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ABSTRACT

Controlling the dissemination of an entity (e.g., meme, virus, etc)
on a large graph is an interesting problem in many disciplines. Ex-
amples include epidemiology, computer security, marketing, etc.
So far, previous studies have mostly focused on removing or inoc-
ulating nodes to achieve the desired outcome.

We shift the problem to the level of edges and ask: which edges
should we add or delete in order to speed-up or contain a dissem-
ination? First, we propose effective and scalable algorithms to
solve these dissemination problems. Second, we conduct a theo-
retical study of the two problems and our methods, including the
hardness of the problem, the accuracy and complexity of our meth-
ods, and the equivalence between the different strategies and prob-
lems. Third and lastly, we conduct experiments on real topologies
of varying sizes to demonstrate the effectiveness and scalability of
our approaches.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications – Data
Mining

General Terms

Algorithm, experimentation

Keywords

edge manipulation, immunization, scalability, graph mining

1. INTRODUCTION
Managing the dissemination of an entity (e.g., meme, virus, etc)

on a large graph is a challenging problem with applications in vari-
ous settings and disciplines. In its generality, the propagating entity
can be many different things, such as a meme, a virus, an idea, a
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new product, etc. The propagation is affected by the topology and
the properties of the entity: its ‘virality’, its speed, its ‘stickiness’
or the duration of the infection of a node. Our focus here is the
topology, since we assume that we cannot alter the properties of
the propagating entity.

The problem we address is how we can affect the propagation by
modifying the edges of the graph. In fact, we address two different
problems. First, in the NetMelt problem, we want to contain the
dissemination by removing a given number of edges. For example,
we can consider the distribution of malware over a social network.
Deleting user accounts may not be desirable, but deleting edges
(‘unfriending’ people) may be more acceptable. More specifically,
we want to delete a set of k edges from the graph to minimize
the infected population. Second, in the NetGel problem, we want
to enable the dissemination by adding a given number of edges.
Specifically, we want to add a set of k new edges into the graph to
maximize the population that adopt the information. For example,
we could extend the social network scenario using the recent ‘arab
spring’ which often used Facebook and Twitter for coordinating
events: we may want to maximize the spread of a potential piece
of information. Note that an additional, key requirement for both
problems is computational efficiency: the solution should scale to
large graphs.

Both problems are challenging for slightly different reasons. For
the NetMelt problem, most of the existing methods operate on the
node-level, e.g., deleting a subset of the nodes from the graph to
minimize the infected population from a propagating virus. In the
above social spam example, this means that we might have to shut-
down some legitimate user accounts. Can we avoid this by op-
erating on a finer granularity, that is, only deleting a few edges
between users to slow down the social spam spreading? For the
NetGel problem, things are even more challenging because of its
high intrinsic time complexity. Let n be the number of the nodes
in the graph. There are almost n2 non-existing edges since many
real graphs are very sparse. In other words, even if we only want
to add one single new edge into the graph, the solution space is
O(n2). This complexity ‘explodes’ if we aim to add multiple new
edges collectively, where the solution space becomes exponential.
To date, there does not exist any scalable solution for the NetGel

problem.
The overarching contribution of this paper is the formulation and

theoretical study of the dissemination management via edge manip-



ulation: how to place a set of edges1 to achieve the desired outcome.
The main contributions of the paper can be summarized as follows:

• Algorithms. We propose effective and scalable algorithms
to optimize the leading eigenvalue, the key graph parame-
ter that controls the information dissemination processes for
both NetMelt and NetGel, respectively;

• Proofs and Analysis. We show the accuracy and the complex-

ity of our methods; the hardness of the problem, and equiva-

lence between the different strategies;

• Experimental Evaluations. Our evaluations on real large graphs
show that our methods are both effective and scalable (see
Fig. 1 as an example).
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Figure 1: Comparison of maximizing the outcome of the in-

formation dissemination process. Larger is better. The pro-

posed method (red) leads to the largest number of ‘infected’

nodes (e.g., having more people in the social networks to adopt

a piece of good idea, etc). Notice that all the alternative methods

are mixed with the result on the original graph (yellow), which

means that they fail to affect the outcome of the dissemination

process. See Section 6 for detailed experimental setting.

The rest of the paper is organized as follows. We introduce nota-
tion and formally define the NetGel and NetMelt problems in Sec-
tion 2. We present and analyze the proposed algorithms in Section 3
and Section 4, respectively. We provide experimental evaluations
in Section 5. We review the related work in Section 6 and conclude
in Section 7.

2. PROBLEM DEFINITIONS
Table 1 lists the main symbols used throughout the paper. We

consider directed, irreducible unipartite graphs. For ease of pre-
sentation, we discuss the unweighted graph scenario although the
algorithms we propose can be naturally generalized to the weighted
case. We represent a graph by its adjacency matrix. Following the
standard notation, we use bold upper-case for matrices (e.g., A),
bold lower-case for vectors (e.g., a), and calligraphic fonts for sets
(e.g., I). We denote the transpose with a prime (i.e., A′ is the
transpose of A). Also, we represent the elements in a matrix us-
ing a convention similar to Matlab, e.g., A(i, j) is the element at

1In this paper, we use the terms ‘link’ and ‘edge’ interchangeably.

