distant to any of the three 3-sets (d3 > dmax). The weighting function is 

!!!" !! = !!!"!

!"# !!!
!!!!"
!"#(!!!! !"# !"#

!!!
!!!!"
!"#)!!

       (13) 

where hkl is one of <100>, <110>, or <111>.  This weighting function is again of the 

RSW type and describes the energies of boundaries vicinal to one of the scaffolding 

sets, i.e. for which one of the distances d3 is much smaller than the other distances. In 

order to keep the interpolation weights finite, we set whkl(d3) equal to some large but 

finite value when d3 is numerically close to zero. We re-define all energy parameters in 

the εhkl(ξ, η, φ) functions to be dimensionless expressing them as fractions of !!"# which 

defines the overall energy scale and is the only parameter with the dimension of energy. 

4.  Results and Discussion 

In all, our function contains 43 numerical parameters - one dimensioned parameter 

(εRGB) and 42 dimensionless parameters referred to as P (a 42-vector) – introduced to 

describe GB energy variation over five-dimensional space for a single element. These 

parameters are listed in Table A1 for all four elements, with parameters 2 through 43 

making up a vector P that encodes the shape of the function, as opposed to parameter 

1 that encodes its scale. At first we used these 43 parameters to fit the sets of 388 

boundary energies separately for each of four metals. This captured most of the reliable 

variance in the four data sets, reducing the residual RMS error to 5% (reduced !! 
ranging from 0.90 to 1.16 for the four elements with an assumed 5% error in all MD-

calculated values). The resulting fits revealed several relationships between the sets of 

best-fit parameters obtained for the four metals.  First, within errors derived from the χ2 

analysis, 27 out of 42 components of the four best-fit vectors P obtained separately for 
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the four metals were found to be very nearly the same. Second, from principal 

component analysis on the set of four P vectors we found that up to 97% of the inter-

element variance in P could be captured with a single scalar parameter that describes 

the linearly coordinated motion of the remaining 15 elements of P.  

These insights prompted us to re-define our interpolation function as universal, with just 

two material-specific parameters, and re-fit it to all 388 x 4 = 1552 available boundary 

energies. For that we fix 27 elements of P to be the same across the four elements and 

retain a single scalar parameter to describe the inter-element variations in P while 

neglecting all other principal components. Thus, our universal function contains only two 

material-dependent parameters: ϵRGB and one additional dimensionless parameter to 

account for the observed linearly coordinated variations in 15 out of 42 elements of P. 

Given their linear dependence, any of the 15 parameters can be used as the master 

degree of freedom. To describe the inter-element variations in P we introduce a single 

coordinate Φ 

 ! ! = !!" + !!" − !!" ! .       (14) 

As defined in (14), parameter Φ is zero for Al and 1 for Cu.  

With the energy function re-defined as universal, a global search was performed to 

obtain the best-fitting set of numerical parameters using all four datasets containing 

388x4 = 1552 boundary energies. In total, our universal energy function contains 63 

parameters, including !!"# for all four elements, !!", !!", PAl (with 42 components), 

and the 15 elements of PCu that differed from the corresponding elements of PAl. The 

results of the global fit are shown in Figures 6, 7, 8 and 9.  Assuming again a 5% 

random error across all four atomistic datasets, the total value of χ2 increased by an 

insignificant amount compared to the values obtained in four independent fits (one for 

each element). At the same time, despite a significant reduction in the number of fitting 

parameters from 43 x 4 = 172 to 63, the reduced !! of 0.984 obtained in the global fit is 

even lower than the average reduced !! obtained in the four independent fits. This 

effectively means that there is no loss of statistically significant information even when 

of the inter-element variations are described with just two parameters instead of 43. 
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To test the robustness of our fitted function with respect to the choice of GB ensemble, 

we re-fited it to a reduced dataset of GB energies obtained by removing the 35 worst 

fitting boundaries, namely the ones for which the fit residual was more than 10% for at 

least one of the four chemical elements. In general, these 35 boundaries are far from 

the nearest scaffolding set.and, when included in the fit, account for over 40% of the χ2. 

