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Abstract 
We consider the problem of determining how similar two networks, without known node-correspondences, 
are. This problem occurs frequently in real-world applications like transfer learning and change detection. 
Many network similarity measures exist, and it is unclear how one might select from amongst them. We 
provide the first empirical study on the relationships between different network similarity methods. Here, we 
propose (1) an approach for identifying groups of comparable network similarity methods and (2) an 
approach for computing the consensus among a given set of network similarity methods. We apply our 
approaches to seven real datasets and twenty network similarity methods. Our experiments demonstrate that 
(a) different network similarity methods are surprisingly well correlated, (b) some complex network 
similarity methods can be very closely approximated by much simpler methods, and (c) two network 
similarity methods–namely, random walk with restarts and NetSimile–provide similarity rankings that are 
closest to the consensus ranking.  

Introduction 
Assuming no knowledge of node-correspondences, how similar are two networks? We study a variety of network-
similarity methods and address the following: (1) we identify whether the different similarity methods can be 
clustered into groups of methods that behave comparably and (2) we demonstrate how one can select a single 
consensus method from a group of similarity methods. 

The study of network data covers diverse domains from social sciences to biology to information technology. 
While these different networks share important features, the extent of these similarities is not clear. A network 
similarity method is useful for applications such as detecting when the structure of an online financial network has 
changed, indicating possible fraud; or for determining when an algorithm developed on one network may be applied 
to a different network [2]. One network similarity method may compare two networks based on simple network 
features such as edge density, while another may examine more complex (and computationally burdensome) 
patterns such as communities.  

We consider twenty network similarity methods on seven real datasets, applied to the task of network-similarity 
ranking, in which one is given a network G plus a set of other networks and must rank other networks in order of 
their similarity to network G. Our work yields several valuable results. First, we show that the various similarity 
methods, though seemingly different, produce correlated rankings. Second, we observe that some complex methods 
can be approximated by a much simpler method. For example, a method that compares random walks from two 
networks is well correlated with a method that simply measures density. Third, we describe how to select a single 
consensus from a set of rankings, and show that across all considered networks, two methods–namely, random walk 
with restarts and NetSimile [2]–are consistently closest to the consensus ranking. 
 
Proposed Approach 
Figure 1 presents an overview of our proposed approaches. Suppose that we are interested in the ranking behavior of 
r similarity methods. Given a network G0 and a set of other networks G1, …, Gk, we employ the r methods to rank 
G1, …, Gk by their similarity to G0. This procedure produces r rankings of length k for G0. 

To determine ranking correlations, we find the Kendall-Tau distance between each pair of rankings. Given the 
rankings from a pair of methods, say method1 and method2, we calculate the difference between the probability that 
two randomly selected items from the rankings are in the same relative order versus the probability that those items 
are not in the same relative order. If two rankings are identical, their distance is 0. If one is the reverse of the other, 
their distance is 1. If the two rankings are uncorrelated, their distance is 0.5. 

Next, we cluster the methods based on the pairwise Kendall-Tau distances. For this step, we choose complete-
linkage hierarchical clustering because it produces a dendrogram with many small clusters, providing insight into 
which groups of methods are very closely correlated. The results of this clustering will indicate which groups of 
methods have comparable behavior. In particular, we are interested in learning whether any complex methods are 
associated with much simpler methods. 

Finally, we use the Kemeny-Young method to combine the set of rankings into a single consensus ranking [3]. In 
this method, r rankings of k items are used to create a k-by-k preference matrix P, where Pij is the number of 



 

rankings that rank item i above item j. Next, each possible ranking R is assigned a score by summing elements Pij for 
which R ranks i over j. The highest-scoring ranking is considered the consensus. Under the assumption that each 
ranking is a noisy estimate of a “true” ranking, the Kemeny-Young consensus is the maximum likelihood estimator 
for this true ranking. If some similarity method produces rankings that are very close to R, then one can simply use 
that method as a representative of the set of methods.  
 

