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Summary

This report provides an introduction to the topic of conditional dependence in the
context of microbial forensic assays. Conditional dependence between two items of
evidence E1 and Ez occurs when they are both used to support a hypothesis, but E1
affects the probability of E> and vice versa. Ignoring this dependence can lead to
very large errors in estimating the diagnosticity of the combined evidence. To
introduce readers to this concept, a number of definitions of conditional
dependence that have been used by authors in the past have been collected together
and compared. Formal mathematical relationships that constrain conditional
dependence are summarized. There are several specific scenarios in which
unrecognized conditional dependence can arise in microbial forensic contexts. This
report provides some notional examples that illustrate dramatic effects of
conditional dependence on the weight of microbial forensic evidence, and discusses
the relevance of these observations for the validation of microbial forensic assays. A
two-parameter model that describes the transition between various limiting forms
of conditional dependence relations is provided in an appendix.
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1. Introduction

Scientists who present forensic evidence to non-experts may sometimes
unknowingly create an erroneous perception of the probative weight of the
technical findings they communicate. This is true even for scientists who utilize
rather sophisticated statistical concepts in their work, or invoke such concepts
when they communicate evidence to others. One of the more subtle statistical
concepts that can be problematic in this regard is conditional dependence, which
occurs when the results of one test are correlated with those of a second test for
ascertaining the same fact in question. Error can arise because the source of
correlation may not be obvious, and the intuitive heuristic is to assume that the two
tests represent two independent determinations of the same fact.

There is an extensive literature on the problem of conditional dependence in
medical tests, where this problem has been recognized for a long time.1** In
addition, some aspects of the fallacies that can arise from incorrectly assuming
independence have been discussed in relation to general types of forensic
evidence.>® A primary concern is that investigators or jurors will overestimate the
combined weight of two pieces of evidence offered in support of a common
hypothesis because their mutual dependencies will go unrecognized. Understanding
this statistical phenomenon takes on additional significance in theories of forensic
evidence because recent treatments of context bias have been based on modeling
such bias as an induced form of conditional dependence.”

The purpose of this report is to assemble a primer that will help scientists who use
or develop microbial forensic assays improve their intuitions about the
phenomenon of conditional dependence. This will presumably help them to
recognize when conditional dependence may be important in their specific domains
of knowledge, provide a basis for estimating the magnitudes of conditional
dependence on evidence weight, and guide the construction of validation
experiments. Toward this end, this report:

* collects together and compares a number of definitions of conditional
dependence that have been used by authors in the past,

* summarizes some formal mathematical relationships that constrain
conditional dependence,

* describes some specific scenarios in microbial forensic contexts in which
unrecognized conditional dependence can arise,

* provides some concrete examples that illustrate dramatic effects of
conditional dependence on the weight of microbial forensic evidence, and

* discusses the implications for the validation of microbial forensic assays.



The mathematical treatment assumes that the reader is familiar with some
elementary probability theory - particularly the relationships between joint and
conditional probability, Bayes theorem, and the notion of marginalization.? The
approach, however, is not Bayesian per se. The notion of the diagnosticity of tests as
measured by the likelihood ratio is borrowed directly from the medical literature.
The notion of prior probability enters into consideration only briefly, because it is
necessary for connecting conditional dependence to direct measures of correlation
between two different types of measurements or two different test results.

2. When are two evidence items conditionally dependent?

Consider a case where there are two items of evidence, for example the results of
two tests for the presence of some substance. Assume that these items of evidence
are proffered to support some hypothesis H about the nature or origin of some
crime or terrorist event. The likelihood that those test results would be found if H
were true is denoted P(E1,E2|H), where E1 and E; are variables whose values
represent the various possible results for each test. Normally, evidence is used to
distinguish between H and some alternative hypothesis A. The degree to which E;
and Ez can indicate whether H or A is more likely to be true is called the
diagnosticity of the evidence. The magnitude of the diagnosticity is given by the
likelihood ratio:

— P(E1E2|H) (1)
P(E1E2|4)

When the value of L is greater than 1 the evidence favors H over A, and vice versa
when L is less than 1. When L is very close to 1 we say that the evidence is not very
diagnostic - i.e. it does not help us determine whether H or A is the more likely
hypothesis.

We say that E; and E; are conditionally independent given H if

P(E,E;|H) = P(E1|H)P(E;|H). (2)
[t is important to note that the independence of E1 and E; with respect to H does not,
generally, guarantee that they are independent with respect to any other hypothesis,
such as A.
Using the relationship between joint and conditional probabilities we can also write

P(E\E;|H) = P(E1|E;H)P(E;|H) = P(E,|E{H)P(Eq|H) 3)

where P(E1|EzH) is the likelihood of E4, given both E2 and H. Using this equation we
can write L in the alternative forms:



— P(E{|E;H)P(E3|H) — P(E,|E{H)P(E{|H) (4)
P(E1|E2A)P(E3|A) P(E;|E1A)P(E1]4)

If E1 and E; are independent with respect to both H and A this equation becomes

_ PEINPEIR) _ -~
L= P(E1|A)P(Ez|4) L,L, where L; =

P(E;j|H)
. 5
P(E;j|A) ()

Examining equations (2) and (3) it is clear that the conditional independence of E1
and E2 with respect to H and A implies

P(Ej|ExX) = P(E;j|X) where X=Hor A, j=1 or 2, and k#j. (6)

Equations (2) and (6) are equivalent definitions of conditional independence, and
whenever they do not hold we say that E1 is conditionally dependent on E> (or vice
versa) given H (or A).

When can intuitive arguments be made either for or against the proposition that
two items of evidence are independent with respect to some hypothesis? Some
authors have attempted to address this question by identifying conditions under
which independence is true, while others have considered reasons for evidence
items to be conditionally dependent (i.e. not independent.)

For example, in his book on Bayesian Networks Judea Pearl interprets the meaning
of the conditional independence expression of P(E1|EzH)) = P(E1|H) in the following
way (using our own variables): “Given H, E; tells us nothing new about E;,” and “E>
is irrelevant to E1, once we learn H.” Similarly, “Once H is given, the probability of E1
will not be affected by the discovery of E;”(reference 10, page 80.) From Pearl’s
point of view, the (in)dependence question depends on whether one item of
evidence can generate new information that is relevant to the other item - and is not
available from H.

