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Abstract

Selective laser melting (SLM) is an additive manufacturing process in which multiple, suc-
cessive layers of metal powders are heated via laser in order to build a part. Modeling of
SLM requires consideration of both heat transfer and solid mechanics. The present work de-
scribes continuum modeling of SLM as envisioned for eventual support of part-scale modeling
of this fabrication process to determine end-state information such as residual stresses and
distortion. The determination of the evolving temperatures is dependent on the material,
the state of the material (powder or solid), the specified heating, and the configuration. Sim-
ilarly, the current configuration is dependent on the temperatures, the powder-solid state,
and the constitutive models. A multi-physics numerical formulation is required to solve such
problems. This article describes the problem formulation, numerical method, and consti-
tutive parameters necessary to solve such a problem. Additionally, various verification and
example problems are simulated in the parallel, multi-physics finite element code Diablo,
and the results presented herein.
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1 Introduction

This article documents the initial continuum thermomechanical modeling associated with
Lawrence Livermore National Laboratory’s LDRD Strategic Initiative Accelerated Certifi-
cation For Additively Manufactured Metals. The effort described here aims to develop a
part-level modeling capability to simulate the selective laser melting (SLM) process of addi-
tive manufacturing. The continuum modeling effort reported here consists of implementation
of a thermal model, coupled to a solid mechanics model, along with initial thermal verifi-
cation, and presentation of various example problems. The model was implemented in the
parallel, multi-physics finite element code Diablo.

The thermal model consists of the balance of thermal energy, with the associated boundary
and initial conditions, and the description of multiple phase changes. The numerical for-
mulation is a weighted residual formulation [1], solved in an incremental manner [2]. Two
factors are extremely important in the modeling of SLM. The first factor is the representa-
tion of the laser heat source. There are numerous models for laser heating, with one of the
most widely used being that of Goldak [3]. The Goldak model was originally conceived in
the context of welding, and it is extremely flexible; indeed, it contains numerous arbitrary
parameters, which must be calibrated for the problem of interest. A model in terms of the
relevant constitutive and process parameters would be much more convenient to use, and we
adopt a recent model aimed precisely at laser melting of powders. The other factor is the
representation of phase change. Good overviews of both the analytical problem and methods
for solving it are presented in Hu and Argyropoulos [4] and Sharma, et al. [5].

The solid mechanics model consists of the balance laws, those being the ones for mass, linear
momentum, and angular momentum. The numerical solution of the solid mechanical model
is done in a Lagrangian frame, and using an incremental solution method. The details
of solving these kinds of problems can be found elsewhere [6, 7, 8]. There are numerous
methods for coupling independent physical models in order to solve multi-physics problems.
The examples presented in the current work were all solved using a staggered solution scheme
[6, 9, 10].

The Diablo code [11] being developed at Lawrence Livermore National Laboratory (LLNL)
uses implicit, Lagrangian finite element methods for the simulation of solid mechanics and
multi-physics events over moderate to long time frames. Its primary focus is nonlinear
structural mechanics and heat transfer. The code provides a venue for parallel computa-
tion, while leveraging discretization technologies developed and user-tested in our previous
codes. Modular data structures/objects are organized through Fortran 95 constructs and
message passing parallelism is used for our targeted commodity-class, distributed memory
computers. Executions typically leverage 128-512 CPUs, with instances up to 2048 CPUs.
Spatial discretization is currently restricted to low-order hexahedral continuum, quadrilat-
eral structural shells and two-node beams. Material stress response models include elasticity
(isotropic, orthotropic), plasticity, simple soil, crushable and hyperelastic foams. Material
thermal response models include conduction (isotropic, orthotropic), phase change, and en-
closure grey-body radiation. Another important class of models is for contact problems,
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representing behaviors associated with the interactions of unbonded material interfaces.
Interface treatments include frictional behavior, pressure-dependent thermal conductivity,
arbitrary interface motion, via modern, highly stable mortar contact constraints [12]. For
solid mechanics, time integration is focused on the Newmark method [13], which provides
(linear) unconditional temporal stability. For thermal mechanics, time integration is per-
formed using the generalized-alpha method [14], which also provides (linear) unconditional
temporal stability. Implicit time integration methods require efficient solutions to coupled
systems of equations. Users also demand robustness. For these reasons, both iterative and
direct parallel linear solver options are available and different methods can be designated for
different physics. While coupled thermomechanics is the primary focus of Diablo, the code
incorporates a general multi-physics philosophy for solving coupled field equations. Multi-
ple field equations are solved through an operator splitting construct that repeatedly loops
over the active sub-problems within each time step until the sub-problems simultaneously
converge, optionally embedded within a global quasi-Newton strategy. Multiple strategies
are available to drive the nonlinear solution process for each of the field problems.

This paper will proceed as follows: the next section presents a brief description of the physical
problem. The following four sections (3-6) will describe aspects of the thermal modeling,
including the strong form of the problem, the numerical methods, validation of the model,
and examples. The four sections after that (7-10) contain analogous information regarding
the solid mechanics, including the strong form, the numerical implementation, a discussion of
the material properties, and several thermomechanical examples, with comments regarding
the physical coupling throughout.

2 Description of the Physical Problem

The SLM process of building a part is, conceptually, fairly simple. A thin bed of metal
powder, tens of micron thick, is placed on a solid substrate. A laser passes over the powder,
melting the powder and some portion of the substrate, so that the melted powder is attached
to the substrate. Once a complete layer has been melted and attached, another layer of
powder is added, and the process is repeated. Figure 1 presents a schematic of a laser
melting a single layer of powder. In this figure, the laser is moving to the right, the blue
region at and to the left of the laser represents melted material, while the gray spheres to the
right of the laser represent unconsolidated powder. Consolidated material, either substrate
or previously processed layers, is shown as solid gray at the bottom.
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Figure 1: SLM process schematic (modified version of figure from [15])

3 Thermal Problem Statement

The continuum thermal physics represented in the model described here can be considered
as two separate (but related) phenomena: balance of thermal energy, and phase change. The
balance of thermal energy is given by

ρcpṪ = − div q + r, in Ω, (3.1a)