 
Figure 1: Our flowchart of how to compare various network similarity methods 

 
Experiments 
Our experiments include a set of twenty network similarity methods and seven real networks. Each of these twenty 
methods assigns a similarity score to a pair of networks. The similarity score is between 1 (perfect similarity) and 0 
(perfect dissimilarity). Our datasets include two portions of the Facebook network, a portion of the Amazon co-
purchasing network, the DBLP co-authorship network, two portions of the LiveJournal blogging network, and the 
Enron e-mail network. We refer the reader to [1] for details on these datasets. For each network, we create 
“baseline” networks for similarity comparisons by creating two synthetic networks. In the first baseline, we 
randomly delete 5% of the edges. In the second baseline, we randomly rewire 5% of the edges while preserving 
degree distribution.  

For many of these similarity methods, we use the normalized Canberra distance to calculate the distance 
between two vectors. The Canberra distance between two numbers a and b is the ratio of |a – b| to |a + b|. The 
normalized Canberra distance between two vectors 𝑥 and 𝑦 is the average of the Canberra distances of each pair of 
elements xi and yi. The normalized Canberra distance takes values between 0 and 1. Because we are interested in 
similarity, we subtract this value from 1 to obtain a similarity value between 0 and 1, where 1 indicates perfect 
similarity.  

We divide the similarity methods into community-level and network-level methods. For the community-level 
methods, we randomly select 200 nodes in each network and find communities using breadth-first search (BFS), 
random walk without restart (RW), random walk with 15% chance of restart to the original node (RWR), and an 
alpha-beta community (AB). We represent each of the 200 communities with a feature vector describing its 
structural properties. We use features such as diameter, edge density, conductance, various centrality measures, etc. 
For the comprehensive set of features used, we refer the reader to [1]. Subsequently, we utilize these community-
based feature vectors in two ways.  
• BFS, RW, RWR, AB: We treat network similarity as a classification problem. To calculate the distance 

between networks G0 and G1, we label each community feature-vector with the name of the network from 
which it came. Then, we use an SVM classifier to perform cross-validation to determine whether the 
networks are separable. Each set of feature vectors is divided into a training set and a test set. A classifier is 
trained using the training set and then evaluated on the test set. For the G0 (or G1) feature vectors in the test 
set, some portion are correctly classified as coming from G0 (or G1), while the rest are incorrectly classified as 
coming from G1 (or G0). We create a length-2 vector containing the fractions classified as coming from G0 
and G1. Subsequently, we take the Canberra distance between these vectors, and subtract this value from 1 to 
calculate the similarity between G0 and G1. If G0 and G1 are very similar, there will be a high rate of 
misclassification. In this case, we expect that each vector will be close to (0.5, 0.5) and the similarity will be 
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1. Conversely, if G0 and G1 are very dissimilar, we expect the classifier to have high accuracy. Specifically, 
we expect that the vector for G0 to be close to (1.0, 0) and the vector for G1 to be close to (0, 1.0).  Therefore, 
the similarity will be close to 0.  

• BFS-Dist, RW-Dist, RWR-Dist, AB-Dist: We create a complete bipartite graph in which the nodes in the first 
part of the bipartite graph correspond to community feature-vectors from network G0 and the nodes in the 
second part of the bipartite graph correspond to community feature-vectors from network G1. We weigh an 
edge between two nodes by the Canberra distance between the corresponding feature-vectors. Then, we find a 
least cost matching, divide the cost of this matching by 200 (i.e., the number of randomly selected nodes), 
and subtract the result from 1 to obtain the similarity value. If each feature-vector in network G0 has an equal 
feature-vector in network G1, then the cost of the matching is 0; and so the similarity is 1.  

In the network-level methods, a network is assigned a feature vector. We calculate the similarity between two 
networks by subtracting from 1 the normalized Canberra distance between their vectors. The network-level methods 
are: 
• Eigenvalues: A network is represented as a vector containing the ten largest eigenvalues of its adjacency 

matrix. 
• IM-In, IM-Known, and IM-In-&-Known: We apply the InfoMap community detection method to a network. 

For each node u, where u is in community C, we calculate the fraction of neighbors of u that are in C and the 
fraction of nodes in C adjacent to u. We then average these values to form the length-one vectors of IM-In 
and IM-Known. IM-In-&-Known represents the network as a vector containing both values.  