Refitting the function to the so-reduced GB energy data set shifted the fit parameters by 

a root-mean-square (RMS) value of 1.2 standard deviations which is somewhat 

significant but unsurprising given the deliberate bias in the selection of the excluded 

boundaries. At the same time, in comparing the reduced-dataset fit to the function fitted 

to the entire dataset, the predicted energies of individual boundaries changed 

insignificantly: an RMS fractional change of 1.2% was observed for the 353 retained 

boundaries and 1.8% for the 35 removed boundaries - both of which are small 

compared to the assumed 5% error in the raw GB energy data. In other words, 

deliberately eliminating from the fitting dataset 35 most atypical boundaries still 

produces an interpolation function that estimates the energies of those 35 boundaries 

with a precision comparable to the function fitted to the entire dataset. 

Parameter Φ defines inter-element variations in the shape of the five-dimensional 

interpolation function and can be thought of as the element’s position on a hypothetical 

aluminum-copper axis.  This parameter correlates most strongly with the ratio of the 

coherent twin energy to !!"# (this ratio is shown as !!"#$ in Table A1). Note that !!"#$ 

appears twice in Fig. 5, since a coherent twin boundary is simultaneously a <110> tilt 

and a <111> twist boundary.  

As can be seen by comparing the curves for Al and Au, the shapes of which (as 

opposed to the scale) are determined solely by the value of Φ, we see that changes in 

Φ have some more subtle effects, e.g. affecting the shape of the <111> twist, <111> tilt, 

and <100> twist sub-sets. The curve fit described below ultimately yielded values of Φ = 

0.768 ± 0.022 and Φ = 0.784 ±0.022 for Ni and Au meaning that, apart from an overall 

scaling factor, the GB energy anisotropy for Ni and Au is nearly the same which could 

be expected, as an afterthought, given the narrow scatter of energy values for Au as 

seen in Fig. 9. 
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The set of 63 best-fit parameters obtained in the global fit is given in Table A1 in the 

Appendix along with the estimated errors derived from the square roots of the diagonal 

elements of the inverse of the !! curvature matrix [28]. Such analyses can artificially 

inflate some of the parameter errors, especially in the (probably frequent) cases where 

the effects of changing one parameter can be partially compensated by changes in one 

or more other parameters.  Thus, the errors shown in Table A1 should not be regarded 

as statistically independent. 

There is no claim of uniqueness of the function reported here. Many minor variations of 

the functional form were experimented with during the development cycle and what is 

reported is the best result so far in terms of the total reduced χ2 across the set of four 

elements obtained with a function with just two element-specific parameters. However, 

several other functional forms (e.g. with RSW functions replaced with power laws or 

trigonometric functions in some places, or using different weighted-average schemes 

(equation 13) produced results that were almost as good, with reduced χ2 values 

insignificantly larger than the value we report. In any case, the χ2 analysis shows that 

our functional form reduces the residual error to essentially random noise, assuming (as 

is consistent with the scatter plot shown in Fig. 9) that the calculated energies in the four 

datasets have a 5% RMS random error. Thus, while marginal improvements can still be 

made (for example, in the functional form for low-angle <110> STGBs, which were 

problematic for the case of Al), significant further progress demands more data, either 

for additional FCC elements or for boundaries beyond the existing datasets of 388 

boundaries. Of particular value would be additional data on the energies of vicinal 

boundaries and low-symmetry boundaries that are poorly represented in the current 

ensemble.  

5.  Summary 

We have presented a novel approach to describing variations of grain boundary energy 

in FCC metals in the entire 5-space of geometric parameters.  Our approach is that of 

hierarchical interpolation in which the full 5D energy function is built on a scaffolding 

consisting of lower dimensional sub-sets of the 5-space. The selection of scaffolding is 

based on the concept of grofs introduced here as special sub-sets of the 5-space where 
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the energy is locally minimal with respect to variations orthogonal to the grof. The 

resulting interpolation function is closed-form and accurately describes GB energy 

anisotropy in four FCC metals Ni, Al, Cu and Au for which data from atomistic 

simulations is available. Furthermore, except for two element-specific parameters, all 

other parameters defining the interpolation function are found to be the same for all for 

metals.    

That it is possible to capture the global 5D topography of the GB energy using a 

universal function with just two metal-specific parameters is a significant reduction in 

complexity. To the extent that the proposed energy function is indeed universal for FCC 

metals, one needs to measure or compute just two GB energies, e.g. that of the Σ3 

coherent twin boundary and one of the high energy random boundaries, to fully define 

the GB energy anisotropy for a given FCC material in the entire 5-space.   