T (xT , t) = T̄ , on xT ∈ ΓT , (3.1b)

q (xq, t) = q̄ · n, on xq ∈ Γq, (3.1c)

T (x, 0) = T0, on Ω
⋃

∂Ω, (3.1d)

where ΓT is the portion of the boundary ∂Ω associated with essential boundary conditions,
and Γq is the portion of the boundary associated with natural boundary conditions. Addi-
tionally, the constitutive behavior is the usual Fourier conduction,

q = −k gradT, (3.2)

where k is a second order tensor of thermal conductivities, which may be a function of both
temperature and the spatial coordinates.
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The phase change problem is described by the Stefan-Neumann equations:

T (xp, t) = Tp, on xp ∈ Γp, (3.3a)(
k1
∂T1

∂x
− k2

∂T2

∂x

)
· n = Hρ

∂xp
∂t
· n, on xp ∈ Γp. (3.3b)

It is noted that the phase change is considered to occur along a surface internal to the body,
which is denoted here by Γp. Additionally, the subscripts (·)1 and (·)2 denote the phases on
opposite sides of the interface, H is the latent heat associated with the phase change, and
n is a normal to the surface Γp. A more detailed description of the phase change problem,
along with the analytical solution for the problem on a 1D domain, can be found in [4].

An important aspect of the thermal energy balance for this problem is the laser heating,
which is represented by the r term in Equation (3.1a). One possibility for the heating model
is that of Goldak, et al. [3], which was originally developed for the modeling of welding
processes. However, in an attempt to have a model defined in terms of material properties
more naturally associated with the problem at hand, the model described by Gusarov, et al.
[16] was chosen; indeed, it was created precisely for the case of interest, i.e., it was derived
via the radiation transfer equation as applied to a powder bed. An outline of the derivation
follows.

Given that the heating of a non-close packed powder by a laser can occur within the bulk
of the material, and not only at the surface, it is assumed that the end result of the current
derivation will be a volumetric heating, not a surface flux. Figure 2 presents a schematic
of the physical process considered. A powder with layer depth L is heated with a laser
normal to the powder surface which has nominal power density Q0. The beam is assumed
to scatter within the bulk of the powder, resulting in radiation that is represented via the
intensity I (z′, θ), where the “prime” notation is meant to indicate that the spatial coordinate
is specified with respect to the nominal powder surface before melting.
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Figure 2: Schematic of laser heating of a powder on a substrate (reproduction of figure from
[16])

Assuming that the powder is also absorbing some of the incident energy, the radiation transfer
equation takes the form

µ
∂I (z′, µ)

∂z′
= −βhI (z′, µ) + βh

ω

2

∫ 1

−1

I (z′, µ̃)P (µ̃, µ) dµ̃, (3.4)

where the term on the left hand side represents the z′ component of the intensity gradient
within the powder, the first term on the right hand side represents the extinction of the
radiation (commonly described as being a combination of both scattering and absorption),
and the second term on the right hand side represents an increase in the intensity gradient
due to scattering along the z′ direction. For convenience, the notation used here is (nearly)
identical to that of Gusarov, et al. [16], although a few slight changes have been introduced
in order to provide clarity in the current context. As such, µ = cos θ, βh is the extinction
coefficient, ω is the albedo, and P (µ̃, µ) is the scattering phase function. For a complete
discussion of Equation (3.4), see Siegel and Howell [17].

After various definitions and assumptions, including the definition of the function Î, such
that

I = Î (Q) , (3.5)

application of the boundary conditions and integration of (3.4) results in an expression for
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the normalized power density q, as

q =
Q

Q0

=
ρha

(4ρh − 3)D

([
1− ρ2

h

]
e−λ

[
(1− a) e−2aξ′ + (1 + a) e2aξ′

]
−
[
3 + ρhe

−2λ
] [

(1 + a− ρh (1− a)) e2a(λ−ξ′) + (1− a− ρh (1 + a)) e2a(ξ′−λ)
])

−
3 (1− ρh)

(
e−ξ

′ − ρheξ
′−2λ

)
4ρh − 3

, (3.6)

where a =
√

1− ρh, the optical thickness λ = βhL, ξ′ = βhz
′ is a dimensionless coordinate

in the through-thickness direction of the powder, and D is a constant used for convenience:

D = (1− a) [1− a− ρh (1 + a)] e−2aλ − (1 + a) [1 + a− ρh (1− a)] e2aλ. (3.7)

Ultimately, this model gives an expression for the volumetric heating r as

r (x′, y′, z′) = −βhQ0
∂q

∂ξ′
, (3.8)

where x′, y′ are the coordinates in the plane of the powder surface, and taken to be in a
moving frame of reference attached to a point defined as the projection of the beam axis
down to the powder surface, Q0 is assumed to have the spatially-varying form

Q0 = Qm

(
1− rh

R

)2 (
1 +

rh
R

)2

, for 0 < rh < R, (3.9)

where r2
h = x′2+y′2 is the radial distance of a given point in the body from the axis projection

point, and Qm is related to the effective total laser power We as

We = 2π

∫ R

0

Q0 (r) rdr =
π

3
R2Qm. (3.10)

So, the parameters necessary to calculate this model are as follows: the effective total power
of the laser We, the laser beam radius R (which is taken to be precisely half of the often
used D4σ), the extinction coefficient βh, and the hemispherical reflectivity of the powder ρh.
It should be noted that neither the Gusarov heating model nor the version of it used in the
current work explicitly account for radiation, vaporization, mass ejection, or any other losses
of energy from the system. These effects are (partially) represented as a reduction of the
nominal total laser power W to an effective total laser power, We. For all of the examples
in the current work, we take

We =
2

3
W. (3.11)

The reader is reminded that the derivation of the Gusarov heating presented here is signifi-
cantly simplified. For a full discussion, see Gusarov, et al. [16].
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4 Thermal Numerical Implementation

Given the relative ubiquity of information related to calculation of (3.1a)-(3.1d) and (3.2), no
further mention will be made to the general solution of the problem here. Readers interested
in further discussion on the solution of the heat transfer problem via finite elements are
referred to Hughes [18] or Zeinkiewicz, Taylor, and Zhu [6]. Several comments regarding the
specific case of concern will be made below.