• LBD: The network is represented by a length-3 vector, which contains the network’s triadic closure, the 
fraction of edges that share no common endpoints, and the extent to which a single vertex dominates the 
network [4].  

• Degree, Density, and Transitivity: A network is represented by its average degree, density, or transitivity.  
• d-RW-Dist: For values d = 10, 20, 50, and 100, we randomly select 100 nodes and perform a length-d random 

walk. Then, for each d, we measure the shortest path distance between the starting node and the ending node 
of its 100 walks. Finally, we define a length-20 vector by using the median and first four moments of the 
distributions for these shortest path distances of each d.  

• NetSimile, NetSimile-SVM, NetSimile-Dist: NetSimile [2] represents each node by a length-7 vector 
containing its degree, clustering coefficient, average degree of its neighbors, average clustering coefficient of 
its neighbors, average clustering coefficient of its neighbors, number of edges outgoing from its egonet, and 
number of nodes adjacent to its egonet. A length-35 vector, containing the median and first four moments of 
distributions for these seven features over all nodes, represents the network. NetSimile-SVM and NetSimile-
Dist are similar to the classifier-based (BFS, RW, RWR, and AB) and distance-based (BFS-Dist, RW-Dist, 
RWR-Dist, AB-Dist) methods described above, but instead of classifying networks through their community 
feature-vectors, we use the length-7 node-based feature-vectors.  

 
Results 
In nearly every case, each similarity method ranked the two baseline versions of each network as most similar to that 
network. The average Kendall-Tau distance between rankings, over all networks and all metrics, is 0.28 with a 
standard deviation of 0.14. Recall that a distance of 0 indicates perfect similarity. The different methods are thus 
usually correlated with one another even though they have different objective functions. Methods RW and RWR have 
an average distance over all networks of 0.09. This low distance (or alternatively, high correlation) is expected 
because the two methods are very similar. In other cases, the results are surprising. NetSimile and RWR have an 
average distance of 0.12, despite being very different. This suggests that although some methods are complex, 
similar behavior can be achieved by a simpler method.  

In general, methods that are highly correlated on one dataset are also highly correlated on other datasets. To 
measure this, for each network, we create a length-190 vector containing the Kendall-Tau distances between each 
pair of similarity methods. This produces seven vectors, one corresponding to each dataset. We then calculate the 
Canberra distances between these vectors. If the distance between the vectors for G0 and G1 is low, this indicates 
that the methods that are well correlated on network G0 are also well correlated on network G1, and the methods that 
are poorly correlated on network G0 are also poorly correlated on G1. Across all pairs of networks, the average 
Canberra distance between these vectors is 0.097 with a standard deviation of 0.026. This low distance signifies that 
correlations between the methods are similar across different networks. 

In order to quantify the relationships between methods, we cluster the methods using complete-linkage 
hierarchical clustering based on pairwise Kendall-Tau distance. Here, we are interested in learning whether groups 



 

of complex methods are associated with simpler, more intuitive methods, such as Density. For each network, we 
perform the clustering 1000 times and select the most common dendrogram. We observe certain clusters across 
many of these dendrograms. Table 1 lists clusters observed in four or more networks out of the seven considered. 
We see that there are groups of methods that behave comparably. In some cases, these groups contain a mix of both 
complex as well as simple methods. For example, RW-Dist, RWR-Dist, and BFS-Dist behave very much like the 
simpler Density method. This suggests that for future network similarity tasks, one should use the computationally 
more efficient Density method as a replacement for these computationally intensive community-based methods. 

 
Cluster Networks  

IM-In-&-Known, IM-Known All 7 networks: Amazon, DBLP, Enron, Facebook1, Facebook2,  
LiveJournal1, LiveJournal2 

RW-Dist, RWR-Dist All 7 networks: Amazon, DBLP, Enron, Facebook1, Facebook2,  
LiveJournal1, LiveJournal2 

RW, RWR, BFS, NetSimile-SVM 5 out of 7 networks: DBLP, Enron, Facebook2, LiveJournal1, LiveJournal2 
LBD, Transitivity 5 out of 7 networks: Amazon, DBLP, Enron, LiveJournal1, LiveJournal2 
NetSimile-Dist, IM-In 4 out of 7 networks: Amazon, Enron, LiveJournal1, LiveJournal2 
RW-Dist, RWR-Dist, BFS-Dist, Density 4 out of 7 networks: Amazon, Enron, LiveJournal1, LiveJournal2 

Table 1: Clusters observed in the dendrograms of at least four networks in 1000 runs per network. 
 