The function reported in this paper was motivated in part by the availability of prior data 

from atomistic simulations as well as the need to accurately capture the energy 

spectrum in grain boundary engineered FCC materials, where there is a preponderance 

of Σ3 twin boundaries and its variants, Σ9 and Σ27. A more comprehensive accounting 

of the entire phase space of GB geometries will be a natural extension of this work and 

could include a more thorough exploration of boundaries that can be considered 

“random” as well as the implied smoothness of the energy landscape. 

The 5D energy function presented above is implemented in a MATLAB® code available 

for download at http://xxx.llnl.gov.  The calling sequence of the code is explained in the 

Appendix. 
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APPENDIX 

Table A1: All of the parameters for the global curve fit on all four elements. Parameter 1 is the 

over-all energy scale and is an independent parameter for each element. Parameters 2 through 

43 constitute the dimensionless vector P. 27 of the elements of P are held constant for all four 

elements, while the other 15 are taken to vary linearly with a single element-dependent 

parameter Φ (equation 14). Uncertainties are included for the 63 independent parameters varied 

in the global fit.  

Number' Name' Description' Ni' Al' Au' Cu'

1' ϵRGB' Random'boundary'energy,'J/m2' 1.445±0.032' 0.547±0.012' 0.530±0.012' 1.037±0.023'

2' !!""!"# ' Cutoff'distance'for'100' 0.405±0.026'

3' !!!"!"# ' Cutoff'distance'for'110' 0.739±0.025'

4' !!!!!"# ' Cutoff'distance'for'111' 0.352±0.025'

5' !!""! ' Weight'for'100'set' 2.40±0.60'

6' !!!"! ' Weight'for'110'set' 1.35±0.12'

7' !!!!! ' Weight'for'111'set' 2.676' 0.352±0.250' 2.726' 3.38±0.85'

8' !!""! ' 100'tilt/twist'mix'power'law' 0.602±0.038'

9' !!""! ' 100'tilt/twist'mix'power'law' 1.581±0.071'

10' !!""!"#$!,!"# ' Maximum'100'twist'energy' 0.684' 0.596±0.017' 0.686' 0.710±0.018'

11' !!""!"#$! ' Shape'factor'for'100'twist' 0.871' 1.310±0.064' 0.861' 0.738±0.037'

12' p& 100'ATGB'interpolation'power'law' 3.2±1.3'

13' !!""!"#$,!"#!' 100'STGB'energy,'first'peak' 0.893±0.022'

14' !!""!"#$,!!,!' 100'STGB'energy,'first'Σ5' 0.835±0.024'

15' !!""!"#$,!"#!' 100'STGB'energy,'second'peak' 0.933±0.026'

16' !!""!"#$,!!,!' 100'STGB'energy,'second'Σ5' 0.896±0.022'

17' !!""!"#$,!!"' 100'STGB'energy,'Σ17' 0.775±0.018'

18' !!""!"#$,!"#!' 100'STGB'angle'of'first'peak' 0.482' 0.392±0.025' 0.484' 0.510±0.020'

19' !!""!"#$,!"#!' 100'STGB'angle'of'second'peak' 0.783±0.114'

20' !!!"! ' 110'tilt/twist'mix'power'law' 0.743' 0.679±0.025' 0.744' 0.762±0.024'

21' !!!"! ' 110'tilt/twist'mix'power'law' 1.115' 1.147±0.062' 1.114' 1.105±0.051'
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22' !!!"!"#$!,!"# ' 110'twist'energy'peak'angle' 0.529±0.019'

23' !!!"!"#$!,!"# ' 110'twist'energy'peak'value' 0.909±0.022'

24' !!!"!"#$!,!!' 110'twist'Σ3' 0.664±0.020'

25' !!!"!"#$!,!"' 110'twist'90'degree'(symmetry'point)' 0.597±0.026'

26' !!!"!"#$ ' 110'ATGB'RSW'shape'factor' 0.200±0.055'

27' !!!"!"#$,!"#!' 110'STGB'energy'of'third'peak' 0.826±0.018'

28' !!"#$ ' 110'STGB'energy'Σ3'(coherent'twin)' 0.043' 0.111±0.005' 0.042' 0.0226±0.0012'

29' !!""!"#$,!"#!' 110'STGB'energy'of'second'peak' 0.664±0.016'

