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Abstract

The paper is devoted to a theoretical study by the means of classical molecu-

lar dynamics into the response of δ-phase Pu-Ga alloys on self-irradiation. We

have investigated the behavior of He atoms in the fcc lattice of Pu-Ga alloy

at the ambient conditions. Because of the relatively low diffusive mobility of

He atoms in the Pu-Ga alloy lattice their dynamics cannot be tracked in direct

classical molecular dynamics simulations. Instead, we use the Helmholtz free

energy function to investigate the equilibrium thermodynamics of metastable

states (micro-configurations) in an initially perfect Pu-Ga crystal and perfect

crystals with artificially introduced He atoms in different configurations. The

Helmholtz free energy of metastable micro-configurations is calculated using

thermodynamic integration method which is shown to be effective, accurate

and thermodynamically consistent through a set of numerical tests. Thermo-

dynamic integration technique is used to calculate the free energy of the fcc

δ-phase Pu-Ga alloy with distributed He atoms as disordered substitutional

atoms and with He bubbles of different sizes with various He concentrations

(number of He atoms per vacant site). Based on the resulted absolute values

of free energy the inferences about the relative thermodynamic stability of dif-
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ferent micro-configurations at the ambient conditions are drawn. Estimates of

the equilibrium parameters of He bubbles in the fcc lattice of Pu-Ga alloys and

distribution of He bubble radii are calculated and compared to those observed

experimentally with transmission electron microscopy.

Keywords: δ-phase Pu-Ga alloys, self-irradiation, radioactive aging, He

bubbles, classical molecular dynamics, thermodynamic potentials, free energy,

thermodynamic integration

1. Introduction

One of the most extensively studied during the past decades material science

problems is the degradation of structural materials properties due to irradia-

tion and radioactive materials physical properties changes due to self-irradiation

known as radioactive aging. This problem is of great importance for nuclear ap-5

plications. The self-irradiation of α-active actinide elements and their alloys

and compounds results in continuous production of radiogenic helium and pri-

mary radiation defects (PRD) of crystal structure, their accumulation, diffusive

migration in the lattice, clustering etc. The microstructure (morphology) of the

point defect clusters (i.e. equilibrium size of defect clusters, their shapes, the10

fraction of free and clustered defects) is the subject of great importance, since

it has direct impact on the properties of the materials such as elastic-plastic

properties, static and dynamic strength, transport coefficients etc. The present

study is devoted to the investigation into the behavior of one of the products of

the α-decay of 239Pu, namely, He atoms accumulated in the fcc lattice of δ-phase15

Pu-Ga alloys during long-time storage at the ambient conditions. According to

[1, 2, 3, 4] the accumulation of helium with constant rate ∼ 41 ppm per year [1]

could potentially significantly affect the properties of Ga stabilized δ-Pu. Ac-

cording to estimates after 50 years of storage He concentration in Pu-Ga alloys

is close to 2000 ppm. That is in 1 kg of plutonium there are ∼ 0.2 liters of20

He (measured at the ambient conditions). It is well known that considerably

lower amount of helium (≥ 100 ppm) in fcc stainless steels causes swelling and
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significant embrittlement.

α-particles produced in the α-decay with the energy ∼ 5 MeV lose the

most of the kinetic energy trough electronic excitations, grab two electrons,25

and become neutral He atoms, which occupy the nearest vacancies in the fcc

lattice of Pu-Ga alloys or create and occupy vacant sites by knocking out Pu

or Ga lattice atoms generating interstitials [5, 6, 7, 8]. Diffusive migration of

secluded He atoms in the fcc lattice of Pu-Ga alloys occurs as a motion of He

atom-vacancy complex with a rather high compared to the ambient temperature30

diffusive activation energy ∼ 0.7 eV [6]. If two diffusing He atom-vacancy

complexes meet, then a nucleus of He gas bubble is formed.