For the problem at hand, the phase change represented via the Stefan-Neumann equations
indeed represents a change between solid and liquid, but the phase information is used in a
more subtle manner. The actual phases considered here consist of the “powder phase” (solid
powder), and the “consolidated phase” (solid and liquid material without voids, taken to-
gether), i.e., the term “consolidated”, without any qualifier, will be used to refer to both the
consolidated solid and consolidated liquid. This grouping of the phases provides the infor-
mation necessary to drive the irreversible powder consolidation within the solid mechanics
(as described later). The phase change between liquid and solid consolidated material is
accounted for with variation of the material parameters as a function of temperature. Math-
ematically, the consolidation phase change calculations are associated with a phase variable,
φ. Since the solid portions of the material can be either powder or consolidated, we allow
for all of the continuum thermal material properties (e.g., conductivity, heat capacity) to be
a function of both temperature and phase.

Regarding the phase variable, we take φ1 to be associated with the powder and φ2 to be
associated with the consolidated material. For each phase i, the phase variable may take on
the values 0 ≤ φi ≤ 1. Additionally, at every point in the body, the constraint∑

i

φi = 1 (4.1)

is enforced. That is, the phase variables represent the local volume fraction of each of the
phases (i.e., powder and consolidated).

Various references present useful discussion of the numerical implementation of the Stefan-
Neumann equations [19, 20, 4]. It is first noted that, given the problem is defined at an
internal interface of the body, it is conceivable that one might want to track the interface
geometry precisely. An alternative is to formulate a method that tracks only the volume
within which the interface is located, which is the approach used here. The particular
algorithmic treatment used in the current work was taken from Rolph and Bathe [21]. First,
the expression for the balance of energy within a local volume containing a phase interface
is

∆q dA = ±ρH dV

dt
, (4.2)

where the ± are associated with the two possible directions of the phase change (note that
the model can be used to describe general phase changes, include those which are reversible).
The equation is characterized as being a balance between the net heat flux across the interface
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and the energy associated with the volumetric conversion of the material from one phase to
another. While the previous expression is not quite the same as (3.3b), the similarities are
certainly evident. It is noted that since the numerical formulation only tracks volumes, it
is sufficient to track the phase variables φi solely at element integration points. Continuing,
the method goes about creating a body heating term rp associated with the phase change,
as follows:

∆re,(i)p = −
∫

Ωe

1

∆t
ρ(i−1)c(i−1)

(
T (i) − Tp

)
dv, (4.3)

where (·)(i) is the ith approximation (in the sense of an iterative solution strategy) to the
quantity (·) at time t+∆t, (·)p denotes quantities associated with the phase change, and (·)e
denotes quantities associated with element e. Since the equation above defines the iterate-
wise increment, the total volumetric heating associated with the latent heat is defined as

re,(i)p = re,(i−1)
p + ∆re,(i)p , (4.4)

and the consistency with the temperature-enthalpy relation is enforced by requiring that∑
i

∆re,(i)p = ±
∫

Ωe

1

∆t
ρ(i−1)H dv. (4.5)

i.e., the summation is performed over all iterations. Generally speaking, the method is
described as follows (for, say, melting): the algorithm associates temperature increases past
the melting temperature with a special body heating and simultaneously constrains the
temperature to remain at Tm. Then, once the summation of the (incremental) special body
heating is equal to the latent heat of the phase change, the temperature is again allowed to
evolve per (3.1a).

The phase change model currently implemented for this work is meant to describe the phase
change of elementally pure substances (or alloys that exhibit congruent melting), i.e., the
phase change is assumed to take place at a single temperature, and not over a range of
temperatures. As such, it is not strictly appropriate for modeling SLM of arbitrary alloys.
However, it was deemed sufficient for the initial implementation. Also, the method was
implemented in order to only allow one way phase changes, i.e., melting of the powder
(which coincides with a volumetric contraction) is allowed but “freezing” (in the sense of the
consolidated material returning to the powdered form) is not.

Additionally, given the significant temperature excursions expected in the actual SLM pro-
cess, we assumed that the functional dependence of the thermal constitutive properties on
the temperature would significantly effect the results. Because of this, as well as the sig-
nificant material property changes associated with the material consolidation, we believed
that a consistent nonlinear formulation of the problem would aid in calculating a solution.
This required adding the Fréchet derivative [22, 23, 24, 25] of the material terms to the
linearized system of equations used to solve for the temperatures. In addition to the use of
these nonlinear terms, various algorithmic controls were devised to help with the convergence
properties of the implementation.
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Given that the derivation presented in [16] resulted in an analytic expression for the laser
heating that is fundamentally a function only of spatial coordinates and process and material
properties, little needs to be said about the addition of the laser effects to the body heating
term. However, it is again noted that the coordinates used in the Gusarov heating (3.8)
are taken with respect to a moving frame of reference attached to the axis of the laser (as
described above). Of course, this implies that the motion of the heat source is somehow
specified. The motion of the laser is specified via a set of curves specifying xaxis (t), where
each curve describes one spatial coordinate as a function of time. This is a general description
of the motion, which provides flexibility for early model testing; in the future, the actual
path data used in the additive manufacturing process (or some representation thereof) will
be used to define the path of the heat source.

5 Thermal Problem Parameters and Verification Re-

sults

In order to verify the implementation, results were compared to those presented in Gusarov,
et al. [16]. The physical setup is that of a small block of material with a single layer of
powder, upon which a single track of powder will be heated and transformed. The block is
taken to be 0.6mm × 0.2mm × 0.2mm. The laser spot will transit along the x direction,
over the range 0 ≤ x ≤ 0.5mm, and at y = 0mm, in order to utilize a symmetric domain.
In the z direction, the top 0.050mm will be considered as powder, and the remainder will
be specified as material that is consolidated at the outset (e.g., the baseplate upon which
the SLM is initiated). The nominal laser power is stated as W = 45W , which we take to
correspond to an effective power We = 30W . The size of the heat source is specified as
R = 0.060mm. The boundary conditions are all insulated, except for that at x = 0.6mm,
which is an essential boundary condition, that being T = 303K.