As an example of this kind of reasoning, consider two items of evidence offered to
support the hypothesis that a certain suspect was present at the scene of the crime:
DNA found at the scene that matches the suspect’s, and eyewitness testimony. If we
assume that he was present (H is true), then the eyewitness testimony does not
affect the probability of finding his DNA at the crime scene.

As another example, suppose that E1 is the finding that traces of B. anthracis DNA
were found in a defendant’s apartment. E; is the fact that the defendant works as a
microbiology technician at a veterinary lab that has handled anthrax cases. H is the
hypothesis that the defendant stole and processed the pathogen for use in a letter.
Clearly, if H were true the additional fact regarding the suspect’s employment adds
no new information relevant to the probability of finding trace amounts of pathogen
in his apartment. In contrast, consider the alternative hypothesis that the suspect is



innocent, and someone else sent the pathogen-containing letters. Now the fact that
he worked in the lab is highly relevant to the probability of finding traces of B.
anthracis - the finding could simply represent inadvertent transfer of contamination
from work to home, making P(E1|E2A) >> P(E1]|A).

A subtly different take on the informational relevance concept has been expressed
by Pepe in a discussion of conditional dependence in medical testing: “[I]f a subject’s
true disease status is known, then knowledge of the result of one test is not
informative about the result of [the other test or] any of the other tests.” (Reference
11, page 197.) Itis clear from the context that by “known” Pepe means “if the
subject has been drawn from the class of persons with a particular disease status.”
Pepe’s formulation originates from an explicit concern with testing, while Pearl is
concerned with more general categories of knowledge and types of inference:

"[C]onditional independence is not a grace of nature for which we

wait passively, but rather a psychological necessity which we satisfy
actively by organizing our knowledge in a specific way." (Reference 10,
page 44)

How does one recognize conditional dependence in data? First, clearly, it is
necessary to have data in which the two tests or measurements are performed on
exemplars taken from the classes that both tests are meant to distinguish. Then “[a]
lack of conditional independence for any two variables is signaled by a significant
correlation between them within the [H true] cases or within the [A true] cases, or
both.” (Reference 2, page 425)

What considerations may lead one to suspect that two tests are conditionally
dependent? A variety of factors have been identified:

“[T]f both tests are based on a particular antibody reaction, something
which inhibits the reaction or causes a false reaction for one of the
tests may have a similar effect on the other.” (Reference 3, page 959.)

“If both tests more easily detect disease when it is advanced or severe,
then the conditional independence assumption will fail.” (Reference
11, Page 196)

An analogy to this idea would be: if both tests more easily detect a microbe when it is
present in high amounts, then they are conditionally dependent. Another observation
that has relevance to microbial forensics is:

“If contamination of a specimen causes both [tests] to be positive
when no disease is present, then [the tests] will be conditionally
dependent.” (Reference 11, page 196).



Conceptually, the idea of conditional dependence is linked to the idea of causality.
There must be some objective physical or biological reason for two properties to be
conditionally dependent. Thus, if expert judgment is involved with deciding
whether a test is positive or negative it is important to ask: “might an expert decide
the state of E; differently if E1 were positive or negative, given that he does not know
which state E; is in?” Generally, intuition is a poor guide to this issue, and empirical
blind testing of the expert is the only way to ascertain the answer.

Suppose one wishes to improve one’s ability to discriminate between positive and
negative samples by incorporating a second test. In choosing a second test, it is
important to know that its performance is not linked to the performance of the first
test by the same factors. Lempert explicitly points to this potential source of
evidentiary weakness:

“In attempting to prove a disputable point, an attorney should seek
items of evidence that do not share the same sources of possible
unreliability. In attempting to destroy an opponent's case, counsel
should strive to show that the evidence of the opponent is infected
from a common source.” (Reference 5, page 1055.)

Lempert calls an item of evidence E; that is strongly conditionally dependent on
P(Ez|E1H)
P(Ez|E14)
evidence is strongly implied by the first, and adds nothing additional to the support
of H. In general, he raises the concern that juries might mistakenly think that the
probative value of the two items together is much stronger than the value of E1
alone. However, he acknowledges that sometimes E has value beyond its nominal
diagnosticity because non-experts simply expect it to be part of the case and would
be suspicious of E if it weren’t presented:

another, E1, “cumulative” if ~ 1, in other words the second item of

“A second situation in which cumulative evidence should be admitted is
where the jury expects that the evidence will be produced if it exists. The
absence of evidence conveys information to the jury, and it is possible for
the proven availability of evidence to be cumulative while its proven
unavailability has considerable probative value. In these circumstances
cumulative evidence should be admissible, despite slight probative value,
in order to dispel the implication that it is unavailable.” (Reference 5, page
1056)

An example of this situation is one where a “classic” test is well known (perhaps
through previous cases) but less diagnostic than a newer test that has replaced it in
practice. Convincing non-experts that a positive result from the new test is
trustworthy might require showing them that the older test is also positive. Of
course, if the older test is negative, considerable explanation might be required to
establish the probative value of the newer test.



3. Some general mathematical relationships governing conditional
dependence

This section collects together some general mathematical relationships among the
conditional probabilities involving two items of evidence E; and Ez, and two
complementary hypotheses: H and it’s alternative A (Not-H). For simplicity we will
assume that E; and E; are binary (Yes/No) variables (for example, the results of
dichotomous tests), and the compliment of E; is denoted E;. Finally, generalization of
the formulas is facilitated by introducing the general symbols X and Y to stand for H,
A or Ej, with ¥ or ¥ being the corresponding complements.

Conditional probabilities involving binary variables obey the so-called “attraction”
and “repulsion” relationship: if P(X/Y) > P(X) then P(X/¥) < P(X).1? Thus either

P(Ej[X) < P(E) < P(Ej}%)
or
P(Ej[X) = P(E) = P(Ej/%)

for X = H, A, or Eiy;.
Similarly,

P(EjIXY) < P(Ej[Y) < P(EjXY)

or

P(EXY) > P(E[Y) > P(E[%,Y)
for X,Y = H, A, or Eix;.
The derivation of these inequalities is straightforward and is provided in the
appendix. These relationships can be thought of in terms of the matrix of
conditional probabilities represented by Table 1, where the rows are either

increasing or decreasing from left to right and the columns are either increasing or
decreasing going from top to bottom.