The first observation of helium bubbles in naturally aged material reported

in [9, 10] was made with the transmission electron microscopy (TEM) of 21-

year old δ-phase Pu-Ga alloy annealed at 400oC for 1 hour. Recently Schwartz35

and coworkers studied δ-phase Pu-Ga alloy samples with ages ranging from 6

month to 42 years using a Fresnel fringe imaging technique on LLNL 300 keV

TEM in combination with positron annihilation spectroscopy [11, 12, 13, 14, 15].

In the old samples aged at the ambient conditions authors observed that the

dominant defects are nanometer-sized helium bubbles, which are distributed40

homogeneously in the bulk of fcc Pu-Ga crystal, while they found no helium

bubbles in 6-month old sample with the sizes higher than their spatial resolution

0.7 nm. For the 16 to 42-year old samples obtained number density of helium

bubbles is in the range 0.6−2.0×1017cm3, which increases with the sample ages

at nearly steady rate. Observed average size of helium bubbles is ∼ 1.4 nm, and45

this value almost does not change with material age between 16 and 42 years.

The volume fraction of helium bubbles increased from ∼ 0.01 to ∼ 0.03 %

within the age range from 16 to 42 years. With additional measurements using

positron annihilation spectroscopy and theoretical analysis by Howell and Sterne

(Howell and Sterne 2002, private communication to Schwartz), Schwartz et al.50

concluded that helium bubbles contain two to three helium atoms per vacant

site. Moreover, the characteristic positron lifetime of 180 − 190 ps remains

remarkably constant for all aged material, implying that equilibrium helium
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density within the bubbles of 2 to 3 helium atoms per vacant site remains nearly

constant at the ambient conditions.55

More recently Jeffries et al.[16] have performed TEM study of aged (20 and

42-year old) samples of Pu-3 at. % Ga alloy using the same method as previ-

ously [11, 14, 15] in order to evaluate the mechanism of helium bubble coarsen-

ing. After initial characterization authors annealed the samples in vacuum at

temperatures from 250oC to 425oC during periods from 2 to 90 hours. Then60

the samples were cooled down to the room temperature and examined in the

TEM. In addition time-resolved in situ TEM microphotographs of 42-year old

samples were taken during the annealing at 450oC using a Gatan hot stage.

There are two mechanisms of helium bubble coarsening generally thought to

occur [17]: so called Ostwald ripening (OR), when the bubbles are thought to65

expand due to individual He atoms diffusive motion trough the crystal from the

smaller bubbles to the larger ones [18], and bubble migration and coalescence

(MC) mechanism, when helium migration in the lattice occurs as motion of

the whole bubbles themselves, and the bubbles grow by coalescing when they

meet one another [19]. In [16] authors conclude that carried out TEM experi-70

ments suggest that in naturally aged δ-pase Pu-Ga alloys the annealing causes

coarsening of helium bubbles, decreasing the overall number density of the bub-

bles in the material and increasing their average size. There is clear time and

temperature dependence of the bubble coarsening. The time-resolved in situ

TEM microphotographs evidence bubble migration and coalescence, providing75

confidence that MC is the dominating mechanism of helium bubble coarsening.

Thermally activated time-dependent growth of helium bubbles at the ele-

vated temperatures, migration of helium bubbles as whole in the lattice of Pu-

Ga alloys, strongly peaked distribution of helium bubble diameters, and nearly

constant He atom to vacancy ratio in naturally 16−42-year old aged material at80

the ambient conditions suggest that there are factors limiting the growth process

and defining equilibrium parameters of the bubbles. In the following sections

we investigate the questions of solubility of helium in the fcc lattice of δ-phase

Pu-Ga alloys, nature of attractive/repulsive interaction of He atoms with He
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bubbles, possible mechanism limiting the size of the bubbles, equilibrium bub-85

ble parameters (size and He concentration - number of He atoms per vacant

site) at the ambient conditions by the means of Classical Molecular Dynamics

(CMD).