Table 1: Symbols

Symbol Definition and Description

A,B, . . . matrices (bold upper case)

A(i, j) the element at the ith row and the jth

column of A

A(i, :) the ith row of matrix A

A(:, j) the jth column of matrix A

A
′ transpose of matrix A

a,b, . . . vectors
I,J , . . . sets (calligraphic)

λ the largest (in module) eigenvalue of A
u,v the n× 1 left eigenvector and right

eigenvector associated with λ.
n the number of the nodes in the graph
m the number of the edges in the graph
k the budget (i.e., the number of deleted or

added edges)

the ith row and jth column of the matrix A, and A(:, j) is the jth

column of A, etc.
When we discuss the relationship between the two different strate-

gies (node deletion vs. edge deletion) for the NetMelt problem, it
is helpful to introduce the concept of line graph, where the nodes
represent the edges in the original graph. Formally, each edge in
the original graph A becomes a node in the line graph L(A); and
there is an edge from one node to the other in the line graph if the
target of the former edge is the same as the source of the latter edge
in the original graph A. It is formally defined as follows:

DEFINITION 1 (LINE GRAPH). Given a directed graph A,

its directed line graph L(A) is a graph such that each node of

L(A) represents an edge of A, and there is an edge from a node e1
to e2 in L(A) iff for the corresponding edges 〈i1, j1〉 and 〈i2, j2〉
in A, j1 = i2.

With the notation of the line graph L(A), we have two equivalent
ways to represent an edge. Let ex (ex = 1, ..., m) be the index of
the nodes (i.e., the edges in A) in the line graph. We can also
represent the edge ex by the pair of its source and target nodes in
the original graph A: 〈ix, jx〉, i.e., the edge ex starts with the node
ix and ends at node jx.

In order to design an effective strategy to optimize the graph
structure to affect the outcome of an information dissemination pro-
cess, we need to answer the following three questions. (1) (Key

graph parameters/metrics) What are key graph metrics/parameters
that determine/control the dissemination process? (2) (Graph oper-

ations) What types of graph operations (e.g., deleting nodes/edges,
adding edges, etc) are we allowed to change the graph structure?
(3) (Affecting algorithms) For a given graph operation, how can we
design effective, scalable algorithms to optimize the corresponding
key graph parameters?

For information dissemination on real graphs, a major finding [41,
33] is that, for a large family of dissemination processes, the largest
(in module) eigenvalue λ of the adjacency matrix A or an appropri-
ately defined system matrix is the only graph parameter that deter-
mines the tipping point of the dissemination process, i.e., whether
or not the dissemination will become an epidemic (see Section 6
for a review of related work). In principle, this gives a clear guid-
ance on the algorithmic side, that is, an ideal, optimal strategy to

affect the outcome of the information dissemination process should



change the graph structure so that the leading eigenvalue λ is min-

imized or maximized.
Based on this observation, now we can transform the original

problem of affecting the dissemination process to the eigenvalue

optimization problem, that is,

(1) minimize the leading eigenvalue λ for NetMelt;

(2) maximize the leading eigenvalue λ for NetGel.

In this paper, we focus on operating on the edge-level to design
affecting algorithms. With the above notation, our problems can be
formally defined as the following two sub-problems:

PROBLEM 1. NetMelt (Edge Deletion)

Given: A large n× n graph A and an integer (budget) k;

Output: A set of k edges from A whose deletion from A creates

the largest decrease of the leading eigenvalue of A.

PROBLEM 2. NetGel (Edge Addition)

Given: A large n× n graph A and an integer (budget) k;

Find: A set of k non-edges of A whose addition to A creates the

largest increase of the leading eigenvalue of A.

As we will show soon, both problems are combinatorial.

3. PROPOSED ALGORITHM FOR NetMelt

In this section, we address the NetMelt problem (Prob. 1), that
is, to delete k edges from the original graph A so that its leading
eigenvalue λ will decrease as much as possible. We first study
the relationship between two different strategies (edge deletion vs.
node deletion), and then present our algorithm, followed by the
analysis of its effectiveness as well as efficiency.

3.1 Edge Deletion vs. Node Deletion
Roughly speaking, in the NetMelt Problem (Edge Deletion), we

want to find a set of k ‘important’ edges from the graph A to delete.
With the notation of the line graph L(A), intuitively, such ‘impor-
tant’ edges in A might become ‘important’ nodes in the line graph
L(A). In this section, we briefly present the relationship between
these two strategies (node deletion vs. edge deletion).

Our main result is summarized in Lemma 1, which says that the
eigenvalues of the original graph A are also the eigenvalues of its
line graph L(A).

LEMMA 1. Line Graph Spectrum. Let λ be an eigenvalue of

the graph A. Then λ is also the eigenvalue of the line graph L(A).

PROOF. Omitted for brevity. ✷

By Lemma 1, it seems that edge deletion (Prob. 1) can be trans-
formed to the node deletion problem on the line graph – that is,
select a subset of k nodes from the line graph L(A) whose dele-
tion creates the largest decrease in terms of the leading eigenvalue
of L(A). However, by the following lemma, the node deletion
problem itself is still a challenging task.

LEMMA 2. Hardness of Node Deletion. It is NP-Complete to

find a set of k nodes from a graph A, whose deletion will create the

largest decrease of the largest eigenvalue of the graph A.

PROOF. The proof can be done by the reduction from the inde-
pendent node set problem, which is known to be NP-Complete [17].
The detailed proof is omitted for brevity. ✷

That said, we seek an effective algorithm that directly solves the
NetMelt problem next.