Table 1. Matrix of related conditional probabilities.

E1 a Eq
H P(E2|E1H) P(E2/H) P(EzfE1LH)
o P(E2|E1) P(E2) P(E2|E1)
A P(E2|ELA) P(E2|A) P(E2/E1A)

alndependent of E1 and E;.
bIndependent of H and A.



Given E2 and H, the conditional dependence on a second item of evidence E1 can be
said to be “attractive” if P(Ez/E1,H) > P(Ez/H), “repulsive” if P(E2/E1,H) < P(Ez[/H),
and “neutral” if P(Ez/E1;,H) = P(Ez/H). Similarly, given E1 and E, X “attracts” Ez to
the degree that P(Ez2/E1,X) > P(Ez/E1). Independence is equivalent to simultaneous
neutrality with respect to X and its complement X% - i.e. the top and bottom rows of
the matrix contain identical probability values.

These relations are symmetric with respect to exchange of E1 and E».

As a consequence of these relationships, the various likelihood ratios obey the
following relations:

If P(Ej/X) > P(E;) then LR(E;) = ii—j:g > 1,and
P(EIX)
If PCE[X) < P(E) then LR(E)) = 7115
If P(Ei|E}, X) = P(Ei|E;) then LR(E;|E;) = %ﬁjg > 1,and
If P(E[E; X) < P(E{E)) then LR(E,|E;) = %ﬁjg <1

Finally, note that for LR (El- |E]) = LR(E;), E; must be “neutral” with respect to E; for
both X and %.

An alternative way to express the effect of conditional dependence is to write the
Bayesian posterior probability as:

P(E;|E1H)
P(E2|E1)

P(E1|E;H)

PHIEE,) = P(E4|E>)

P(E,|H) = P(E;|H) (7)

Notice that when E1 so strongly “attracts” E; that H has only a weak effect on the
probability of E, then P(Ez|E1H) = P(Ez|E1), and E; doesn’t contribute to the
posterior probability. Symmetry dictates that if E> strongly attracts E1, then E1 is
similarly rendered irrelevant. When P(Ez|E1H) = P(Ez|E1) it is also

Finally, we note that if P(Ez|E1X)2 P(E2|X) then P(E2|E1X) = P(£2]X). In fact, it is
possible to derive a set of relations similar to those governing the Table 1 matrix,
with E; replacing Eo.

Testing data for conditional dependence means establishing that P(E; |E,X) =
P(E,|£,X) for both X = H and A. Given a matrix of data E1, E1, E2, and E; for
exemplar samples drawn from the population generated under H or A, this can be

P(E1E>|X) _ P(E15|X)
P(E1Ez|X)+P(E1E2|X)  P(E182|X)+P(E:152|X)
cannot be rejected at some specified level of confidence.

done by showing that the null hypothesis



3. An example of conditional dependence in microbial forensics

Consider a simplified scenario where the home of a suspected terrorist is
investigated, seeking evidence that production of a quantity of anthrax agent was
undertaken at that location. A small amount of liquid is found in a waste container,
and a sample of it is tested for the presence of B. anthracis DNA using a PCR-based
assay. In addition, one of the investigators perceives that the container has a faint
odor of bleach, and a chemical test that can reveal the trace presence of sodium
hypochlorite is performed.

We will denote the result of the hypochlorite assay as E1 and the result of the PCR
test as E>. Each of these variables can have two states - positive or negative,
depending on the result of the corresponding test. We want to consider how the
test evidence bears on the hypothesis that the suspect did manufacture the agent
and may have attempted to destroy residual contamination of the waste container
with bleach. Let this hypothesis be H. The alternative hypothesis N is that no
anthrax production took place (and bleach - if present - was simply used to de-
odorize the waste bin.) Itis, of course, necessary to differentiate between the
hypotheses that bleach was or was not used (B versus B) and the hypochlorite test
result being positive or negative (b or b). Table 1 provides a summary of the
symbols used in the subsequent analysis.

Table 1. Summary of definitions for the PCR/bleach scenario

Variable name/state Meaning

Hypotheses H Anthrax agent was produced
N Anthrax agent was not produced
B Bleach was used
B Bleach was not used

Test results E;= Bleach is detected

b

b Bleach is not detected
Ex=A PCR test for B. anthracis is positive
Ex=4A PCR test for B. anthracis is negative

Imagine that the performance of the PCR assay is tested on a large number of
samples that have been obtained by running an equally large set of simulations in
which surrogate terrorist teams operating under realistic conditions produce B.
anthracis or some other biological agent. In some of those simulations bleach may
be used to clean up waste containers, and in others not. Such tests could be used to
estimate the values of the probabilities in Table 2.

In reality, of course, an extensive set of simulations as described is not practical.
Instead, laboratory validation experiments at best produce estimates of P(A|B,H)
and P(A|B,N) because they seldom, if ever, consider the effect of bleach. In
principle, experiments where bleach is deliberately added to samples may be used
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to estimate P(A|b,H), P(A|b,N), P(A|b,H), and P(A|b,N) by grouping samples
according to whether they test positive or negative for hypochlorite.

Table 2. Conditional probabilities that could be estimated
from an set of simulation exercises; note that in each

case the probability of assay failure can automatically be
derived from the equation P(A|X)Y) =1 - P(AIX)Y).

B. anthracis was B. anthracis was
produced not produced
Bleach was
used to clean P(A|B,H) P(A|B,N)
up
Bleach was not
used to clean P(A|B,H) P(A|B,N)
up

As noted above, the hypochlorite test being positive or negative (b or b) is not
strictly equivalent to the hypotheses that bleach was or was not used (B versus B).
However, for simplicity in what follows we will assume that a positive test result
implies that bleach was used with 100% probability and a negative test similarly
implies that bleach was not used. Thus, we will freely substitute B for b and B for b.
Nonetheless, a more rigorous treatment would clearly entail relaxing this
assumption. One could also imagine a different scenario where the finding of a
number of empty bleach containers is the evidence for B, rather than a chemical test.