After generating 1000 dendrograms, for each network, we generate a summary dendrogram describing clusters 
across all networks. To produce this clustering, we use the 1000 dendrograms created for each of the seven 
networks. For each of these 7000 dendrograms and for each pair of similarity methods methodi and methodj, we 
calculate the path distance from methodi to methodj in the dendrogram. If methodi and methodj are clustered together 
early in the dendrogram, this distance is short. We next create a 20-by-20 summary matrix M in which the rows and 
columns correspond to the various similarity methods, where Mij is defined as the sum of the path distances from 
methodi to methodj over all 7000 dendrograms. We then perform complete-linkage hierarchical clustering on the 
summary matrix. If methodi and methodj are consistently close to each other in the 7000 dendrograms, they will be 
clustered together in the summary dendrogram. Figure 2 contains the summary dendrogram resulting from this 
process. Some clusters are expected. For example, RW-Dist, RWR-Dist, and BFS-Dist are clustered together. More 
surprisingly, the complex methods NetSimile-Dist and NetSimile are clustered with the Degree ranking.  

 

 
Figure 2: Summary dendrogram generated through complete-linkage hierarchical clustering. Observe that some complex 

methods (such as RW-Dist, RWR-Dist, and BFS-Dist) are clustered with much simpler methods (such as Density). 
Numbers inside inner nodes indicate the order in which clusters were joined. 

	
  
Lastly, we apply the Kemeny-Young method to obtain a single consensus ranking. Table 2 lists the five 

similarity methods that are closest to this consensus for each network, as measured by the Kendall-Tau distance. 
Figure 3 contains a heatmap depicting the Kendall-Tau distance between each similarity method and the Kemeny-
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Young consensus on each network. We observe some variations across experiments for different networks, but 
NetSimile (or one of its variations) and RWR appear in the top five positions for each network. Moreover, RWR has 
an average Kendall-Tau distance of 0.06 from the consensus, averaged over all networks. However, RWR has an 
average Kendall-Tau distance of 0.21 from the other similarity methods. This suggests that it is consistently close to 
the consensus (i.e., median) ranking, but not because it is simply close to the other rankings in general. A user 
interested in selecting a single method for network-similarity ranking should simply select NetSimile or RWR.  

	
  
Amazon DBLP Enron Facebook1 Facebook2 LiveJournal1 LiveJournal2 

NetSimile-SVM AB-Dist NetSimile-SVM NetSimile NetSimile-Dist RWR RWR 
RWR RWR BFS-Dist NetSimile-Dist NetSimile Eigenvalues Eigenvalues 

IM-In-&-Known Degree RWR RWR RWR BFS BFS 
RWR-Dist NetSimile-SVM BFS BFS RW AB RW 
IM-Known BFS RW Transitivity Degree NetSimile NetSimile-SVM 

Table 2: The five similarity methods closest to the Kemeny-Young consensus.  
NetSimile (or one of its variations) appears at least once in every column, and RWR appears in every column. 

	
  

	
  
Figure 3: Kendall-Tau distance between each similarity method and the Kemeny-Young consensus on each network. 

Some methods, such as NetSimile and RWR, are often very close to the consensus.   
 

Conclusion 
We described two approaches for empirically analyzing a set of twenty network-similarity methods. Our application 
was ranking a set of networks based on their similarity to a given network. We calculated Kendall-Tau distances 
between the rankings produced by different similarity methods, and used these values to group methods that behave 
comparably. Moreover, we demonstrated how to use the Kemeny-Young method to select a single consensus 
ranking. Our analysis revealed that (1) various similarity methods have smaller than expected differences, indicating 
that “different” methods behave comparably when it comes to ranking applications; (2) simple similarity methods 
can closely approximate more complex ones; and (3) rankings produced by NetSimile and RWR are close to the 
Kemeny-Young consensus ranking.  
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