3.2 Proposed K-EDGEDELETION Algorithm
The key to solving Prob. 1 (NetMelt) is to quantify the impact of

deleting a set of edges in terms of the leading eigenvalue λ. The
naive way is to recompute the leading eigenvalue λ after deleting
the corresponding set of edges - the smaller the new eigenvalue, the
better the subset of the edges. But it is computationally infeasible
for large graphs since it takes O(m) time for each of the

(

m
k

)

pos-
sible sets, as in general, the impact for a given set of the edges (in
terms of decreasing the leading eigenvalue λ) is not equal to the
summation of the impact of deleting each individual edge.

Let u and v be the leading left eigenvector and right eigenvector
of the graph A, respectively. Intuitively, the left eigen-score u(i)
and the right eigen-score v(j) (i, j = 1, ..., n) provide some im-
portance measure for the corresponding nodes i and j. The core
idea of the proposed K-EDGEDELETION algorithm is to quantify
the impact of each edge by the corresponding left and right eigen-
scores independently (step 9) . Our upcoming analysis in the next
subsection shows that this strategy (1) leads to a good approxima-
tion of the actual impact wrt decreasing the leading eigenvalue; and
(2) naturally de-couples the dependence among the different edges.
As a result, we can avoid the combinatorial enumeration in Prob. 1
by picking the top-k edges with the highest individual impact scores
(step 9).

Note that steps 2-7 in Alg. 1 are to ensure that all the eigen-
scores (i.e., u(i),v(j)(i, j = 1, ..., n)) are non-negative. Accord-
ing to the Perron-Frobenius theorem [10], such eigenvectors u and
v always exist.

Algorithm 1 K-EDGEDELETION

Input: the adjacency matrix A and the budget k
Output: k edges
1: compute the leading eigenvalue λ of A; let u and v be the

corresponding left and right eigenvectors, respectively;
2: if mini=1,...,nu(i) < 0 then

3: assign u← −u
4: end if

5: if mini=1,...,nv(i) < 0 then

6: assign v ← −v
7: end if

8: for each edge ex : (ix, jx) ex = 1, ..., m; ix, jx = 1, ..., n
do

9: score(ex) = u(ix)v(jx);
10: end for

11: return top-k edges with the highest score(ex)

3.3 Proofs and Analysis
Here, we analyze the accuracy and the efficiency of the proposed

K-EDGEDELETION algorithm.
The accuracy of the proposed K-EDGEDELETION is summa-

rized in Lemma 3. According to Lemma 3, the first-order matrix
perturbation theory, together with the fact that many real graphs
have large eigen-gap, provides a good approximation to the impact
of a set of edges in terms of decreasing the leading eigenvalue.
What is more important, with such an approximation, the impact of
the different edges are now de-coupled from each other. Therefore,
we can avoid the combinatorial enumeration of Prob. 1 by simply
returning the top-k edges with the highest individual impact scores
(step 9 in Alg. 1).

Notice that by Lemma 3, there is an O(k) gap between the ap-
proximate and the actual impact of a set of edges in terms of de-
creasing the leading eigenvalue. Our experimental evaluations show



that the correlation between the approximate and the actual impact
is very high (See Section 6 for details), indicating that it indeed pro-
vides a good approximation for the actual decrease of the leading
eigenvalue.

LEMMA 3. Let λ̂ be the (exact) first eigenvalue of Â, where Â

is the perturbed version of A by removing all of its edges indexed

by the set S . Let δ = λ − λ2 be the eigen-gap of the matrix A

where λ2 is the second eigenvalue of A, and c = 1/(u′
v). If λ

is the simple first eigenvalue of A, and δ ≥ 2
√
k, then λ − λ̂ =

c
∑

ex∈S
u(ix)v(jx) +O(k).

PROOF. Let λi(i = 1, ..., n) be the ordered eigenvalues of A

(i.e., |λ| = |λ1| ≥ |λ2|... ≥ |λn|). Let λ̃i(i = 1, ..., n) be the cor-

responding eigenvalues of Â. Notice that we omitted the subscripts
for the leading eigenvalues (i.e., λ1 = λ, and λ̃1 = λ̃).

Let Â = A+E. We have ‖E‖Fro =
√
k.

According to the first-order matrix perturbation theory (p.183 [38]),
we have

λ̃1 = λ1 +
u
′
Ev

u′v
+ O(‖E‖2)

= λ1 − c
∑

ex∈S

u(ix)v(jx) +O(k) (1)

Next, we will show that λ̃1 is indeed the leading eigenvalue of Â.
To this end, again by the matrix perturbation theory (p.203 [38]),
we have

λ̃1 ≥ λ1 − ‖E‖2 ≥ λ1 − ‖E‖Fro ≥ λ1 −
√
k

λ̃i ≤ λi + ‖E‖2 ≤ λi + ‖E‖Fro ≤ λi +
√
k(i ≥ 2) (2)

Since δ = λ1 − λ2 ≥ 2
√
k, we have λ̃1 ≥ λ̃i(i = 2, ..., n). In

other words, we have that λ̃1 = λ̂ is the leading eigenvalue of Â.
Therefore,

λ− λ̂ = c
∑

ex∈S

u(ix)v(jx) +O(k) (3)

which completes the proof. ✷

The efficiency of the proposed K-EDGEDELETION is summa-
rized in the following lemma, which says that with a fixed budget
k, K-EDGEDELETION is linear wrt the size of the graph for both
time and space cost.