In order to illustrate how the conditional dependence of PCR testing on the presence
of bleach, Table 3 provides some plausible values for various probabilities used in

the calculations.

Table 3. Values of the conditional probabilities for the PCR/bleach scenario.

Quantity Value Comment
P(A|B,H) 0.99
P(A|B,N) 1x10%6 False positive rate
P(A|B,H) 0.05 Bleach reduces DNA target sequence copy number
P(A|B,N) 1x 106 Bleach doesn’t affect false positive rate
P(B|H) 0.5 About 50% of terrorists try to eliminate
incriminating evidence with bleach
P(B|N) 0.1 About 10% of ordinary households bleach their
waste containers to eliminate odors
P(A[H) 0.52 Derived
P(A|N) 1x10°® Derived

The false positive rate for PCR reactions in modern laboratories is most typically the
consequence of contamination. Clearly the rate will depend on the degree of quality
control and other conditions of practice within the laboratory, but 10-¢ appeared to
be a plausible quantity for this illustration.
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The quantities P(A|H) and P(A|N) represent the probabilities of getting a positive
PCR result when it is not known whether bleach was used or not. Using the formal
expansion of P(A|H) and the values in Table 3 we find that:

P(A|H) = P(A|B,H)P(B|H) + P(A|B,H) P(B|H) = 0.52

This is interpreted to mean that if we tested samples generated by simulated
terrorist red teams operating under realistic conditions, only slightly more than half
of the PCR tests would be positive because half the red teams would choose to
bleach their waste containers. Similarly we find:

P(A[N) = P(A|B,N)P(B|N) + P(A|B,N) P(B|N) = 1 x 106

This is a direct consequence of our assumption that the probability of a false
positive result is independent of whether bleach cleanup protocols are used or not.

Now let us consider the consequences of conditional dependence on estimating the
strength of the findings E1 and Ez. First, notice that our choices for P(B|H) and
P(B|N) imply that a positive finding for bleach alone has significant diagnosticity
with respect to the hypothesis H, since it is more likely to find bleach used to cover-
up biological agent production than it is to find it in legitimate situations. The
values in Table 3 imply that a positive bleach test increases the odds of H by a factor
of 5.

Next consider the composite diagnosticity of finding positive results for both the
PCR and hypochlorite tests. One plausible error an investigator could make is to use
the laboratory based estimates P(A|B,H) and P(A|B,N) to estimate the diagnosticity
(likelihood ratio) of the positive PCR finding, then simply multiplying this with the
bleach diagnosticity noted above:

P(A|BH) _ P(B|H) _

LR = X = 9.9%10° X 5 = 4.95x10°. (Error)
P(AlBN) ~ P(BIN)

In contrast, taking into account the conditional dependence between B and A, the
correct diagnosticity value of finding both tests positive is much smaller:

= DUBH) PO _ 54104 x 5 = 2.5x10°. (Correct)

P(A|B,N) P(B|N)
This approximately 20-fold reduction of diagnosticity occurs because the presence
of bleach severely reduces the probability that a positive PCR “hit” is actually due to
the presence of target DNA, while the probability that an observed “hit” is a false
positive remains the same. If the reduction in target DNA caused by bleach were
assumed to be much larger, much larger reductions in diagnosticity will obtain. It
can also be argued that this more than an order of magnitude reduction of
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diagnosticity would have much higher consequence for a test whose false positive
rate is much higher than we have quoted for PCR, and the likelihood ratio is much
smaller to begin with.

Now suppose that the bleach test is positive, but the PCR test is negative. Using the
fact that P(A|X,Y) = 1 - P(A|X)Y), the erroneous calculation based on P(A|B,H) and
P(A|B,N) gives:

P(4|B,H) P(B|H) _

LR = PaEN) N PGB 0.01 x5 = 0.05. (Error)

The correct calculation is:

LR = Z@IBH) o PBIH) _ 95 x 5 = 4.75. (Correct)
P(A|B,N) ~ P(BIN)

Thus, the likelihood ratio is only slightly smaller than that for the bleach finding
alone. This agrees with the intuition that a negative PCR result has little
diagnosticity when there is evidence that bleach has been used to clean up. In
comparison, the erroneous calculation violates this intuition by converting a mild
degree of support for H into a significant degree of support for N.

In the case that the PCR test is positive, but the hypochlorite test is negative, the use
of P(A|B,H) and P(A|B,N) to calculate the diagnosticity of the PCR finding is correct,
and:

_ P(A|B,H) _ P(B|H)
~ P(A|B N) X P(B|N)

= 9.9x10° X 0.56 = 5.5x10°.

Finally, if both findings are negative,

_ P(A|B,H) P(B|H)

= X = 0.01 X 0.56 = 5.6x1073,
P(AB,N) P(BIN) 0.0 0.56 = 5.6x10

4. Other examples of conditional dependence
A. “Orthogonal assays”

Consider two nominally “orthogonal” assays for a particular pathogen with different
performance characteristics. A concrete example might be a PCR based genetic
signature assay and an immunoassay (IMA). Each assay has been characterized
separately to establish its approximate limit of detection. Imagine that an extensive
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series of reference samples has been created by spiking environmental samples at
slightly more than the detection limit of the less sensitive assay. For example, these
samples corresponding to H (“pathogen present”) are those containing 100 or more
CFU per gram of target pathogen. In addition, a second set of samples corresponding
to the alternate hypothesis A (“pathogen not present”) is constructed from a variety
of unspiked environmental samples. (It is assumed that most background samples
contain fewer than 100 CFU per gram of target pathogen.)

Each sample in the “H” and “A” sets are split into duplicate sub-samples, each of
which is subjected to one of the two tests. These data provide estimates of the joint
probability of occurrence of positive and negative tests for the two assays over the
population of environmental samples, as shown in Table 4. The astute reader will
notice that in order to produce accurate estimates of the order of magnitude quoted
for the “A” group, at least 100,000 samples would be necessary. Outside of a
program like BioWatch, it would be difficult to perform this large a validation
exercise on environmental samples in practice.3 Nonetheless, the values provided
are arguably consistent with the findings of the BioWatch program, and could also
be representative mutatis mutandis of multicenter clinical assay validation
programs for common diseases like HIV infection or tuberculosis.