30' !!""!"#$,!!!' 110'STGB'energy'Σ11' 0.285' 0.242±0.012' 0.286' 0.298±0.011'

31' !!""!"#$,!"#!' 110'STGB'energy'of'first'peak' 0.683' 0.736±0.025' 0.681' 0.666±0.017'

32' ! − !!!"!"#$,!"#!' 110'STGB'position'of'third'peak' 0.515±0.013'

33' ! − !!!"!"#$,!"#!' 110'STGB'position'of'second'peak' 1.738±0.020'

34' ! − !!!"!"#$,!"#!' 110'STGB'position'of'first'peak' 2.779' 3.047±0.066' 2.773' 2.698±0.025'

35' !' 111'tiltUtwist'interpolation'(linear'if'1)' 1.851' 1.490±0.124' 1.858' 1.960±0.059'

36' !!!!!"#$! ' 111'twist'RSW'shape'factor' 0.883' 0.665±0.101' 0.888' 0.949±0.073'

37' !!!!!"#$!,!"# ' 111'twist'peak'angle' 0.495±0.017'

38' !!!!!"#$!,!"# ' 111'twist'energy'at'peak' 0.347' 0.495±0.016' 0.344' 0.302±0.009'

39' !!!!!"#!,!"# ' 111'ATGB'peak'angle' 0.550' 0.469±0.021' 0.551' 0.574±0.015'

40' !!!!!"#$,!"# ' 111'ATGB'maximum'energy' 0.837±0.019'

41' !!!!!"#$,!!' 111'STGB'Σ3'energy' 0.619±0.020'

42' !!!!!"#$,!!,!"# ' 111'ATGB'Σ3'symmetry'point'energy' 0.845±0.143'

43' !' 111'ATGB'mixing'η'scale'factor' 0.275' 1.0±1.0' 0.259' 0.049±0.057'

' Φ ElementUdependent'shape'factor' 0.768±0.022' 0' 0.784±0.022' 1'

'

Computing grain boundary energies in MATLAB  

On xxx.llnl.gov we post a set of MATLAB functions, in the form of '.m' files, that 

calculate the energy of any given grain boundary in one of the four FCC metals Ni, Al, 

Au, Cu or in any other user-defined FCC material. The boundary should be represented 

as a pair of orthonormal rotation matrices P and Q whose rows specify orientation of the 
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laboratory (sample) frame in the cube coordinates of crystal grains 1 and 2, 

respectively. The top row in each matrix defines the orientation of the boundary plane 

normal written in the two cube frames. The calling sequence for computing the 

interpolated GB energy should be, for example: 

 

[geom100,geom110,geom111] = distances_to_all_sets(P,Q);  % Generate geometry parameters 

par43 = makeparvec('Ni');    % Generate 43-element parameter vector for nickel 

en = weightedmeanenergy(geom100,geom110,geom111,par43);   % Calculate the energy 

 

The function 'makeparvec' contains four parameters that by default will revert to the 

values obtained by curve fitting to the full set of 4 elements (i.e. the values in Table A1). 

The first parameter, 'AlCuparameter', is either a numeric scalar (in which case it is 

interpreted as the parameter Φ in equation (14)) or a character string (in which case it is 

interpreted as the symbol for one of the four elements Ni, Al, Au, or Cu). The second 

parameter is the energy of random boundary eRGB in J/m2 and defaults to the value for 

copper. The third and fourth parameters are the 42-element vectors PAl and PCu, also 

from equation (14). Calling 'makeparvec' with no parameters returns the parameter set 

for copper. 

 The above functions call several other functions also supplied on the website: 

'distances_to_all_sets' calls 'distances_to_set' that calculates the geometrical 

parameters for one of the sets <100>, <110>, and <111>. 'weightedmeanenergy' calls 

functions with specific curve fits to each set, called 'set100', 'set110', and 'set111', and 

these in turn call the general-use function 'rsw'.   
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Figure captions 

 

Figure 1: Density of broken 1NN bonds as a function of plane orientation. 

 

Figure 2. a. An illustration of the set-theoretical relationship among the scaffolding sets. 

Dimensionality of each scaffolding set is given in parentheses. Special subsets of lower 

dimensionality are wholly included in the more general subsets of higher dimensionality. 