The material considered is 316L stainless steel, with properties given in Table 1; note that
the subscripts (·)p and (·)c are used for the powder and consolidated phases, respectively.
For the Gusarov comparisons, only the minimum amount of data necessary to capture the
relevant temperature dependence is used. It is noted that in the immediate vicinity of the
laser spot, bulk material temperatures often correspond to the gas phase. Local evaporation
is one of the factors contributing to the use of an effective laser power We < W , as described
at the end of Section 3.
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Table 1: Constitutive values from Gusarov, et al. [16]

Notation Description Value

(ρc)p specific heat, powder 2.98@1600, 5.95@1700 [MJ/m3K@K]

(ρc)c specific heat, consolidated 4.25@1600, 5.95@1700 [MJ/m3K@K]
kp thermal conductivity, powder 0.2@200, 0.3@1600, 20@1700 [W/mK @ K] 1

kc thermal conductivity, consolidated 20 [W/mK] 2

ρh hemispherical reflectivity 0.7
βh extinction coefficient 60,000 [1/m]
Tm melting point 1700 [K]
Hm latent heat of melting 2.18 [GJ/m3]
1 These values are approximate, due to significant variation as a function of factors which are not relevant to

the current case.
2 This value is approximate, due to a dearth of experimental data at the temperature of interest, i.e., 1700K.

The hemispherical reflectivity of pure iron was used in the current work. Also, it is noted
that the extinction coefficient can be approximated (given spherical power particles) as [16]

βh =
3

2

1− ε
ε

1

D
, (5.1)

where ε is the powder porosity, and D = 2R.

The domain is discretized into (240, 80, 80) linear hexahedral elements, which corresponds
to he = 0.0025mm. Generalized trapezoidal time integration is used, along with auto time
stepping, with typical time steps of ∼ 7× 10−7s for robust nonlinear convergence.

The effects of the consolidated solid-consolidated liquid phase change are included differently
than those related to the powder consolidation. In particular, the code uses a modified heat
capacity to model this behavior. Discussion of modification of the heat capacity in order to
account for the phase change in the consolidated material is presented in Section 9.

In the comparison between the Diablo results and those of Gusarov, et al. [16], we considered
four factors: magnitude of the maximum temperature, and the length, width, and depth of
the melt pool. These results are listed in Table 2, and illustrated in Figures 3 and 4. The
test case corresponds to Figure 8(d) of Gusarov, et al. [16], for λ = 31 and laser scan speed
vsource = 120mm/s. The results indicate reasonable correlation between the Gusarov and
Diablo models.

1Recall that λ is the optical thickness, defined as λ = βhL.
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Table 2: Comparison of Diablo results to Gusarov, et al. [16]

Quantity Gusarov Diablo

Maximum temperature [K] 4900 5000
Length [mm] 0.300 0.263
Width [mm] 0.200 0.208
Depth [mm] 0.070 0.065

Figure 3: Surface temperature profiles for initial verification case, Gusarov (left), Diablo
(right).

Next, the cross-sectional shape of the melt pool is displayed. Figure 4 shows a plot of the
material boundaries, along with the temperature contour for T = 1700K, which indicates
the boundary of the melt pool. The figure illustrates good correlation of various dimensions,
including maximum width, width at powder-substrate interface, and depth, as well as cross-
sectional shape.

11



Figure 4: Melt pool cross-sections at the location of maximum melt pool depth, for vsource =
120mm/s, Gusarov (left) and Diablo (right). The melt pool perimeter is represented by the
contour T = 1700K. The dimensional scale is the same for both cases.

Also shown is Figure 5, which depicts the value of the average phase variable, φ̄, where

φ̄ = φ1 + 2φ2, (5.2)

so that φ̄ = 1 corresponds to powder (blue), φ̄ = 2 corresponds to consolidated material
(red), and values between 1 and 2 represent partially consolidated powder. Is is noted that,
for the material that was already consolidated at t = 0 (elements colored gray), the phase
change algorithm associated with powder consolidation is disabled. The solution time in
Figure 5 is the same as that shown in Figure 4. Removal of the reflected portion of the
domain and overlaying the melt pool boundary onto the plot of φ̄ provides another view of
the infiltration of the melt pool into the baseplate.
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Figure 5: Illustration of melt pool geometry as represented by region of transformed powder
along with melt pool boundary, for vsource = 120mm/s in the y direction. Gray elements
represent the baseplate, blue elements are unconsolidated powder, and red elements are
full-density material.

Additional verification comparisons were also performed to ensure that various geometric
aspects of the tail end of the melt pool were being properly captured by the model. Figure
6 corresponds to Figure 8(d) from Gusarov, et al. [16], with λ = 3 and vsource = 240mm/s.
As per Gusarov’s results, the shape of the heat-affected zone is narrower and longer overall,
and in particular, the concave region at the tail is reasonably approximated. The concave
region would appear to exist due to the lower conductivity of powder along the lateral edges,
versus higher conductivity of the consolidated material toward the base and rear of the melt
pool.
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Figure 6: Surface temperature profiles for higher laser scan speed vsource = 240mm/s,
Gusarov (left) and Diablo (right).

6 Thermal Examples

We used the above-described algorithm to compute the solution to several additional example
problems. The first example is a single track with process parameters of We ≈ 167W and
vsource = 1600mm/s, and powder layer thickness of 0.050mm, which are among a group of
parameter sets that are experimentally associated with low porosity after processing [26].

Figures 7 and 8 display the results of the first example. For the example illustrated in these
figures, the beam radius is taken as 0.060mm. The first of these figures shows the melt pool,
with the red region indicating powder consolidation, and the blue region indicating uncon-
solidated powder. The particular time state shows the melt pool at its longest (1.315mm).
This configuration represents a particular case, that being of the laser heating from the edge
of a part. However, it does not represent the most general steady-state solution, that being of
the melt pool in the interior of the powder surface, as the tail is influenced by the insulating
boundary condition at the plane y = 0.0. A future calculation will extend the domain, so
that ymax ≥ 1.75, which we intend to use to validate the model against experimental results.
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Figure 7: Value of average phase φ̄, along with melt pool boundary

Figure 8 depicts a detailed view of the leading edge of the melt pool. The figure shows
an interesting feature of the results, that being the gap between the contour of T = Tm
and the leading edge of the phase-changed material. This is indicative of the time constant
associated with the phase change, and likely results from the laser speed being significantly
higher than for the previous cases. Indeed, this effect is not seen in the verification cases in
the previous section.
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Figure 8: Close view of front end of melt pool, with element color representing the average
phase φ̄, and the contour outlining the boundary of the melt pool.