Table 4. Estimated joint probabilities for test results for two assays, PCR-based and
immunoassay-based (IMA).

Estimated joint probabilities (X = H or A)
Test set P(E1E:|X) P(E{E:|X) P(E1E:|X) P(E1E:|X)
(PCR + IMA +) | (PCR-IMA+) | (PCR +IMA-) | (PCR-IMA-)
X=H 0.67 0.001 0.3 0.029
X=A 1.0x 10 1.0 x 104 1.0x 10 0.9999

The joint probabilities in Table 4 imply the values given in Table 5 for the
conditional probabilities associated with this pair of assays. Presumably when
applied to environmental samples the two assays have some causes for false
positives and negatives in common, and other causes that are unique to each assay.
In general, the values in Table 5 seem plausible for both PCR and IMA in
environmental samples.

First of all, note that the values in Table 5 imply that both assays are highly
diagnostic for the presence of the pathogen. The diagnosticity of a positive PCR

assay finding is % = 4.9 x 10%, and the diagnosticity of a positive IMA finding is
1
% = 6.1 X 103. If one were to assume that the two assays are independent, the
2

diagnosticity of a positive finding for both assays together would be the product of
these two values, = 3 x 108 - very strong support for the hypothesis that the
pathogen was present.

P(E,E;|H)

= 6.7 X 10%,
P(E1E2|A)

However, the true diagnosticity of a “double positive” is only
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not much higher than that of a positive PCR result alone! Nonetheless, in the real
world it is unlikely that the experiment leading to the data in Table 4 would be
performed, and more likely that each assay would be characterized individually on
independent sample sets. An exaggerated sense of the diagnosticity of combining
the two assays might easily arise from a naive assumption of independence.

Table 5. Conditional probabilities derived from the joint probability estimates given
in Table 4.

Quantity Value Interpretation

In nearly 70% of the cases when the pathogen is
P(Ez|E1,H) 0.6907 present at greater than 100 CFU/gm and the PCR
assay is positive , the IMA test is positive as well.

When the PCR assay gives a false positive
P(EZ | El’A) 0.5000 indication, IMA does too, about half the time

In three percent of the cases when the pathogen is
present at greater than 100 CFU/gm but the PCR
test is negative, the IMA assay is nevertheless
positive.

P(E2|E1,H) 0.03333

In one case out of 10000, IMA gives a positive
P(E:|E1,A) 1.000 x 10-* | indication even though the pathogen is absent and
the PCR test is negative.

When the pathogen is present at greater than 100
P(Ez|H) 0.6710 CFU/gm the IMA assay is positive about 67% of
the time.

When the pathogen is absent the IMA assay is
positive for about 1 in 10,000 samples.

P(E2|A) 1.100 x 104

When the pathogen is present at greater than 100

P(E1[H) 0.9700 CFU/gm the PCR assay is positive 97% of the time.

When the pathogen is absent, the PCR assay is

-5
P(E1|A) 2.000x 10 (false) positive for only 2 out of 100,000 samples.

It is tempting to argue that the causes of false positive and negative results for the
two types of assay discussed in this example are, in the real world, primarily
associated with differences in the way the two assays are performed either by two
individuals or in two different laboratories - i.e. false negatives are primarily caused
by chance mistakes in labeling or reagent addition and false positives are primarily
caused by contamination with positive control standards. In this case the sources of
error could be expected to be independent. Even if this were plausible it would
remain to be demonstrated empirically by performing validation experiments like
the imaginary one posited for this example.

In some operational settings one assay is used as a “presumptive” test and another
as a “confirming” test, i.e. a second test that is done when the first test gives a
positive value, in order to provide more confidence in the answer. This often makes
sense when one assay is cheap and easy, but not very accurate and the other is more
costly or complex but more accurate. In this context conditional probabilities are
the natural way to express how diagnostic one assay is, given a positive (or
negative) result for the other. It is clear from the following table (Table 6) that a
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positive PCR test performed after the IMA test will increase the diagnosticity by an
order of magnitude or more regardless of the results of IMA. However, if the first
test is PCR, a positive result renders the IMA superfluous. This would imply that the
IMA is not a good choice as a “confirming detection assay” for the PCR test, but the
PCR test would be useful as a confirming assay for IMA. A more complete analysis of
choosing presumptive and confirming assays is beyond the scope of this report.
However, it should be clear that the potential conditional dependence of the tests is
a key issue.

Table 6. Conditional diagnosticity expressions and values for the notional PCR and
IMA data in Table 5.

Diagnosticity Total

uestion Expression Value i : .
Q p of first test diagnosticity

How diagnostic

1S a p(_)Sltllve P(El |E2H)
PCR finding TR 9.12x 104 0.329 3.00x 10
when IMA is (E1|£24)

negative?

How diagnostic

1S a p(.)Sltllve P(El |E2H)
PCR fll‘ldll’lg m 11.0 6.10x 103 6.70 x 104
when IMA is (E1|E24)

positive?

How diagnostic

. is ’fl positive P(E,|E.H)
fll’ldll’lg fOI' IMA m 333 0030 100
when PCR is (Ez|E14)

negative?

How diagnostic

is a positive P(E,|E.H)
finding for IMA ﬁ 1.38 4.85x 10* 6.70 x 10*
when PCR is (E;|E14)

positive?

B. Conditional dependence in multilocus PCR assays

Multilocus PCR assays are a mainstay of microbial forensic detection.1* Are multiple
PCR loci independent pieces of evidence for the presence of a pathogen of interest?
Based on the discussion in section 2, it will depend on whether the false positive and
negative rates of the two separate assays arise from factors in common. In many
laboratories performing PCR assays contamination and the presence of PCR
inhibitors is a common problem that can influence assays for different signatures
equally. If the two assays are run simultaneously in the same sample as a duplex,
competitive effects may cause correlation between the positive or negative results
for the two signatures. Finally, depending on the genomic location of the two
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signatures, the presence or absence of the two in background microbes could well
be correlated. Hence there are many plausible reasons to suspect that the
diagnosticity of multilocus assays are influenced by conditional dependence.