The subset of Σ3 boundaries is the intersection of 111 and 110 sets: the small black 

circle within this subset is the Σ3 (111)/(111) coherent twin boundary. All sets displayed 

in the figure also intersect at the Σ1 "zero misorientation" boundary (not shown). b. 

Geometry of an arbitrary boundary in the 5D space can be represented as a point in 

Rodrigues space (representing the misorientation) with an attached unit vector 

(representing the boundary plane normal). We show four examples, superposed on the 

fundamental zone for misorientations in centrosymmetric cubic crystals. The scaffolding 

sets lie along the thick black and blue lines. The most remote point from the scaffolding 

sets is shown near the center of the fundamental zone. 

 

Figure 3: Geometry of grain boundaries: a. The axis-angle representation (ψ, a) of the 

rotation and the boundary plane unit normal vectors n1 and n2 in each grain's reference 

frame; b. Finding the best match for boundary A among all boundaries obtainable by 

rotation about special axis Aj. The closest match (ξ, Aj) to the exact misorientation (ψ, 

a) leaves a discrepancy that can be represented by a rotation over a small angle δ. 

Leaving the boundary plane fixed in the lab frame, each grain is rotated by 

approximately ±δ/2, defining new approximate grain orientations 1' and 2' with unit 

normals m1 and m2 expressed in the reference frames of these two grains; c. A 

Cartesian coordinate system (Aj, Dj, Ej) is defined in a crystallographic reference frame, 

e.g. (Aj, Dj, Ej) = ([100],[010],[001]) for each axis Aj.  Dj is always chosen to be a <100> 

or a <110> direction. The boundary plane normals in the approximating boundary are 

projected into the (Dj, Ej) plane, thus defining the angles θ1 and θ2. 
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Figure 4: Variable transformation from (θ1, θ2) to (ξ, η) and reduction to a minimal 

symmetry-equivalent triangular zone (union of light gray and dark gray regions). By 

symmetry, all functions must be periodic in θ1 and θ2 with period p and possess mirror 

symmetry with respect to the ξ and η axes. The point marked with a dot has 2-fold 

rotation symmetry, thus the boundary segment shown in a dashed line is redundant. All 

other boundary segments are parts of the shaded irreducible zone. Twist boundaries 

are defined to have η = 0. While such symmetry reduction is applicable to all high-

symmetry axes, the set of <111> tilt boundaries possesses an extra symmetry reducing 

the fundamental zone to the dark gray region. 

 

Figure 5: Parameterization of GB energy variations within special one-dimensional 

subsets of twist and symmetric tilt boundaries in the <100>, <110>, and <111> 

scaffolding sets. Numerical parameters (angles and scaled energies) defining the 

shapes of the one-dimensional functions are listed on the plots. Unless shown on the 

plot, parameters a defining the shape of the RSW functions are set to a = 0.5. 

 

Figure 6: GB energy variations in low-dimensional subsets within the 100 rotational set. 

The symbols are energies taken from the datasets of 388 boundaries with the assumed 

error bars of 5% while the lines and the surface shows the fit function itself.  (A) 

Energies of twist boundaries as a function of rotation angle. (B) Energies of symmetric 

tilt boundaries as a function of rotation angle. (C) Energies of all tilt (symmetric + 

asymmetric) boundaries as a function of rotation angle ξ and asymmetry angle η (for Ni 

only).  Boundary character – twist, tilt or mixed – is defined by the orientation of the 

boundary plane relative to the rotation axis: twist/tilt boundaries have their planes 

perpendicular/parallel to the rotation axis and all other boundaries are considered 

mixed. Tilt boundaries are further classified as symmetric if the lattice planes parallel to 

the boundary are the same in both crystal grains and asymmetric otherwise. The lines 

at two borders of the surface at η=0o and η=90o in (C) are the same as the blue line in 

(B). To emphasize the symmetries, this plot shows two irreducible symmetry-equivalent 

zones described in figure 4.  
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Figure 7: GB energy variations in low-dimensional subsets within the 111 rotational set. 