While the dynamics of interstitial atoms in fcc lattice of Pu-Ga alloys due

to their high mobility is accessible for direct CMD simulations even at temper-90

atures below ambient [20, 21], characteristic activation energies for the motion

of vacancies and He atoms are rather high [6, 20], and consequently at room

temperature diffusive migration times of vacancies and He atoms are in the

range from seconds to hours, which makes it impossible to model their diffusive

dynamics directly even using accelerated CMD. Instead in the present study95

we propose to investigate relative thermodynamic stability of metastable micro-

configurations of an ideal crystal with artificially introduced systems of defects

of various morphology using the Helmholtz free energy.

2. Free Energy Calculations in CMD

For the investigation into relative thermodynamic stability at finite temper-100

atures it is insufficient to calculate and compare only the internal energies of

different states. At the finite temperatures the entropy term of the Helmholtz

free energy plays an important role. If one could calculate ”absolute” values of

free energies for different metastable micro-configurations of a system for the

same external conditions, it would become possible to draw unambiguous con-105

clusions about relative thermodynamic stability of those states for the given

conditions. Unfortunately the absolute values of free energy can not be calcu-

lated in simple CMD simulation as an average of some quantity or expressed as a

function of some averages. However, it is possible to evaluate the absolute values

of free energy in the frames of CMD approach using so called thermodynamic110

integration method (TIM) [22, 23, 24].
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2.1. Thermodynamic Integration Method

For the purpose of the paper we think it is necessary to remaind the general

ideas of the thermodynamic integration method by Frenkel and Laad [22, 23, 24]

and represent some of the mathematical relations of the method, since we are115

going to refer to them in the following sections of the paper. Here we abide by

the notations and formulations of [24]. Classical theory of phase equilibria is

based on the comparison of thermodynamic potentials. The second law of ther-

modynamics can be formulated as following. In an isolated system with internal

energy E, a volume V , and fixed number of particle N (NV E or microcanonical120

ensemble) in thermodynamic equilibrium entropy S has maximal value. From

such formulation one can easily deduce [25, 26] similar criteria for the systems

which can exchange energy, particles or volume with external reservoir. Par-

ticularly for NV T -ensemble (canonical Gibbs ensemble) Helmholtz free energy

F has its minimum in a state of thermodynamic equilibrium, and for NPT -125

ensemble thermodynamic Gibbs potential (G = F + PV ) is minimal. None of

these thermodynamic potentials can be ”measured” directly in a simple CMD

simulation (neither in real experiments).

Helmholtz free energy F of a system of N equivalent particles put in a

constant volume V at a temperature T is calculated using canonical distribution130

function

F = −kBT lnZN (V, T )

≡ −kBT ln


∫
Γ

dpNdrN exp

(
−H(pN ,rN)

kBT

)
hdNN !

 , (1)

where kB - Boltzmann constant, h - Plank constant, d - dimensionality of space,

H - Hamilton function of the system. The integration is to be done over the

entire available phase space Γ, but not over that covered in a particular numer-

ical simulation. The factor hdN is the norm of phase space volume. Generally135

speaking, in classical statistical physics entropy is determined up to an additive

constant, and as the norm of pase space volume one can use any constant with
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the dimension of action powered dN . The use of Plank constant h as the norm

of the phase space volume in classical statistical physics dictated by the reason

that in that case all the equations of classical statistics can be obtained from140

quantum statistics equations in the limit T →∞ [25, 26]. The main problem of

the statistical physics is the calculation of the integral in Eq. (1) called statisti-

cal integral ZN (V, T ). In general case it can not be expressed as a function of

some canonical averages, that is why free energy, entropy, and Gibbs potential

can not be measured in a numerical experiment in a simple manner.145

Following Frenkel and Laad[22, 23, 24] let consider a system of N parti-

cles in a volume V interacting through artificial interatomic potential U . Let

construct U such that it linearly depends on coupling parameter λ changing in

the range from 0 to 1, and for λ = 0 potential U becomes a potential UI , for

which we somehow can calculate the free energy value, while for λ = 1 poten-150

tial U becomes UII - the potential of interest for which we want to calculate

thermodynamic potential values

U = (1− λ)UI + λUII . (2)

If one uses the model potential U to calculate statistical integral ZN (V, T ), and

take the integral in the momentum part of the phase space, one obtains

ZN (V, T, λ) =
1

(ΛT )
dN

N !