LEMMA 4. Efficiency of K-EDGEDELETION. The time cost

of Alg. 1 is O(mk+n). The space cost of Alg. 1 is O(n+m+ k).

PROOF. Using the power method, step 1 takes O(m) time. Steps
2-7 take O(n) time. Steps 8-10 take O(m) time. Step 11 takes
O(mk) time. Therefore, the overall time complexity of Alg. 1 is
O(mk + n), which completes the proof of the time cost.

We need O(m) to store the original graph A. It takes O(n)
and O(1) to store the eigenvectors and eigenvalue, respectively.
We need additional O(m) to store the scores (Step 9) for all the
edges. Finally, it takes O(k) for the selected k edges. Therefore,
the overall space complexity of Alg. 1 is O(m + n + k), which
completes the proof of the space cost. ✷

4. PROPOSED ALGORITHM FOR NetGel

In this Section, we address the NetGel problem (Prob. 2), where
we want to add a set of new links into the graph A so that its leading
eigenvalue λ will increase as much as possible. We first present
the proposed K-EDGEADDITION algorithm, and then analyze its
accuracy as well as efficiency.

4.1 Proposed K-EDGEADDITION Algorithm
Let T be a set of non-existing edges in A, that is, for each

ex : 〈ix, jx〉 ∈ T , we have A(ix, jx) = 0. Let λ̂ be the lead-

ing eigenvalue of the new adjacency matrix Â by introducing the
new edges indexed by the set T . By the similar procedure as in the
proof of Lemma 3, we can show that the impact of the new set of

edges T in terms of increasing the leading eigenvalue λ̂−λ can be
approximated as

λ̂− λ ≈
∑

ex∈T

u(ix)v(jx) (4)

Therefore, it seems that we could use a similar procedure as
K-EDGEDELETION to solve the NetGel problem (referred to as
‘Naive-Add’): for each non-existing edge ex : 〈ix, jx〉, calculate
its score as score(ex) = u(ix)v(jx); and pick top-k non-existing
edges with the highest scores.

However, many real graphs are very sparse, i.e., m << n2.
Therefore, we have O(n2 − m) ≈ O(n2) possible non-existing
edges. In other words, Naive-Add requires quasi-quadratic time
wrt the number of the nodes (n) in the graph, which does not scale
to large graphs.

To address this issue, we propose an efficient algorithm, which
is summarized in Alg 2. The core idea of K-EDGEADDITION is
to prune a large portion of the non-existing edge pairs based on
their left and right eigen-scores. As in Alg. 1, we take the same
procedure to make sure that the left and right eigenvectors (u,v)
are non-negative. We omit these steps in Alg 2 for brevity.

Algorithm 2 K-EDGEADDITION

Input: the adjacency matrix A and the budget k
Output: k non-existing edges
1: compute the left (u) and right (v) eigenvectors of A that cor-

respond to the leading eigenvalue (u,v ≥ 0);
2: calculate the maximum in-degree (din) and out-degree (dout)

of A, respectively;
3: find the subset of k + din nodes with the highest left eigen-

scores ui. Index them by I;
4: find the subset of k + dout nodes with the highest right eigen-

scores vj . Index them by J ;
5: for each edge ex : 〈ix, jx〉 ix ∈ I, jx ∈ J ,A(ix, ij) = 0 do

6: score(ex) = u(ix)v(jx). Index them by P ;
7: end for

8: return top-k non-existing edges with the highest scores among
P .

4.2 Proofs and Analysis
Here, we analyze the accuracy and efficiency of the proposed

K-EDGEADDITION.
The accuracy of the proposed K-EDGEADDITION is summa-

rized in Lemma 5, which says that K-EDGEADDITION selects the
same set of edges as Naive-Add.

LEMMA 5. Effectiveness of K-EDGEADDITION. Alg. 2 out-

puts the same set of non-existing edges as Naive-Add.

PROOF. Omitted for brevity. ✷

The efficiency of the proposed K-EDGEADDITION is summa-
rized in the following lemma.

LEMMA 6. Efficiency of K-EDGEADDITION. The time cost

of Alg. 2 is O(m + nt + kt2). The space cost of Alg. 2 is O(n +
m+ t2), where t = max(k, din, dout).



PROOF: Using the power method, step 1 takes O(m) time. Step 2
takes O(m+n) time. Steps 3-4 take O(n(din+k)) and O(n(dout+
k)) time respectively, both of which can be written as O(nt). Steps
5-7 take O((k + din)(k + dout)) = O(t2) time. Step 8 takes
O((k + din)(k + dout)k) = O(kt2). Therefore, the overall time
cost is O(m + nt + kt2), which completes the proof of the time
complexity.

We need O(m) to store the original graph A. It takes O(n) to
store the eigenvectors u and v. Step 2 takes additional O(n + 1)
space. Steps 3-4 take O(din + k) and O(dout + k) space respec-
tively, both of which can be simplified as O(t). Steps 5-7 take at
most O((k + din)(k + dout)) = O(t2) space. Step 9 takes O(k)
space. Therefore, the overall space cost (by omitting the smaller
terms) is O(m+nt+kt2), which completes the proof of the space
complexity. ✷

5. EXPERIMENTAL EVALUATIONS
In this section, we provide empirical evaluations for the proposed

K-EDGEDELETION and K-EDGEADDITION algorithms. Our eval-
uations mainly focus on (1) the effectiveness and (2) the efficiency
of the proposed algorithms.