The symbols are energies taken from the datasets of 388 boundaries with the assumed 

error bars of 5% while the lines and the surface shows the fit function itself.  (A) 

Energies of twist boundaries as a function of rotation angle. (B) Energies of symmetric 

tilt boundaries as a function of rotation angle. (C) Energies of all tilt (symmetric + 

asymmetric) boundaries as a function of rotation angle ξ and asymmetry angle η (for Ni 

only). Boundary character–twist, tilt or mixed–is defined by the orientation of the 

boundary plane relative to the rotation axis: twist/tilt boundaries have their planes 

perpendicular/parallel to the rotation axis and all other boundaries are considered 

mixed. Tilt boundaries are further classified as symmetric if the lattice planes parallel to 

the boundary are the same in both crystal grains and asymmetric otherwise. The lines 

at two borders of the surface at η=0o and η=120o in (C) are the same as the blue line in 

(B). To emphasize the symmetries, this plot shows two irreducible symmetry-equivalent 

zones describedin figure 4. 

 

Figure 8: GB energy variations in low-dimensional subsets within the 110 rotational set. 

The symbols are energies taken from the datasets of 388 boundaries with the assumed 

error bars of 5% while the lines and the surface shows the fit function itself. (A) 

Energies of twist boundaries as a function of rotation angle. (B) Energies of symmetric 

tilt boundaries as a function of rotation angle. (C) Energies of all tilt (symmetric + 

asymmetric) boundaries as a function of rotation angle ξ and asymmetry angle η (for Ni 

only). Boundary character–twist, tilt or mixed–is defined by the orientation of the 

boundary plane relative to the rotation axis: twist/tilt boundaries have their planes 

perpendicular/parallel to the rotation axis and all other boundaries are considered 

mixed. Tilt boundaries are further classified as symmetric if the lattice planes parallel to 

the boundary are the same in both crystal grains and asymmetric otherwise. The lines 

at two borders of the surface at η=0o and η=180o in (C) are the same as the blue line in 

(B). To emphasize the symmetries, this plot shows two irreducible symmetry-equivalent 

zones described in figure 4. 
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Figure 9: The atomistic energies of all 388 boundaries in all four elements reported in 

[6,7] plotted against the energies of the same boundaries computed from the 

interpolation function. The solid line corresponds to a perfect fit, while the dashed lines 

indicate the assumed 5% error bounds. For each metal the energies are scaled by the 

maximum energy computed over all 388 boundaries for the same metal. 
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Figure 1: Density of broken 1NN bonds as a function of plane orientation. 
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Figure 2. a. An illustration of the set-theoretical relationship among the scaffolding sets. 
Dimensionality of each scaffolding set is given in parentheses. Special subsets of lower 
dimensionality are wholly included in the more general subsets of higher dimensionality. The 
subset of Σ3 boundaries is the intersection of 111 and 110 sets: the small black circle within this 
subset is the Σ3 (111)/(111) coherent twin boundary. All sets displayed in the figure also 
intersect at the Σ1 "zero misorientation" boundary (not shown). b. Geometry of an arbitrary 
boundary in the 5D space can be represented as a point in Rodrigues space (representing the 
misorientation) with an attached unit vector (representing the boundary plane normal). We show 
four examples, superposed on the fundamental zone for misorientations in centrosymmetric 
cubic crystals. The scaffolding sets lie along the thick black and blue lines. The most remote 
point from the scaffolding sets is shown near the center of the fundamental zone. 
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a. 

 

b. 

 c. 

Figure 3: Geometry of grain boundaries: a. The axis-angle representation (ψ, a) of the rotation 
and the boundary plane unit normal vectors n1 and n2 in each grain's reference frame; b. 
Finding the best match for boundary A among all boundaries obtainable by rotation about 
special axis Aj. The closest match (ξ, Aj) to the exact misorientation (ψ, a) leaves a discrepancy 
that can be represented by a rotation over a small angle δ. Leaving the boundary plane fixed in 
the lab frame, each grain is rotated by approximately ±δ/2, defining new approximate grain 
orientations 1' and 2' with unit normals m1 and m2 expressed in the reference frames of these 
two grains; c. A Cartesian coordinate system (Aj, Dj, Ej) is defined in a crystallographic 
reference frame, e.g. (Aj, Dj, Ej) = ([100],[010],[001]) for each axis Aj.  Dj is always chosen to be 
a <100> or a <110> direction. The boundary plane normals in the approximating boundary are 
projected into the (Dj, Ej) plane, thus defining the angles θ1 and θ2. 
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Figure 4: Variable transformation from (θ1, θ2) to (ξ, η) and reduction to a minimal symmetry-
equivalent triangular zone (union of light gray and dark gray regions). By symmetry, all 
functions must be periodic in θ1 and θ2 with period p and possess mirror symmetry with 
respect to the ξ and η axes. The point marked with a dot has 2-fold rotation symmetry, thus 
the boundary segment shown in a dashed line is redundant. All other boundary segments are 
parts of the shaded irreducible zone. Twist boundaries are defined to have η = 0. While such 
symmetry reduction is applicable to all high-symmetry axes, the set of <111> tilt boundaries 
possesses an extra symmetry reducing the fundamental zone to the dark gray region. 