∫
V N

drN exp

(
−
U
(
λ, rN

)
kBT

)
, (3)

where ΛT = h/
√

2πmkBT thermal de Broglie wavelength. For the model po-155

tential U partial derivative of free energy F with respect to coupling parameter

λ is (
∂F (λ)

∂λ

)
N,V,T

=

〈
∂U (λ)

∂λ

〉
λ

= 〈UII − UI〉λ , (4)

where 〈. . .〉λ means canonical average value at a fixed value of coupling param-

eter λ. Finally, free energy of the state of interest (λ = 1) can be calculated

as160

F (λ = 1) = F (λ = 0) +

1∫
0

dλ 〈UII − UI〉λ . (5)
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So, we expressed free energy of the state of interest as a sum of free energy of a

reference state, for which we can calculate somehow thermodynamic potential

values, and the function of canonical averages, which can be calculated in nu-

merical experiments. In principle, there is no need to use the linear combination

of UI and UII (2) as the model potential U . We could use as model potential U165

any function of coupling parameter λ satisfying boundary conditions U = UI for

λ = 0 and U = UII for λ = 1 and differentiable at 0 ≤ λ ≤ 1. However the us-

ing of the linear combination (2) is useful from the practical point and provides

additional instrument to control correctness of results of numerical simulations.

If one takes derivative of Eq. (4) with respect to λ, one gets170

∂2F

∂λ2
= −

〈
(UII − UI)2

〉
λ
− 〈UII − UI〉2λ

kBT
≤ 0. (6)

That is the derivative ∂F/∂λ (that is value of 〈UII − UI〉λ) can not increase

with increasing λ. Inequality (6) (Gibbs-Bogolubov inequality) should be used

in numerical simulations to control the correctness of results.

In order to obtain the value of free energy for the system of interest the

transition from the reference state (λ = 0) to the state of interest (λ = 1)175

should be done along quasi-equilibrium reversible thermodynamic path where

the parameters of the system should be changed slowly enough in quasi-adiabatic

manner. In practice the integration in Eq. (5) should be done numerically for

discrete values of coupling parameter λ, and of course it can be done only if

the kernel of the integral is ”good” for all 0 ≤ λ ≤ 1. In general, the linear180

interpolation (2) could lead to a weak and relatively harmless singularity of the

kernel for example when one of the potentials UI or UII is singular in the case

of particle separation going to 0 (for example Lennard-Jones potential, exp 6

potential). The singularity if it appears usually does not affect the convergence

of the integral in Eq. (5) and/or can be avoided by special tricks.185

2.2. Free Energy of Pu-Ga Alloys with He Atom-Vacancy Complexes

So far we did not specify the form of the potential of the reference system

UI . It is clear that the form of the potential UI should be chosen based on the
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properties of the state of interest with the main requirements that for the refer-

ence state one can obtain values of thermodynamic potentials, and there should190

be quasi-equilibrium reversible thermodynamic path (without phase transitions)

from the reference state to the state of interest. In this section we present de-

tailed description with examples of the free energy calculations for Pu-Ga alloys

with He atoms in the form of bubbles and He atom-vacancy complexes.

In a crystalline solid particles spend almost all the time near their equilib-195

rium positions in the lattice nodes. The rms deviations of atoms from their

equilibrium positions are defined by interatomic interactions and the state of

the crystal (stresses and its temperature). Since we are considering a crystal in

classical (non-quantum) statistics approximation, it is quite natural to use as

the reference state the Einstein harmonic crystal in the high temperature limit,200

i.e.