5.1 Experimental Setup
Data sets. We used a popular set of real graphs for our ex-

periments - the Oregon AS (Autonomous System) router graphs,
which are AS-level connectivity networks inferred from Oregon
route-views2. These were collected once a week, for 9 consecu-
tive weeks. Table 2 summarizes the nine graphs we used in our
evaluations.

Evaluation criteria. As mentioned before, the leading eigenvalue
λ of the graph is the only graph parameter that determines the epi-
demic threshold for a large family of information dissemination
processes. Therefore, we report the change of the leading eigen-
value for the effectiveness comparison - for both NetMelt and Net-

Gel problems. A larger change of the leading eigenvalue is better,
which suggests that we can affect the outcome of the dissemination
process more. In addition, we also run virus propagation simula-
tions to compare how different methods affect the actual outcome
of the propagation. For the computational cost and scalability, we
report the wall-clock time.

Machine configurations. All the experiments ran on the same
machine with four 2.4GHz AMD CPUs and 48GB memory, run-
ning Linux (2.6 kernel).

5.2 Effectiveness of K-EDGEDELETION

Approximation Quality. For both K-EDGEDELETION and K-
EDGEADDITION, we want to approximate the actual change of
the leading eigenvalue by the first order matrix perturbation the-
ory. This is the only place we introduce the approximation. By
Lemma 3, it says that the quality of such an approximation de-
pends on both the budget k as well as the eigengap of the orig-
inal graph, with an O(k) gap. Here, let us experimentally eval-
uate how good this approximation is on real graphs. We com-
pute the linear correlation coefficient between the actual and ap-
proximate leading eigenvalue after we randomly remove k (k =
10, 50, 100, 500, 1000) edges. The results are shown in table 3. It
can be seen that the approximation is very good - in all the cases,
the linear correlation coefficient is greater than 0.92, and often it is
very close to 1.

The Impact of Decreasing the Leading Eigenvalue. Here, we
evaluate the effectiveness of the proposed K-EDGEDELETION in

2
http://topology.eecs.umich.edu/data.html

terms of decreasing the leading eigenvalue λ of the graph. Lemma 1
suggests that the ‘important’ edges on the original graph A might
become ‘important’ nodes on the line graph L(A). We follow this
intuition to design the following comparative strategies: (1) ran-
domly select k edges from the original graph A (referred to as
‘Rand’); (2) select k edges with the highest degrees in the line
graph L(A) (referred to as ‘Line-Deg’); (3) select k edges with the
highest eigen-scores in the line graph L(A) (referred to as ‘Line-
Eig’); and (4) select k edges with the highest PageRank scores in
the line graph L(A) (referred to as ‘Line-Page’). For ‘Rand’, we
run the experiments 100 times and report the average result. For
‘Line-Deg’, we have two variants by using out-degree or in-degree.
In our evaluation, we found that these two variants give the similar
results. Therefore, we only report the results by out-degree. For the
same reason, we only report the results by the right eigen-scores for
‘Line-Eigs’. For ‘Line-Page’, there is an additional parameter of
the teleport probability. We run the experiments with the different
teleport probabilities and report the best results.

For brevity, we only present the results on Oregon-A, Oregon-B

and Oregon-C since the results on the rest six graphs are similar.
From Fig. 2, it can be seen that our K-EDGEDELETION always
leads to the biggest decrease in terms of the leading eigenvalue. For
example, on Oregon-C graph, the proposed K-EDGEDELETION

decreases the leading eigenvalue by 3.8 with the budget k = 50,
which is almost double of the second best method (e.g., 2.0 by
‘Line-Deg’). Therefore, we expect that K-EDGEDELETION would
affect the outcome of the dissemination processes better than the
alternative choices, e.g., having less number of infected nodes in
the graph, etc. We validate this next.

Affecting Virus Propagation. Next, we evaluate the effectiveness
of the proposed K-EDGEDELETION in terms of minimizing the
outcome of the information dissemination processes. To this end,
we simulate the virus propagation for the SIS model (susceptible-
infective-susceptible) on the graph [41]. For each method, we delete
k = 200 edges from the original graph. Let s = λb/d be the nor-
malized virus strength (bigger s means stronger virus), where b and
d are the infection rate and death rate, respectively. The results are
presented in Fig. 3, which is averaged over 1,000 runs. It can be
seen that the proposed K-EDGEDELETION is always the best - its
curve is always the lowest which means that we always, as desired,
have the least number of infected nodes in the graph with this strat-
egy. In Fig. 3, ‘Original’ (the yellow curve) means that we simulate
the virus propagation on the original graph without deleting any
edges. Notice that when the virus becomes stronger (Fig. 3(b)), all
the curves except the proposed method mix with ‘Original’, which
means that they all fail to affect the virus propagation in this case.
In contrast, our proposed method (the red curve) can still signifi-
cantly reduce the number of infected nodes.