The final example consists of nine powder layers, with the first six of the layers being con-
solidated over only half of the part plan-form, so that consolidation of the final three layers
results in the creation of an overhang. For the example illustrated in these figures, the beam
radius is taken as 0.050mm. Figures 9-12 are a sequence of figures illustrating the initial
transit of the heat source into the overhang region. The insulating nature of the powder
below the overhang results in a significant enlargement of the melt pool, as well as increase
of its maximum temperature. This, in turn, results in a locally consolidated region that is
up to three powder layers thick in places. Figure 12 also shows that the overhang remains
liquid (i.e., the melt pool splits into two distinct regions) as the laser transits back to the
non-overhang region.
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Figure 9: Overhang example: laser traveling to right, just before transiting into overhang
region.
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Figure 10: Overhang example: Volume of melt pool increasing, including melt pool reaching
significantly deeper than when over consolidated material.
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Figure 11: Overhang example: Laser now heading to the left, and melt pool volume still
increasing.

19



Figure 12: Overhang example: Laser now returned to non-overhang region, with separate
melt pool segment remaining behind in overhang region.
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Finally, the temperature-time history shown in Figure 13 clearly indicates the higher tem-
perature and longer time at temperatures T > Tm experienced by a point in the overhang
region. In this figure, the “bulk node” is in a representative location with consolidated
material directly below it. The higher heating of the overhang node is undoubtedly due to
the insulating behavior of the unconsolidated powder below the overhang region. This is
consistent with experimental results that report a larger melt pool with higher temperatures
when creating an overhanging surface via SLM [27, 28, 29]. It is noted that peaks after the
initial one (for each node) represent the effect of successive laser tracks.
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Figure 13: Temperature histories for two nodes in overhang case

21



7 Thermomechanical Problem Statement

The continuum solid physics centers around the balance of mass, the balance of linear mo-
mentum, and the balance of angular momentum. The first two of these equations (along
with the attendant boundary and initial conditions) are stated as

ρ̇ = ρ div v, in Ω, (7.1a)

ρv̇ = div T + ρb, in Ω, (7.1b)

u (xu, t) = ū, on xu ∈ Γu, (7.1c)

t (xt, t) = t̄, on xt ∈ Γt, (7.1d)

ρ (x, 0) = ρ0, on Ω
⋃

∂Ω, (7.1e)

u (x, 0) = u0, on Ω
⋃

∂Ω, (7.1f)

t (x, 0) = t0, on Ω
⋃

∂Ω, (7.1g)

where Γu is the portion of the boundary ∂Ω associated with essential boundary conditions,
and Γt is the portion of the boundary associated with natural boundary conditions. The
balance of angular momentum is satisfied by the constraint

T = TT . (7.2)

The coupling between the thermal and solid mechanical problems occurs through several
mechanisms. Indeed, the Cauchy stress T is not just a function of deformation u, rather

T = T̂ (grad u, T, φ1, φ2) . (7.3)

Moreover, this functional dependence occurs in two manners. First, the material parameters
that define the stress are a function of both temperature and phase (e.g., Young’s mod-
ulus E = Ê (T, φ1, φ2)). Second, the strain contains constitutively defined parts that are
functionally dependent on the temperature and the phases; this will be further described in
the following paragraph. The final coupling mechanism is that the solid mechanics problem
moves the mesh, which changes the problem domain for the thermal problem.

The base assumption regarding the multi-phase kinematics is that the strains are the same
for all phases,

ε = ε1 = ε2. (7.4)

The above assumption is not necessarily the most appropriate one for all cases, but for
the current case (where, in particular, the bulk modulus of the solid and liquid phases
are similar), it seems reasonable. Other distributions of the strains among the phases are
possible, but many would require additional methods to be implemented (e.g., explicit phase
interface tracking).

Given that each phase has different material properties, this will result in a different stress
for each phase. The total stress is defined as a volume-fraction weighted average:

T = φ1T1 + φ2T2. (7.5)
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Regarding the thermomechanical coupling, in addition to the temperature and phase depen-
dence of the material parameters, the strains have constitutively specified components, so
that

ε = εu + εT + εφ, (7.6)

where εu is the usual deformation gradient-based strain,

εT = [φ1α1 (T − Tref1) + φ2α2 (T − Tref2)] I, (7.7)

εφ = [φ1β1 + φ2β2] I, (7.8)

and αi, βi are the coefficients of thermal and phase expansion (respectively) for phase i. We
introduce the phase expansion to abstractly describe the volumetric kinematics of porosity
loss as the powder melts and coalesces to a consolidated state. However, we do not attempt to
describe the details of these behaviors. It is noted that the choices of stress and strain defined
above will result in a stress-free volume change over the temperature range of the phase
change, if the temperature distribution is homogeneous and the deformations unrestrained.

The constitutive relation for each of the phases is a phase-dependent, isotropic elastic-plastic,
rate-based model. The stress update is specified as

T̂n+1 = T̂n + ∆D εn,elastic + Dn+ 1
2

(∆ε−∆εT −∆εφ −∆εp) , (7.9)

where D is a fourth order tensor of material parameters, ∆D accounts for the variation of
the elastic material parameters, i.e.,

∆D =
∂D

∂E

∣∣∣∣
n+ 1

2

∆E +
∂D

∂ν

∣∣∣∣
n+ 1

2

∆ν, (7.10)

the notation (·)n+ 1
2

denotes quantities calculated so that their temperature dependence is

accounted for, and εp is the plastic strain with a yield condition that is evaluated at state
n+1. The model is an incremental form of a standard J2 plasticity model, which is described
in multiple sources, e.g., Simo and Hughes [30].