UI (ri) =

N∑
i=1

αi
2

(
ri − r

(0)
i

)2

+ U
(0)
II , (7)

where r
(0)
i are equilibrium atomic positions at λ = 1, and αi are effective har-

monic force constants which are, in general, free parameters of the method and

can take almost arbitrary values with the only requirement that atoms are ef-

fectively held near their equilibrium positions r
(0)
i during the entire transition205

from λ = 0 to λ = 1, and

U
(0)
II = UII

({
r

(0)
i

})
. (8)

is the value of the potential of interest UII when all the atoms are in equilibrium

atomic positions r
(0)
i . For the force constants αi it is convenient to use such

values that the rms deviations of atoms from their equilibrium positions at λ = 0

and λ = 1 are approximately equal. Using the expression for the rms deviations210

of atoms in the Einstein harmonic crystal, we get the following condition for the

force constants αi
3kBT

αi
=

〈(
ri − r

(0)
i

)2
〉
λ=1

. (9)
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Then the free energy of the Einstein harmonic crystal is

F (λ = 0) = 3kBT
∑
i

ln

(
h

πkBT

√
αi
mi

)
+ U

(0)
II . (10)

Substituting Eq. (10) to Eq. (5) yields

F (λ = 1) = 3kBT
∑
i

ln

(
h

πkBT

√
αi
mi

)
+ U

(0)
II

+

1∫
0

dλ 〈UII − UI〉λ . (11)

Eq. (11) is not referred to any kind of crystal structure, kinds of particles,215

types of interatomic interaction. The only requirement for modeled system for

Eq. (11) to be valid is metastability of the crystal microstructure in the sense

that particles oscillate around their equilibrium positions which are steady in

time during rather long time period in the frames of the CMD simulation.

Eq. (11) can be applied as it is for calculations of free energy values of single220

component non-defective crystals, multi-component crystal alloys, crystals with

defects if those defective micro-structures are stable in time in the timescale of

CMD (up to ns), e.g. vacancies, vacancy clusters, and dislocations. Particularly,

the activation energy for diffusive migration of He atom-vacancy complex is

rather high [6], and at the ambient conditions He atoms seating in the fcc225

lattice of Pu-Ga alloy are motionless in the frames of CMD.

Here we present an example of free energy calculation for the fcc δ-phase Pu-

Ga alloy containing 3 at.% Ga and helium atoms in the form of He atom-vacancy

complex, i.e. helium as substitutional solution, at the ambient conditions. The

following CMD simulations were performed with widely-used Modified Embed-230

ded Atom Model (MEAM) [27, 28, 29] of interatomic interaction parameterized

for fcc plutonium [30], gallium [31], binary fcc Pu-Ga alloys [32, 20], which

later was modified to include He atom interactions [7]. In our simulation we

used MEAM interatomic potential for binary Pu-Ga alloys with the parameter-

ization from [33] in combination with exp 6 potential for the characterization235

of He atom interactions with He, Pu, and Ga atoms. The parameterization
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of exp 6 potential for the He atom interactions was found in [8] for the best

representation of ab initio calculation results.

In this example calculation we used Pu-Ga sample 21 × 21 × 21 unit cells

(37, 044 atoms) containing 3 % Ga atoms as disordered substitutional solid so-240

lution with periodic boundary conditions in the cartesian directions. 200 He

atoms were added to the sample by the substituting of 200 randomly chosen

atoms. At first we need to calculate the equilibrium density ρ of the crystal at

the conditions of interest. For this end we simulate an NPT -ensemble at the

specified parameters P = 0 and T = 300 K. The averaging period for the cal-245

culation of equilibrium parameters was 1 ns. Prior the averaging of the system

characteristics each time the system was relaxed for 100 ps. In the simulations

we used combination of Berendsen [34] (initial stages of thermalization) and

Nose-Hoover [35, 36] thermostats. During the averaging period we always used

Nose-Hoover thermostat because this thermostat allows to simulate canonical250

ensemble [35, 36, 24], which is critical for the adequate description of phase

space occupied by the system at fixed values of volume V and temperature T .