Node Deletion vs. Edge Deletion. Finally, in some applications,
e.g., to stop malware propagation on the computer networks, both
node deletion (e.g., shutting down some machines) and edge dele-
tion (e.g., blocking some links between machines) are feasible. In
this case, we want to know which strategy (node deletion or edge
deletion) is more effective in affecting the outcome of such propa-
gation process. To this end, we use an effective node immuniza-
tion algorithm [39] to delete k̃ = 1, 10 nodes respectively (re-
ferred to as ‘Node-Del’). For each k̃, we then use our proposed
K-EDGEDELETION to delete the same amount of edges from the
original graph (referred to as ‘Edge-Del’). We compare the de-
crease of the leading eigenvalues of the two methods. The results
are summarized in Fig. 4. It can be seen that ‘Edge-Del’ always
leads to a bigger decrease of the leading eigenvalue - which sug-
gests that by operating on the edge level, we can design a more



Dataset n m

Oregon-A 633 2,172

Oregon-B 1,503 5,620

Oregon-C 2,504 9,446

Oregon-D 2,854 9,864

Oregon-E 3,995 15,420

Oregon-F 5,296 20,194

Oregon-G 7,352 31,330

Oregon-H 10,860 46,818

Oregon-I 13,947 61,168

Table 2: Dataset summary.

Dataset k = 10 k = 50 k = 100 k = 500 k = 1000

Oregon-A 0.999 0.997 0.995 0.973 0.924

Oregon-B 0.999 0.999 0.998 0.993 0.988

Oregon-C 1.000 0.999 0.999 0.996 0.991

Oregon-D 0.999 0.999 0.999 0.994 0.988

Oregon-E 1.000 0.999 0.999 0.998 0.995

Oregon-F 1.000 0.999 0.999 0.998 0.997

Oregon-G 1.000 0.999 0.999 0.999 0.998

Oregon-H 1.000 1.000 0.999 0.999 0.999

Oregon-I 1.000 1.000 0.999 0.999 0.999

Table 3: Evaluations on the approx. quality. Larger is better.
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Figure 2: The decrease of the leading eigenvalue vs. the budget k. Larger is better. The proposed K-EDGEDELETION always leads

to the biggest decrease of the leading eigenvalue.

effective algorithm with the same budget to affect the outcome of
the information dissemination process. The results are consistent
with the intuition - not all the edges adjacent to the ‘important’
nodes, which the node immunization algorithm aims to delete, are
also ‘important’ (e.g., many edges adjacent to an ‘important’ node
might link to/from some degree-1 nodes). In other words, edge
deletion enables us to optimize the underlying graph structure on a
finer granularity by picking each individual edge one by one.

5.3 Effectiveness of K-EDGEADDITION

To our best knowledge, there are no existing methods to add k
new links into an existing graph in order to increase its leading
eigenvalue. Let Ā be the complementary graph of A, which has
the same node set as A, and Ā(i, j) = 1 iff A(i, j) = 0. With
the notation of the complementary graph, we use the following
intuition to design the comparative methods: to select k ‘impor-
tant’ edges from the complementary graph Ā and add them into
the original graph A. More specifically, we compare the proposed
K-EDGEADDITION with the following strategies: (1) randomly se-
lect k edges (referred to as ‘Rand’); (2) select k edges with the
highest out-degrees in the line graph of the complementary graph
Ā (referred to as ‘CompDeg’); (3) select k edges with the high-
est right eigen-scores in the line graph of the complementary graph
Ā (referred to as ‘CompEigs’); (4) select k edges with the high-
est PageRank scores in the line graph of the complementary graph
Ā (referred to as ‘CompPage’); and (5) select k edges by running
K-EDGEDELETION in the complementary graph Ā (referred to as
‘CompDelete’). Again, for ‘Rand’, we run the experiments 100
times and report the average result. We only report the results of
‘CompDeg’ by out-degree and those of ‘CompEig’ by right eigen-
scores, respectively, since the other variants give the similar perfor-

mance. For ‘CompPage’, we run the experiments with the different
teleport probabilities and report the best results.

The Impact of Increasing the Leading Eigenvalue. We first eval-
uate the effectiveness of the proposed K-EDGEADDITION in terms
of increasing the leading eigenvalue of the graph. For brevity,
we only present the results on Oregon-A, Oregon-B and Oregon-C

since the results on the rest of the graphs are similar. From Fig. 5,
it can be seen that the proposed K-EDGEADDITION always leads
to the biggest increase in terms of the leading eigenvalue of the
graph. Notice that for all the comparative methods, they behave
like ‘Rand’ (blue curve), especially when the budget k is small.

Affecting Virus Propagation. We also evaluated the effective-
ness of the proposed K-EDGEADDITION in terms of maximizing

the outcome of the information dissemination process. To this end,
again, we simulate the virus propagation for the SIS model on the
graph. For each method, we add k = 200 new edges into the
graph. Again, let s = λb/d be the normalized virus strength, with
bigger s being stronger virus. Here, our goal is to increase the
number of ‘infected’ nodes (e.g., having more people in the so-
cial networks to adopt a piece of good idea, etc) by introducing a
set of new links into the graph. The result is presented in Fig. 6,
which is averaged over 1,000 runs. It can be seen that the pro-
posed K-EDGEADDITION is always the best - its curve is always
the highest which means that we always have the largest number of
‘infected’ nodes in the graph with this strategy. Notice that when
the strength of the virus is weak (Fig. 6(a)), all the curves except
the proposed method mix with or are very close to ‘Original’ (yel-
low curve), which means that they have little impact to boost the
outcome of the propagation in this case. In contrast, our proposed
method (the red curve) can still significantly increase the number
of ‘infected’ nodes. Therefore, we conclude that our proposed K-
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Figure 3: Comparison of minimizing the outcome of the virus propagation. Fraction of infected nodes vs. time stamp. Lower is

better. The proposed K-EDGEDELETION always leads to the least number of infected nodes. Notice that y-axis is in the logarithmic

scale.
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Figure 5: The increase of the leading eigenvalue vs. the budget k. Larger is better. The proposed K-EDGEADDITION always leads to

the largest increase of the leading eigenvalue. Notice that y-axis is in the logarithmic scale.