Finally, the strong form of the complete thermomechanical problem consists of the thermal
balance law, boundary conditions, and initial conditions (3.1a-3.1d), the thermal constitutive
equation (3.2), the Stefan-Neumann equations (3.3a-3.3b), the balance laws for conservation
of mass and linear momentum, and their boundary and initial conditions (7.1a-7.1g), the
balance of angular momentum (7.2), the solid constitutive equation (7.3), and kinematics
(7.4) and (7.6).

8 Thermomechanical Numerical Implementation

Given the relative ubiquity of information related to calculation of the purely mechanical
problem (7.1a)-(7.1g), no further mention will be made of its general solution. The evolution
of the thermomechanical solution is performed via a staggered, operator-split algorithm, as
described in Box 1 for a single time step.
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Data: Configuration at time n, solution fields and history variables at time n, time
step size ∆t

Result: Configuration at time n+ 1, solution fields and history variables at time n+ 1
begin

for imm := 1, nmm do
for ithermal := 1, nthermal do

Update element quantities and boundary conditions, based on latest
configuration xn+1 and temperatures Tn+1;
Calculate thermal residual;
Calculate temperature increment ∆T ;
Update temperatures Tn+1;
Calculate thermal convergence data;
if thermal converged then

exit thermal solution loop;
end if

end for
for isolid := 1, nsolid do

Update element quantities and boundary conditions, based on latest
configuration xn+1 and temperatures Tn+1;
Calculate solid mechanics residual;
Calculate displacement increment ∆u;
Update displacements un+1 and configuration xn+1;
Calculate solid mechanics convergence data;
if solid mechanics converged then

exit solid mechanics solution loop;
end if

end for

Calculate multi-physics convergence data;
if multi-physics converged then

exit multi-physics solution loop;
end if

end for
if not multi-physics converged then

reduce time step, and start over
end if

end

Box 1: Algorithm used to calculate thermomechanical solution over an interval (tn, tn+1]
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9 Thermomechanical Material Parameters

The material considered in all of the examples presented is 316L stainless steel. The property
definitions used for the thermal overhang example and the thermomechanical multi-layer
example are recorded here for completeness. For each property, the values used to calculate
the solutions are explicitly listed in a table. The reference values were taken from two
primary sources [31, 32]. The Diablo input data was generated via interpolation (where data
already existed) and extrapolation (no source considered had data over ≈ 1300K for any
property).

It is noted that, in the process of researching the solid mechanical properties, more extensive
data regarding the thermal properties was found.2 As such, the thermal properties were
also updated, and they are displayed first. Table 3 lists the conductivity as a function of
temperature.

Table 3: Values of thermal conductivity versus temperature

Temperature [K] Thermal conductivity [W/m–K]

273 12.76
432 14.94
590 17.18
749 19.30
907 21.48
1066 23.66
1224 25.84
1383 28.02
1541 30.20
1700 32.38

It is noted that there are two versions of the specific heat data. The first consists solely of the
“raw” values, and this is the data that was used with the powder material and the Stefan-
Neumann equation. The second version contains modified data, where points were added
between 1650K and 1700K to account for the phase transition between the consolidated
solid and consolidated liquid phases. The second specific heat, as described by Hu and
Argyropoulos [4], is modified such that “the latent heat is accounted for by increasing the
heat capacity of the material in the phase change temperature range”. The expression for
the modified heat capacity is

cmod =

∣∣∣∣∫ Tl

Ts

c(T ) dT +H

∣∣∣∣
(Tl − Ts)

, Ts < T < Tl, (9.1)

2Indeed, we envision further refinements of properties will occur as our research continues, but the values
presented here are deemed sufficient to model the desired effects.
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where Ts, Tl are the solidus and liquidus temperatures, respectively. For the current case,
the modified heat capacity is calculated as 6190 J/kg–K. The complete data are presented
in Table 4.

Table 4: Values of specific heat per unit mass versus temperature (points labeled with * are
used with the consolidated material only)

Temperature [K] Specific heat per unit mass [J/kg–K]

273 440
432 510
590 545
749 560
907 585
1066 620
1224 650
1383 680
1541 713
1650 734
1660* 6190*
1690* 6190*
1700 744

Table 5: Values of Young’s modulus versus temperature

Temperature [K] Young’s modulus [GPa]

273 200.8
432 188.9
590 176.3
749 163.1
907 149.1
1066 134.6
1224 119.3
1383 103.4
1541 86.8
1700 69.5
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Table 6: Values of linear coefficient of thermal expansion versus temperature

Temperature [K] Linear CTE [10−6/K]

273 15.07
432 16.09
590 16.96
749 17.70
907 18.29
1066 18.74
1224 19.05
1383 19.21
1541 19.23
1700 19.23

The expression for the phase contraction coefficient for phase i can be expressed as

βi = (volume scale factor for phase i)
1
3 − 1. (9.2)

Given volume scale factors of 1 and 0.6 for the powder and consolidated materials, respec-
tively, the resulting phase contraction coefficients are β1 = 0 and β2 = −0.15657. Note
that as utilized here, β2 represents the contraction resulting from the total loss of porosity
from the powder. Another physical mechanism is that of solidification shrinkage, a common
concern for casting. Campbell [33] provides volume shrinkage data for common materials,
listing pure iron as 3.16% and steels 3–4% depending on carbon content. By comparison,
this effect in isolation would correspond to β2 ≈ −0.0118. Given its comparatively small
magnitude, for now we choose to consider this effect subsumed into the much larger value al-
ready indicated. At a later time, depending perhaps on results from powder scale modeling,
it may make sense to include this effect in our model.

The data regarding the yield stress and the tensile strength is presented in ratio form, where
all values have been normalized by the yield stress/tensile strength (respectively) at room
temperature.

Table 7: Values of yield stress ratio versus temperature

Temperature [K] Yield stress ratio

273 1.00
432 0.76
590 0.61
749 0.53
907 0.44
1066 0.34
1224 0.26
1383 0.17
1541 0.09
1700 0.00
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It is noted that the tensile strength data is used solely for the computation of the plastic
hardening modulus, and not to specify any kind of failure behavior.