A simple example serves to demonstrate how conditional dependence might lurk in
otherwise unremarkable data on the performance of a dual signature assay. In
direct analogy to the discussion of “orthogonal” assays we will assume that the data
set, displayed in Table 7, has been generated from assay results on a set of “H”
samples containing 100 or more copies per gram of target pathogen genomic DNA
and “A” samples containing less than 100 copies per gram, and that 100 copies per
gram lies near, but above the detection limit of the assay. The two signatures are
denoted S1 and S2. Notice that, unlike the “orthogonal” assays example, the
performance of both assays is assumed to be equal. All probabilities are symmetric
with respect to exchange of E1 and E».

Table 7. Estimated joint probabilities for test results for two PCR signatures S1 and
S2.

Estimated joint probabilities (X = H or A)
Test set P(E1E:|X) P(E{E:|X) P(E1E:|X) P(E1E:|X)
(S1+ S2+) (S1- S2+) (S1+ S2-) (S1- S2-)
X=H 0.975 0.01 0.01 0.005
X=A 1.0x 10 1.0 x 104 1.0x 104 0.9998

Table 8. Conditional probabilities derived from the joint probability estimates given

in Table 7.

Quantity

Value

Interpretation

P(E2|E1,H)

0.9898

In nearly 99% of the cases when the pathogen
genome is present at greater than 100 copies/gm
both signatures test positive.

P(E2|E1,A)

9.09 x 102

When the S1 assay gives a false positive
indication, S2 does too, about 10% of the time

P(Ez|E,H)

0.6667

In about 67% percent of the cases when the
pathogen genome is present at greater than 100
copies/gm but the assay for S1 is negative, the
assay for S2 is nevertheless positive.

P(E2|E1,A)

1.000 x 104

In one case out of 10000, S2 gives a positive
indication even though the pathogen is absent and
the PCR test for S1 is negative.

P(E2|H)

0.985

When the pathogen is present at greater than 100
copies/gm the S2 assay is positive about 99% of
the time.

P(Ez|A)

1.100 x 104

When the pathogen is absent the S2 assay is
positive for about 1 in 10,000 samples.

P(E1|H)

0.985

When the pathogen is present at greater than 100
copies/gm the S1 assay is positive about 99% of
the time.

P(E1]|A)

1.100 x 104

When the pathogen is absent, the PCR assay is
(false) positive for only 2 out of 100,000 samples.
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The conditional probabilities for this scenario are displayed in Table 8. Each
signature by itself has a diagnosticity of 8.95 x 103. If one assumes independence
between the results for the two signatures, the diagnosticity value is a hefty 8.02 x
107. However, the actual diagnosticity value is only 9.75 x 104, almost a factor of
1000 lower.

Unlike the case of the “orthogonal” assays, data sets generated from multilocus PCR
validation exercises are much more likely to be available for quantifying
dependences. Currently the BioWatch data set represents a large but inaccessible
resource for study. However, smaller publicly available data sets may be available
and we may see some assessments of this question in the future.

C. Two reference laboratories, one case laboratory

Suppose that a government agency decides that it will support an analytical
capability for (say) ricin detection in two laboratories at separate institutions, but
during an investigation will only provide a sample to one of them for analysis. (This
is the actual policy of some US government agencies.) To establish the performance
of the methodology used by the two labs they request performance data from each
lab and pool the results in order to establish the overall diagnosticity of the method.
The reasoning is that by pooling the results they are increasing the statistical
precision as well as averaging over potential differences in the way the analyses are
performed in different labs. The agency specifies that the samples in each lab are
prepared in the same way, and the measurements are done using the same SOP. The
number of positive results observed in spiked and unspiked samples is shown in
Table 9.

In this case the probability of observing a positive detection is clearly conditional on
which laboratory is doing the testing. In the case shown, the diagnosticity of the test
implied by the pooled data is 127. However, if the agency quotes this value while
sending a case sample to only one of the laboratories, it is misleading, because the
diagnosticity of the test performed in each laboratory alone is actually much lower -
in one case by a factor of two.

Table 9. True and false positive detections (positives/number tested) H = spiked
samples, A = unspiked negative controls.

Lab 1 Lab 2 Pooled
H 498/503 29/51 527/554
A 1/63 3/473 4/536
Diagnosticity P(E;|L,H) P(E;|L,H) P(E,|H)
expression P(E,|L,A) P(E,|L,A) P(E;|A)
Diagnosticity 62 89 127
value
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This is an example of “Simpson’s paradox”, a well-known phenomenon that can
occur when the diagnosticity of a test on a pooled population is assumed to apply to
a subpopulation, and there is an unrecognized or ignored conditional dependence of
the test results on the identity of the subpopulation.!>

5. Conditional dependence relations complicate rigorous
validation

Pearl has suggested that it is possible to organize knowledge in domains of expertise
to promote the accuracy of independence assumptions.l® However, it is not clear
that the test developer is actually free to use this strategy in regard to the scientific
tests devised for forensic applications. This means that when the evidence of more
than one test is combined in pursuit of stronger diagnosticity, dependencies must be
determined empirically. Unfortunately, this may not always be practical. Gustafson
has discussed the practical difficulties involved with extracting estimates of
conditional dependence from empirical data when even a modest number of
variables are involved:

“Assume you are attempting to determine whether three symptoms
S1, S2, and S3 are independent given that the patient has a specific
diagnosis D. A chi square test of conditional independence checks
only for pairwise independence; more complex interactions that
involve S1, S2, and S3 may exist even though S1 and S2 are pairwise
independent given D. Even if higher-order interactions were ignored,
the data collection and analysis necessary for testing two dimensional
conditional independence of a large number of symptoms would be
prohibitive.” (Reference 1, page 63)

In the domain of microbial forensics, nowhere does this problem loom larger than in
proposals to use Bayesian network-based inference systems to extract detailed
growth process information from multiple types of chemical and physical analyses
on biological agents. For example, consider a 2008 study by Jarman et. al., which
suggested the construction of a Bayesian network for combining various kinds of
mass spectrometric data in order to infer the culture medium of B. anthracis
samples.’® Two such data sources are isotope ratio mass spectrometry (IRMS) and
Electrospray lonization mass spectrometry (ESI-MS). IRMS determines the ratios of
various isotopic forms of the elements carbon and nitrogen in a sample, while ESI-
MS detects the presence of a mass fragment characteristic of agar. In constructing
the inference network the authors assert:

“First, we make the standard assumptions that any two child nodes
[the probabilities of observing peak intensity values for ESI-MS and
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IRMS respectively] are conditionally independent of one another,
given that we know the state of the parent node [representing the
probability that agar has or has not been added]. This means, for
example, that the ESI-MS peak intensities and the IRMS peak
intensities are orthogonal (and statistically independent) of one
another if we know whether agar was added to the culture medium.”
[Reference 16, page 3575; Emphasis added.]