EDGEADDITION is much more effective to guild the outcome of
the dissemination process.

5.4 Scalability
We use the subsets of the largest data set Oregon-I to evaluate

the scalability of the proposed algorithms. The results are pre-
sented in Fig. 7. We can see that the proposed K-EDGEDELETION

and K-EDGEADDITION scale almost near-linearly wrt m, which
means that they are suitable for large graphs. Notice that for both
cases, we also observe a slight super-linear trend. This is due to
the following two reasons: (1) for both K-EDGEDELETION and K-
EDGEADDITION, we use the power method to compute the leading
eigenvalue and the corresponding eigenvectors. When m increases,
the actually iteration number in the power method also tends to in-
crease; (2) for K-EDGEADDITION when m increases, the max-
imum degree (max(din, dout)) also increases even though we fix
the number of the nodes (n).

6. RELATED WORK
In this section, we review the related work, which can be cate-

gorized into three parts: information dissemination, affecting algo-
rithms and node/edge importance measure.

Information Dissemination. Many research works in virus prop-
agation have been devoted to studying the so-called epidemic thresh-
old, that is, to determine the condition under which an epidemic
will break out. While earlier works [13] focus on some specific
types of graph structure (e.g., random graphs, power-law graphs,
etc), Wang et al. [41] and its follow-up paper by Ganesh et al. [8]
found that, for the flu-like SIS model, the epidemic threshold for
any arbitrary, real graph is determined by the leading eigenvalue of
the adjacency matrix of the graph. Prakash et. al. [33] further dis-
covered that the leading eigenvalue (and a model-dependent con-
stant) is the only parameter that determines the epidemic threshold
for all virus propagation models (more than 25 models, including
H.I.V.) in the standard literature. In this work, we aim to take one
step further, i.e., how to optimize (minimize or maximize) the lead-
ing eigenvalue of the graph by deleting or adding a set of links.

There are also many research interest in studying other types of
information dissemination processes on large graphs, including (a)
information cascades [1, 9], (b) blog propagations [24, 11, 21, 35],
and (c) viral marketing and product penetration [18, 23].

Affecting Algorithms. Hayashi et al. [12] derived the extinc-
tion conditions under random and targeted immunization for the
SHIR model (Susceptible, Hidden, Infectious, Recovered). Tong et
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Figure 6: Comparison of maximizing the outcome of virus propagation. Fraction of ‘infected’ nodes vs. time stamp. Larger is better.

The proposed K-EDGEADDITION always leads to the largest number of ‘infected’ nodes. Notice that y-axis is in the logarithmic

scale.

al. [39] proposed an effective node immunization strategy for the
SIS model by approximately minimizing the leading eigenvalue.
Briesemeister et al. [3] studied the defending policy in power-law
graphs. Prakash et. al. [34, 40] proposed effective algorithms to
perform node immunization on time-varying graphs. Other algo-
rithms to affect the outcome of the information dissemination in-
clude the influence maximization [18, 6, 5], finding effectors in
social networks [22], etc. Notice that all these works focus on op-
erating on the node level (i.e., delete or inoculate a set of ‘best’
nodes) to affect the outcome of the dissemination. In contrast, we
study the equally important, but much less studied affecting algo-
rithms by operating on the edge level.

There exist some empirical evaluations on edge removal strate-
gies for slightly different purposes, such as, slowing down the in-
fluenza spreading [26], minimizing the average infection probabil-
ity [36], evaluating and comparing the attack vulnerability [14],
etc. The closest related work to our K-EDGEDELETION algorithm
is [2], which proposed a convex optimization based approach to
approximately minimize the leading eigenvalue of the graph. How-
ever, the method is based on semi-definite programming and does
not scale to large graphs. Moreover, for all these methods, it re-
mains unclear if they can be generalized to address the even more
challenging NetGel problem, where we want to add new edges to
promote the information dissemination.

Measuring the Importance of Nodes and Edges. In the liter-
ature, there are a lot of node importance measurements, including
betweenness centrality, both the one based on the shortest path [7]
and the one based on random walks [29, 16] PageRank [30], HITS [19],
and coreness score [28]. Our work is also related to the so-called
k-vital edges problem, which aims to delete a set of links from the
graphs to increase the shortest path length [25] or the weight of
the minimum spanning tree of the remaining graph [37]. K-vital
edge problem itself is known to be NP-Hard. Other remotely re-
lated work includes graph augmentation [31, 4], graph sparsifica-
tion [20], network inhibition [32] and network-interdiction [42, 15].
Both network inhibition and network interdiction are NP-Hard.