!
!
! !

θ1!

θ2!

η = θ1 + θ2!

p"p/2"

p"

p "p
"

ξ = θ2 � θ1!

p/2
" p/

2 "



!

 

Figure 5: Parameterization of GB energy variations within special one-dimensional subsets of 
twist and symmetric tilt boundaries in the <100>, <110>, and <111> scaffolding sets. Numerical 
parameters (angles and scaled energies) defining the shapes of the one-dimensional functions 
are listed on the plots. Unless shown on the plot, parameters a defining the shape of the RSW 
functions are set to a = 0.5. 
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Figure 6: GB energy variations in low-dimensional subsets within the 100 rotational set. The 
symbols are energies taken from the datasets of 388 boundaries with the assumed error bars 
of 5% while the lines and the surface shows the fit function itself.  (A) Energies of twist 
boundaries as a function of rotation angle. (B) Energies of symmetric tilt boundaries as a 
function of rotation angle. (C) Energies of all tilt (symmetric + asymmetric) boundaries as a 
function of rotation angle ξ and asymmetry angle η (for Ni only).  Boundary character – twist, 
tilt or mixed – is defined by the orientation of the boundary plane relative to the rotation axis: 
twist/tilt boundaries have their planes perpendicular/parallel to the rotation axis and all other 
boundaries are considered mixed. Tilt boundaries are further classified as symmetric if the 
lattice planes parallel to the boundary are the same in both crystal grains and asymmetric 
otherwise. The lines at two borders of the surface at η=0o and η=90o in (C) are the same as 
the blue line in (B).  
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Figure 7: GB energy variations in low-dimensional subsets within the 111 rotational set. The 
symbols are energies taken from the datasets of 388 boundaries with the assumed error bars of 
5% while the lines and the surface shows the fit function itself.  (A) Energies of twist boundaries 
as a function of rotation angle. (B) Energies of symmetric tilt boundaries as a function of rotation 
angle. (C) Energies of all tilt (symmetric + asymmetric) boundaries as a function of rotation 
angle ξ and asymmetry angle η (for Ni only). Boundary character–twist, tilt or mixed–is defined 
by the orientation of the boundary plane relative to the rotation axis: twist/tilt boundaries have 
their planes perpendicular/parallel to the rotation axis and all other boundaries are considered 
mixed. Tilt boundaries are further classified as symmetric if the lattice planes parallel to the 
boundary are the same in both crystal grains and asymmetric otherwise. The lines at two 
borders of the surface at η=0o and η=120o in (C) are the same as the blue line in (B). 
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Figure 8: GB energy variations in low-dimensional subsets within the 110 rotational set. The 
symbols are energies taken from the datasets of 388 boundaries with the assumed error bars 
of 5% while the lines and the surface shows the fit function itself. (A) Energies of twist 
boundaries as a function of rotation angle. (B) Energies of symmetric tilt boundaries as a 
function of rotation angle. (C) Energies of all tilt (symmetric + asymmetric) boundaries as a 
function of rotation angle ξ and asymmetry angle η (for Ni only). Boundary character–twist, tilt 
or mixed–is defined by the orientation of the boundary plane relative to the rotation axis: 
twist/tilt boundaries have their planes perpendicular/parallel to the rotation axis and all other 
boundaries are considered mixed. Tilt boundaries are further classified as symmetric if the 
lattice planes parallel to the boundary are the same in both crystal grains and asymmetric 
otherwise. The lines at two borders of the surface at η=0o and η=180o in (C) are the same as 
the blue line in (B).  
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Figure 9: The atomistic energies of all 388 boundaries in all four elements reported in [6,7] 
plotted against the energies of the same boundaries computed from the interpolation function. 
The solid line corresponds to a perfect fit, while the dashed lines indicate the assumed 5% error 
bounds. For each metal the energies are scaled by the maximum energy computed over all 388!
boundaries for the same metal. 
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