To assess the possibility that this assumption may not hold, suppose that E; is the
finding that the ESI peak intensity for agar is greater than or equal to a certain cutoff
value, and E; is the finding that the intensity is less than the cutoff. Similarly let E;
and E; be the findings that the IRMS peak intensities lie within and outside a stated
domain, respectively. Let H be the state of the parent node in question when agar is
added and A its state otherwise. Independence requires both that P(E1|E2H) =
P(E1|E:H) and P(E1|E2A) = P(E1|E2A). Imagine we draw samples from the “H”
population - all possible samples made using agar. This population is sure to
contain samples that have been washed with organic solvents that both change E> to
E; and in doing so also alter the probability of observing E1. Among “A” samples,
where agar has not been added, it is plausible that other organic additives that alter
the C/N isotope ratios might also act as interferences in the ESI-MS spectrum,
altering the probability of observing E1. Clearly an inferential model that invokes
independence in this way requires empirical validation.

A minimum experiment would require creation of reference samples that are
simultaneously subjected to MS-ESI and IRMS measurements so that joint
probabilities of observing the states of E1 and E2 can be estimated. When these are
not defined to be dichotomous but have more possible states, the number of
samples required to produce reasonable joint probability estimates increases
rapidly. Validating conditional independence assumptions in more complex
Bayesian networks begins to look like a daunting task.

6. Concluding remarks

It is important to appreciate that the examples given above are not “concocted” to
exhibit strong conditional dependence phenomena. Instead, just a little playing
around with numbers will convince the reader that one has to do something special
to find independence in a data set. In fact, the only reliable way to produce a set of
joint probabilities that exhibit conditional independence is to assume it outright - i.e.
choose values for the P(E;|X) and then multiply them together. Thus it appears to be
much more likely that real data sets from actual tests and real items of evidence will
generally exhibit conditionally dependence to some degree. For those who develop
or utilize multiple lines of evidence in forensic investigations this shifts the burden
of proof considerably, since the standard approach has been to naively assume
independence when dealing with different tests or different types of evidence.
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The assumption of independence is a heuristic - and it is entirely possible that in
“real life” such assumptions, while strictly incorrect, also do not generally matter
because they seldom invalidate a basic conclusion. It has long been recognized that
heuristics do surprisingly well in some cases simply because they are “ecologically
rational”, i.e reflect some actual properties of the real world.1” One of those
properties might be that in a complex world independence assumptions are usually
“close enough” to the truth. On the other hand, there are well-documented legal
cases where the naive assumption of statistical independence has lead to
convictions later judged to be invalid. (Joseph B. Kadane, 2008)

The treatment in this report was deliberately kept simple in order to make it more
suitable as a primer and thought-stimulator. Of course, much more complex
problems arise when more than two hypotheses and variables with more than two
states are involved. With regard for Pearl’s observation about “knowledge
organization”, one of the modes of organization that the scientist can systematically
employ is to develop assays and perform validation studies that are dichotomous by
definition and design. Thus, “orthogonal” assays that ask “was this sample made
using agar or not?” are much simpler to validate than those that ask “how was this
sample made?”

One of the explicitly stated goals of the national research program in microbial
forensics is to “[develop] orthogonal methods for conducting forensic comparisons
between samples....”1° In light of the discussion in this report one might conclude that
rigorous investigation of conditional dependence through empirical studies ought to be
an intrinsic feature of forensic assay development.
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Appendix: Modeling conditional dependence.

In this section we consider a simple, few-parameter model for conditional

dependence that can reproduce the two intuitive limiting cases for the likelihood
P(Ez|E1H)
P(Ez|E14)
conditionally independent, and

ratio Ly, = . In the first limit, the items of evidence E; and E; are

_ . _ Pl
Lo =Ly = 520 (1a)

In the other limit, E is completely and exclusively dependent on E1 and

P(Ez|E1) _
P(Ez|Eq1)

L2|1 = (1b)

Conditional dependence can be modeled using approaches developed to describe
the interaction between non-independent medical tests. For two items of evidence
E1 and E2, a hypothesis H, and its alternative A (A = Not-H), we write:

P(E1Ez[H) = P(E2|E:H)P(E1/H) = P(E2[H)P(E:1/H) + y1 (2a)
P(EE:/H) = P(E2[E:H)P(£:1/H) = P(E2[/H)P(£1/H) - y1 (2b)
P(E1Ez[|A) = P(E2|E1A)P(E1]A) = P(E2|A)P(E1]A) + v2 (3a)
P(EE2/A) = P(E2|E1A)P(£1]/A) = P(E2/A)P(E1]A) - vz (3b)

When E;1 and E; are the results of “binary” tests, i.e. tests that have only two
possible results (“positive and “negative”), only the two parameters y1 and yz are
necessary to describe the degree of conditional dependence of the tests.

The values of the parameters y1 and y2 are constrained by the relations

0 < P(E1[EzH) < 1 (4a)
and
0 < P(E1|EzA) < 1 (4b)
and by the identity:
P(E3|E:1) = P(E2|E1H) P(H|E:) + P(E2|E1A)P(A[E1). (5)

Using equation (5) it is simple to show that P(Ez/E1H) = P(Ez/E:A) if and only if
P(E:|E1H) = P(Ez|E1). Moreover,
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ifP[Ez/E1H) < P(Ez/E1) then P[Ez/E1A) > P(Ez/E1) (63)
and

if P(Ez/E1H) > P(Ez/E1] then P(Ez/E1A) < P(Ez/E1). (6b)
These relations are sometimes referred to as expressing “attraction” and “repulsion”
between states of the two evidence items in the sense that if E; makes E2 more
probable under H (E1 “attracts” Ez) then it makes it less probable under A (E«

“repels” E2), and vice versa.