7. CONCLUSION
In this paper, we study the problem of how to optimize the link

structure to affect the outcome of information dissemination pro-
cesses. The main contributions of the paper are:

• Algorithms. We observe that for a large family of information
dissimilation processes, the problem boils down to the eigen-
value optimization problem. We propose an effective, scal-
able algorithm to optimize such a key graph parameter (i.e.,
the leading eigenvalue) that controls the information dissem-
ination process, for both NetMelt and NetGel, respectively;

• Proofs and Analysis. We show the accuracy (Lemma 3 and
Lemma 5) and the complexity of our methods (Lemma 4 and
Lemma 6); the hardness of the problem (Lemma 2), and
the equivalence between the different strategies (Lemma 1,
Lemma 7 and Lemma 8);

• Experimental Evaluations. Our evaluations on real large graphs
show that (a) compared with alternative choices to optimize
the link structure, our methods are much more effective to af-
fect the outcome of the dissemination process; (b) compared
with the node deletion strategy, our K-EDGEDELETION of-
fers a more effective way by operating on the edge level; and
(c) both K-EDGEDELETION and K-EDGEADDITION scale
to large graphs.
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(a) k̃ = 1

(b) k̃ = 10

Figure 4: Comparison between node deletion vs. edge deletion.

Larger is better. With the same amount of edges deleted, our

proposed K-EDGEDELETION (red) leads to a bigger decrease

in terms of the leading eigenvalue.
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APPENDIX

Higher-Order NetMelt. From Lemma 3, it can be seen that the
only place we introduce the approximation in Alg. 1 is to approxi-
mate the actual decrease of the leading eigenvalue by the first-order
matrix perturbation theory. The readers might wonder if we can fur-
ther improve the quality by using higher-order matrix perturbation
theory, while maintaining the linear scalability of the algorithm.

We explored second-order matrix perturbation theory to approx-
imate the actual decrease of the leading eigenvalue, and found that
(1) it generates very similar results as the proposed K-EDGEDELETION

algorithm and (2) it requires 5-10x more wall-clock time. The rea-
son might be that for the NetMelt problem, the first-order perturba-
tion already gives a very good approximation. Therefore, in prac-
tice, we recommend K-EDGEDELETION for simplicity.

Nonetheless, the new algorithm based on the second-order per-
turbation exhibits some interesting theoretic properties. It also helps
understand the relationship between edge deletion and node dele-

tion on the algorithmic level. We present it here for the complete-
ness.

Let c = 1

u
′
v

, with second-order matrix perturbation, we can

approximate3 the impact of deleting a set of edges S in terms of the
leading eigenvalue as:

λ− λ̂ ≃ Impact(S) = c(
∑

ex∈S

u(ix)v(jx)

− 1

2λ

∑

ex∈S,ey∈S,jx=iy

u(ix)v(jy)) (5)

Compared with the first-order perturbation (eq. (3)), we have an
additional penalized term in eq. (5): u(ix)v(jy) for any two adja-
cent edges ex and ey. The intuition is to encourage the edges in the
set S to be far away (not adjacent) from each other.

By eq. (5), the impact of different edges in the set S is no longer
independent with each other. At the first glance, this might compli-
cate the algorithm since now we need to optimize at the set level,
that is, to find a set of edges that collectively maximize eq. (5).
However, by the following lemma, the impact defined in eq. (5)
exhibits some nice diminishing return properties.

LEMMA 7. Second-Order Approximation Properties. The

Impact(S) defined in eq. (5) has the following properties:

(1) Impact(Φ) = 0, where Φ is an empty set;

(2) Impact(S) is monotonically non-decreasing wrt the set S;

(3) Impact(S) is sub-modular wrt the set S .

PROOF. Omitted for brevity. ✷

Thanks to such diminishing return properties, it naturally leads
to the following greedy algorithm (K-EDGEDELETION++) to find
a near-optimal subset of edges to delete from the original graph
A. And it can be shown that the overall time complexity of K-
EDGEDELETION++ remains linear wrt the size of the graph.

Algorithm 3 K-EDGEDELETION++

Input: the adjacency matrix A and the budget k
Output: k edges indexed by set S
1: compute the first eigen-value λ of A; compute the correspond-

ing left and right eigenvectors u and v (u,v ≥ 0), respec-
tively;

2: initialize the set S to be empty;
3: score(ex) = u(ix)v(jx) (ex : 〈ix, jx〉, ex = 1, ..., m);
4: for k0 = 1, ..., k do

5: find e0 = argmaxex,ex /∈Sscore(ex);
6: add the new edge e0 : (i0, j0) into S ;
7: for each edge ey : 〈iy, jy〉 s.t. jy = i0 do

8: score(ey)← score(ey)− 1/(2λ)u(iy)v(j0);
9: end for

10: for each edge ey : 〈iy , jy〉 s.t. iy = j0 do

11: score(ey)← score(ey)− 1/(2λ)u(i0)v(jy);
12: end for

13: end for

An interesting property of Alg. 3 is that it builds the equivalence
between edge deletion and node deletion on the algorithmic level:

LEMMA 8. Equivalence of Alg. 3 to Node Immunization. Let

S be the set of edges by running Alg. 3 on graph A; T be the set

of edges by running the node immunization algorithm [39] on the

line graph L(A); and |S| = |T |. We have S = T .

PROOF. Omitted for brevity. ✷

3This formulas is similar as the one in [27]