Table 8: Values of tensile strength ratio versus temperature

Temperature [K] Tensile strength ratio

273 1.00
432 0.82
590 0.80
749 0.77
907 0.63
1066 0.34
1224 0.20
1383 0.14
1541 0.12
1700 0.10

Finally, it is noted that the material parameter values previously presented are all associated
with the consolidated material. The powder properties are simply taken as a scalar multiple
of the consolidated properties, as follows:

Table 9: Scale factors relating properties of consolidated material to those of the powder

Property Scale factor

Specific heat 0.5
Conductivity 0.01

Young’s modulus 0.1
CTE 1.0

Yield stress 0.1

The specific heat was scaled as the porosity. The conductivity of the powder was chosen
based on the discussion in Gusarov et al. [16]. The CTE was not scaled, assuming that,
except at melt, temperature excursions would not induce any net change in porosity. The
Young’s modulus and yield strength were scaled down based upon an assumption that the
powder bed can provide very little mechanical restraint. A subsequent sensitivity analysis is
needed to a assess to what degree this final assumption is fully supported.

10 Thermomechanical Examples

The previously described algorithm for the coupled problem, and material properties, were
used to compute the solution to several example problems intended to illustrate basic SLM
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behaviors at the continuum scale. The first problem consists of a baseplate with two layers
being added. The process parameters are specified as We = 33W , R = 0.060mm, and
v = 180mm/s. The results are presented as two cases. For both cases, the first layer fully
phase changes, and the figure was generated just as the second layer was added. The first case
illustrates the situation where no delay is specified between the two layers. In this case, the
first layer is not completely consolidated, i.e., although the phase transformation is complete,
the volume change associated with the phase expansion coefficient has not completed. We
attribute this to inertial effects and the result is clearly seen in the uneven thickness of the
first powder layer (colored red in Figure 14).

Figure 14: Two powder layers, with no time delay prior to processing the second layer.

Alternately, for the case where a temporal delay was specified between the completion of the
first layer and the activation of the second layer, the layer is fully consolidated, as illustrated
in Figure 15. An immediate consequence of this is that the newly activated second layer has
the desired uniform thickness.
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Figure 15: Two powder layers, with time delay prior to processing the second layer.

The delay between the phase change and the volumetric consolidation can also be seen when
looking at time-based data of the temperature and the displacement of a particular point,
and an example of such data is shown in Figure 16. In the figure, the time lag between the
phase change (right after 0.02 s) and the completion of the volumetric consolidation (at, say,
0.09 s) is immediately apparent.
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Figure 16: Time histories of temperature and z displacement for a given node, illustrating
the time interval between the phase change and the consolidation.

The second problem represents our initial attempt to calculate the solution over a somewhat
larger domain, that being 1mm×1mm×1mm. The external boundary conditions are T =
303K on the underside of the substrate, and zero normal displacement on all faces, except
for the heated surface of the powder, which is specified as zero normal surface tractions. The
initial conditions are uniform temperature T0 = 303K, and uniform displacement u0 = 0
at the time of element activation. The process parameters are We = 30W , R = 0.050mm,
and v = 180mm/s. The heating path does not cover the entire 1mm× 1mm cross-section
in the x − y plane; it only covers the area specified as 0.2 − 0.8mm × 0 − 0.8mm. That
is, three sides of the heated area have an untransformed powder boundary of approximately
0.2mm. This combination of configuration and laser trajectory was chosen to see the effect
of the low lateral constraint arising from the compliance of the low-strength powder. The
following four figures provide a rough idea of the temporal progression of the problem.
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Figure 17: Cube example, layer 4, average phase φ̄ and contour of melt pool boundary.
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Figure 18: Cube example, at end of layer 6 consolidation, average phase φ̄ and contour of
melt pool boundary.
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Figure 19: Cube example, layer 7, average phase φ̄ and contour of melt pool boundary.
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Figure 20: Cube example, layer 12, average phase φ̄ and contour of melt pool boundary.

While the domain is nowhere large enough to comment on part-scale response, several in-
teresting observations can be made concerning the predicted stresses. Broadly speaking,
stresses on the order of ±100MPa are seen throughout the body, which is in rough agree-
ment with LLNL’s experimental experience to date [34]. We note that with this model we
are seeing some “checkerboarding” in the element response which requires further investi-
gation, so we will focus on trends rather than pointwise values. Figures 21-22 display the
normal stresses in the X and Y directions. The figures are plotted with identical contour
ranges. Figure 22 displays more extreme stresses in the Y direction. This trend is consistent
with there being less restraint applied in the X direction by virtue of both the shorter scan
length and the existence of two powder boundaries. Figure 22 also shows a strong gradient
in stress between compression in the base plate and tension in the upper layers of consoli-
dated materials. Figure 23 illustrates the stresses in the Z direction (which was the direction
normal to the powder layers). In particular, it shows large compression under the center of
the build area that fall away in all lateral directions. This is another result that is consistent
with empirical experience that build plates must resist warping forces from the SLM part.
However, given that only a thin “veneer” of a real build plate is being modeled, and it is held
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with rigid vertical displacement boundary conditions at its bottom, we should not ascribe
too much confidence in these specific numerical results.

Figure 21: Cube example after 12 layers deposited, Txx stress [MPa]. Contour range identical
to that used in Figure 22.
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Figure 22: Cube example after 12 layers deposited, Tyy stress [MPa].
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Figure 23: Cube example after 12 layers deposited, Tzz stress [MPa].

The final comments regarding this larger domain example are with respect to the dynamics
observed at representative locations. Figure 24 illustrates five points sharing a common in-
plane location, but at different vertical positions corresponding to the build plate and the
tops of layers 3, 6, 9 and 12. Figure 25 shows the history of temperatures at these points.
The graph is truncated at 2000K; this permits us to concentrate on the multi-layer dynamics
rather than the peaks. The graph makes apparent when each layer is processed, but also
reveals that each layer undergoes substantial thermal excursions during the processing of
layers above it.
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Figure 24: Temperature history sampling points subsequently labelled (bottom-to-top) as
”base” and ”layers” 3, 6, 9 and 12.
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Figure 25: Temperature history for five sampling points designated in Figure 24.