The purpose of this initial calculation is to get the equilibrium density ρ (or

better to say equilibrium sizes and shape of the system in order to avoid tan-

gential stresses) which will be fixed in all future calculations for the canonical255

NV T ensemble.

The simulation of the NPT -ensemble is followed by the simulation of canoni-

cal NV T -ensemble simulation with the same averaging and thermalization times

as for the NPT -ensemble. In this simulation we determine the equilibrium po-

sitions of atoms which, in general, in the alloy with the addition of noble gas260

atoms at finite temperatures may differ from the nodes of the ideal crystal lat-

tice, and calculate the rms deviations of atoms from their equilibrium positions.

The calculated equilibrium positions of atoms r
(0)
i will be used to calculate

potential UI (Eq. (7)), and their rms deviations will be used to fix the force

constants αi using Eq. (9). If atoms differ in type and/or atomic positions in265

the crystal lattice are not equivalent, it is necessary to calculate rms deviations

for each type/position of atoms and, accordingly, the appropriate values of αi.
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With the equilibrium positions and rms deviations of atoms calculated for the

specified conditions we obtain harmonic approximation (7) for the crystal.

Having the harmonic approximation we can calculate the free energy for the270

canonical NV T -ensemble of the system of interest. For this end we need to

perform a reversible transition from the state of interest to the harmonic crystal

and then do the integration in the Eq. (11). To do that we discretely vary λ

in a chain of successive simulations to thermalize the system and then calculate

time average values of 〈uII − uI〉λ at fixed λ values along the phase trajectories275

calculated with the interatomic potential (2). The averaging time at each of the

λ values was 25 ps with initial thermalization stage after each change of λ for

5 ps. The calculated dependence of average values of 〈UII − UI〉λ on coupling

parameter λ along the transition from λ = 1 to λ = 0 for Pu-Ga samples with

He atoms in the form of single He atom-vacancy complexes is shown in Fig. 1280

by diamonds. We verify the correctness of the result by two methods. The first

is the check whether inequality (6) is satisfied or not. The second is verification

if the transition is reversible. That is, after we have done the transition from

λ = 1 (the crystal with the interatomic potential of interest) to λ = 0 (the

Einstein harmonic crystal), we can do the reverse transition from λ = 0 to285

λ = 1 using the same values of λ in reverse order. If the resulted values of

〈uII − uI〉λ reasonably agree with those obtained in the direct transition for all

values of λ, we can claim that the transition is quasi-equilibrium and reversible,

and the integral in Eq. (11) is estimated quite accurately. If not, the transition

is not equilibrium and it is necessary either to make the steps of λ smaller,290

and/or to increase times for relaxation and calculation of time averages at each

λ. Figure 1 shows time average potential energy 〈UII − UI〉λ versus λ obtained

in successive chain of simulations from λ = 1 to λ = 0 (�) and back (×). The

results are seen to agree well for all values of λ and satisfy inequality (6), i.e.,

the transition is reversible and quasi-equilibrium, and the dependence can be295

used for calculation of the integral in Eq. (11).

12



Figure 1: (Color online) Typical dependence of average values of 〈UII − UI〉λ on coupling

parameter λ along direct (from λ = 1 to λ = 0) and reverse (from λ = 0 to λ = 1) transitions

obtained in numerical simulations for Pu-Ga samples with He atoms in the form of single He

atom-vacancy complexes (� and ×) and He bubbles (◦ and +). Symbols correspond to the

values of coupling parameter λ for which we performed the averaging in a series of successive

calculations discretely changing λ from 1 to 0 and back.
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2.3. Free Energy of Pu-Ga Alloys with He Bubbles

In the previous example, where He atoms were dissolved in the lattice, they

are almost motionless in terms of diffusive migration trough the lattice at times

available for CMD, and Helmholtz free energy of such systems can be calculated300

with an approximation of the Einstein harmonic crystal in the high temperature

limit. On the other hand, in the fcc Pu-Ga alloys with He-bubbles, helium is

in liquid state in the bubbles. He atoms in the bubble moves freely inside the

bubble without steady equilibrium positions, while they are restricted by the

surrounding lattice to leave the bubbles and do not dissolve into the lattice305

in CMD simulations at the ambient conditions [8]. Thus, the application of

TIM for the systems containing He bubbles requires a technique which would

be capable of calculating free energy for crystal and liquid restricted in a certain

volume simultaneously.