Thus, either

P(E:|E1A) < P(Ez|E1) < P(E:|E1H), (7a)
or
P(E2|E1H) < P(E2|E1) < P(E:|EiA), (7b)
P(E3|E H)

and it follows that the likelihood ratio L,; = is greater than 1 when E;

P(Ez|E1A)
“attracts” E> under H and less than 1 when E; “attracts” E2 under A. Note that these
relations depend on the particular states of the evidence variables E; and E2 and can
change as these states change.
The likelihood ratio Lz;; approaches 1 when

v1 = [P(E2|E1) - P(E2[/H)]P(E:1/H) (8a)

and
v2 = [P(E2|E1) - P(E2|A)]P(E1/A). (8b)

Equation (8b) can be derived from (8a) using the constraining relation (5).

Lz/1 is equal to % when y1 = y2 =0, however equation (5) implies that this cannot
2
occur unless
P(E:|E1) = P(E2[/H)P(H|E1) + P(E2/A)P(A|E1) 9

If we define a third parameter A by

A=P(E2|E1) - P(E2/[H)P(H|E1) - P(E2JA)P(A[E;) where -1<A<1 (10)
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we can relate the three parameters that govern the degree of conditional
dependence by:

AP(E;) = y:P(H) + y,P(4) (11)
Thus, conditional independence is true only under much more stringent conditions
than are required for diminished relevance caused by conditional dependence. In
particular, while the fact that P(E1|E2H) = P(E1|E2) is sufficient to ensure that
P(E1|E2A) = P(E1|E2), the fact that P(Ez|E1H) = P(E2|H) does not imply P(Ez|E1A) =
P(Ez|A).

The model can be used to explore the transition of the likelihood ratio to the limits
expressed by equations (1a) and (1b) in the following way:

(a) Assume values for P(E1|H), P(E1|A), P(Ez2|H) and P(Ez|A), and P(H); Note that
P(A) =1-P(H) and P(E1) = P(E1|H)P(H) + P(E1]A)P(A).

(b) Make y1 a free parameter, choose values from the range:
Yimax = Max(q1, $1) <Y1 £ Yimin = Min(ry, t1), where:

qi = - P(Ez[H) P(E:1[H)

r1 = P(Ez/H) [1 - P(E1/H)]

s1=-[1-P(Ez/H)] [1- P(E:/H)]

t1= [1 - P(E2/H)] P(E:1/H)

(c) Choose values of y2 from the range y2min < Y2 < Y2max, Where

Y2min = Max(qz, $2), Y2max = Min(rz, tz2), and

qz = - P(E2z/A) P(E1]A)

r2 = P(E2/A) [1 - P(E:1/A)]

s2 == [1 - P(E2/A)] [1- P(E1JA)]

t2 = [1 - P(Ez[A)] P(E1/A)

The choices of y1 and y2 determine A through equation (11). (Note that choosing A is
equivalent to choosing a value for P(E1|Ez).)
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(d) Use equations (2) and (3) to generate the likelihood ratio L = % =
152
P(E1|H)P(Ez|H) +v1

P(E{|A)P(Ez|A) +v2

(e) If the likelihood ratio L1 (i.e. the likelihood ratio for Ez conditioned on E1) is
desired, one can use the equation:

P(Ez|E1H) _ P(E1E;|H)P(E;|A)
P(Ez|E14) P(E1E3|A)P(E;|H)

(12)

The parameters y1 and y2 can be chosen to change the “balance” in the top and
bottom rows of the matrix of Table 1 (reproduced below for convenience.)

Table Al. Matrix of related conditional probabilities.

Eq O Eq
H P(E2[E1L,H) P(E2[/H) P(E2[E1L,H)
@ P(E2|E1) P(E2) P(E2|E1)
A P(E2[E1LA) P(E2[A) P(E2[E1LA)
alndependent of E1 and E;.
bIndependent of H and A.

For example, suppose that when y1 = Yimin P(E2/E1,H)> P(Ez/£1,H). As y1 increases, it
eventually crosses zero whereupon, P(Ez/E;,H)= P(Ez/H) = P(E:/E1,H). As it
continues to increase from zero towards Yimax, P(E2/E1,H)< P(Ez[£1,H). The value of
v2 has a similar effect on the bottom row.

Under certain conditions it is possible to find combinations of y; and y; that
“balance” the first or third columns. Let y; be the value of y; that makes P(Ez/E;,H) =
P(Ez/|E1,A) and y; be the value of y; that makes P(Ez/£1,H) = P(Ez/%£1,A). Then, using
equations (2a,b) and (3a,b) we obtain:

_ [P(Eo|H) — P(Ey|4)IP (Ey | H)P By H)
1= P(E,|H)P (& |A) — P(E,|A)P(E,|H)

and

_ [P(Eo|H) = P(E,|A)IP(Es | )P (B |4)
2= TP(E,|H)P(&,|A) — P(E,|A)P (&, |H)

Clearly, for these conditions to result in L =1 we must have

Yimin < yf < Yimax
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and

Y2min < )’; < Y2max

The parameters corresponding to the PCR-bleach example in Table 3, section 3 and
the other examples in section 4 are provided below. They are given to 4 significant
figures, but the reader is cautioned that some of the conditional probabilities are
very sensitive to the precise value of these parameters. Some adjustment beyond
the 4th decimal place may be necessary to reproduce the cited probabilities exactly.

Table A2. Model parameters corresponding to the example scenarios.

Scenario Section Y1 Y2
PCR - Bleach 3 -0.2350 -4.889 x 10-10
Two orthogonal assays 4A 0.01914 9.998x 10-¢
Two PCR signatures 4B 0.004775 9.992 x 10-¢
Two laboratories 4C 0.06939 0.01646