The thermal interplay of layers is clearer if we zoom in on the time frame of processing
a single layer. In Figure 26 we isolate on the processing of layer 12. The time at which
the chosen position of layer 12 is being melted and consolidated is obvious enough. It is
interesting to see that both layers 6 and 9 show effects from not just the laser track directly
above the sampling point, but adjacent tracks as well. Referring back to Figure 22 for
coordinate system orientation, layer 12 is processed using laser scans sweeping in the ±y
-direction, with tracks “stacking up” in the +x -direction. Hence, three laser tracks pass in
the vicinity of the layer 12 sampling location. Indeed, the histories for layer 6 and 9 show
three distinct peaks, with the strongest effect, not surprisingly, from the scan that passes
nearest directly overhead.
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Figure 26: Temperature history restricted to time of layer 12 consolidation.
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The overarching message from Figure 26 is that while the strongest thermal transformation of
the material takes place during its layer scan, there is follow-on history that can be relevant.
The figure shows that while processing layer 12, layer 9 is being driven to temperatures
in the range of 0.75Tliquidus. Obviously then the effects in the intervening material (layers
10 and 11) must be even stronger. We computed the (central difference) time derivative
of temperature for the layer 9 location and plot it in Figure 27. This demonstrates that
material several layers below the active work surface is undergoing heating and cooling rates
of order 105K/sec. This would appear to indicate that material microstructure will evolve
over a series of layer consolidations and is consistent with the observation of grain sizes that
are larger than individual powder layers [35].

Figure 27: Temperature rate history for layer 9 sampling point restricted to time of layer 12
consolidation.

In closing we briefly consider some of the solid mechanics history data. We sampled elements
adjacent to the in-plane locations previously illustrated in Figure 24. Data for both elements
in each layer were gathered and thus for clarity we plot the odd- and even-numbered layers
in separate Figures 28-29. The histories all show a large effective plastic strain accumulated
with the processing of their layer. This is consistent with the fact that the material is
undergoing the large dilitational phase change (β2) we use to model the consolidation of
powder porosity during melt. However, under the interactions between an element and
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its neighbors, the transformed elements are most free to deform uniaxially in the vertical
(build) direction. Thus the bulk contraction, after overcoming the inertial lag noted earlier,
is resolved to (primarily) uniaxial deformation via a large deviatoric response. With the
current model this is thus realized as high plastic strains from flow associated with a very
low yield stress and hardening modulus at near-melt temperatures.

Figure 28: Measure of distortion for two elements sampled for each for odd-numbered layers.
The lower element in each layer is plotted as a dotted line.

Figure 28 shows that most layers transform rather uniformly, whereas layers 3 and 5 show
considerable thru-thickness variation. This is consistent with Figure 20, where yellow bands
in the lower parts of layers 3 and 5 indicate the phase transformation was not driven to
completion. Given that the laser scan was intended to be identical for all odd layers, this
difference in behavior is not totally understood. First note that the elements sampled for
the odd layers are processed by the very first laser scan for their layer. Thus if our process
parameters are marginal for driving total melt, these would be among the most susceptible
volumes of material. It can be argued that higher layers, being further from the thermal sink
at the bottom of the build plate might benefit from longer dwell time at elevated temperature,
leading to more homogeneous consolidation. Furthermore, elements in layers 3 and 5 having
failed to fully transform, would have lower conductivity than the fully consolidated material
and thus momentarily trap energy that would help layers 7, 9 and 11 fully transform. These
effects begin to paint a self-consistent picture across the sampling points for odd layers,
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with the exception of layer 1. Under the current interpretation it is not clear why there is
through-thickness homogeneity in the first layer. The histories collectively show successive
increments of deformation being accumulated during processing of layers above, with some
hints of asymptotic values being approached.

Figure 29: Measure of distortion for two elements sampled for each even-numbered layers.
The lower element in each layer is plotted as a dotted line.

With Figure 29 we see considerable through-thickness homogeneity during the processing
of all layers. This would be consistent with the thermal history discussion noting that for
even-numbered layers, these sampling points correspond to locations benefiting from the
proximity of three scans that are either ending or beginning in their vicinity.
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11 Conclusions

An initial continuum thermomechanical model has been developed for calculation of the re-
sult of a SLM process. The model includes a volumetric heat source designed to represent
the radiation transport of laser energy into a powder, as well as phase change of the powder
into a consolidated material that takes into account the latent heat of melting. Verification
of the laser heating model and resulting thermal response against published literature is pre-
sented. Examples in both thermal only and thermomechanical cases have yielded promising
results. The thermal examples illustrate extremely long (> 1mm) melt pools, as well as
a spatial gap between the contour T = 1700K and the phase change region, for certain
choices of processing parameters; in particular, both phenomena are associated with high
laser velocities (> 1, 000mm/s). Additionally, the thermal results illustrate the overhang
effect. The thermomechanical results present the effects of inertial lag in delaying volumet-
ric consolidation of melted powder. Multi-layer simulations demonstrate that local thermal
histories are impacted by the processing of layers immediately above and result in multiple
intervals of rapid heating and cooling. The results presented serve as a solid foundation for
further work related to complete part-level modeling.

Experience gained in the course of the implementation of the current models and methods
described herein is essential in informing the path toward. In particular, it is noted that the
Bathe algorithm [21] for phase change requires significant resources, i.e., adequate nonlinear
convergence dictates the use of extremely small time steps. Indeed, the resource-intensive
nature of the algorithm has also been noted by [4]. As such, one task for the next phase
of the project will be to investigate different phase change algorithms, with the goal of
improving the efficiency of the calculation. Furthermore, we must explore alternative spatial
representations in order to proceed with the simulation of configurations beyond the small
representative volumes shown to date. Various approaches will be investigated. Finally,
experimental data must be leveraged in order to determine the appropriateness of the current
solid mechanics model. Depending on the results, other constitutive models might be found
to be more appropriate. The methodology research must be dual-tracked with validation
exercises leveraging our current capabilities and available experimental evidence.
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