TIM is defined by the model potential UI which is required to provide for310

a reversible quasi-equilibrium transition from the state of interest λ = 1 to the

reference state λ = 0, where one can anyhow (best of all, analytically) calculate

free energy. The potential UI for the systems with He bubbles was constructed

in the following way. As mentioned above, the system with a bubble combines

a Pu-Ga crystal (probably, with addition of He atoms as substitutional lattice315

atoms) and a liquid of He atoms in a quasi-spherical bubble. For atoms which

form the crystal, it is natural to use an approximation of Einstein harmonic

crystal. For He atoms in the bubble, we need a potential that would keep them

in a liquid state but would not allow the bubble to disperse during the transition

from λ = 1 to λ = 0. That is why we propose using an approximation of ideal320

gas in a smooth potential well with a rather steep wall (to effectively keep He

atoms in the bubble), which has a width corresponding to the equilibrium size

of the bubble and is centered at the center of the bubble in equilibrium. So, we

calculate the free energy of systems with He bubbles using the model potential
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UI in the form325

UI (ri) =

 ∑
crystal

αi
2

(
ri − r

(0)
i

)2

+ U
(0)
II crystal


+

{ ∑
bubble

U0

(
|ri − rc|

R

)n}
, (12)

where rc is the bubble center, R - its equilibrium radius, n - arbitrary power,

and U0 - the energy constant of the potential. The values of n and U0 should be

chosen such that smooth potential well would be rather flat within the bubble

(for |r− rc| < R) and would have steep wall at |r− rc| > R restricting He

atoms from the escape from the bubble. In our CMD simulations we used330

n = 10 and U0 = 0.1 eV For this potential we can analytically compute the

statistical integral and calculate free energy. Specifically, for the free energy of

ideal gas of He atoms in the potential well, we obtain

Fbubble (λ = 0) = kBT ln(Γ (Nb + 1)) (13)

− 3NbkBT ln

(
2R

nΛT
Γ

(
1

n

)(
kBT

U0

) 1
n

)
,

where Nb is number of He atoms in the bubble, factor Γ (Nb + 1) = Nb! is due

to the equivalence of the particles in the bubble (exchange of the particles does335

not change a microstate). Using Eqs. (11) and (13) one can calculate free energy

of the reference state for the Pu-Ga system with He bubble.

One more peculiarity of free energy calculation for Pu-Ga systems with He

bubble comes from the fact that the potential which models the interaction

of He atoms with other components - exp 6 - is singular at r = 0, moreover,340

it is negative as r approaches 0 (dashed lines in Fig. 2). This means that in

TIM over the transition from state λ = 1 to state λ = 0, the He atoms which

overcome the repulsion barrier will attract one another. This will give a non-

physical segregation of He atoms in the bubble which won’t dissolve in the

reverse transition. To avoid this we need to modify the potential in such a way345

as to make it non-negative and non-singular at r → 0, but do not change the

equilibrium properties of the He bubble in the crystal matrix for the usual CMD
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calculation. For this end we replace the original exp 6 potential by a potential

which equals exp 6 at r ≥ r0 (in the described calculations r0 was taken to be

0.15 nm) and is the straight line U (r) = (dUexp−6/dr)r=r0 (r − r0)+Uexp−6 (r0)350

at r < 0. We thus obtain a smooth, everywhere continuous potential which is

equal to the original exp 6 at r ≥ r0 and non-negative as r → 0 (solid lines in

Fig. 2).

Figure 2: (Color online) Modification of exp 6 potential for He-He and He-Pu interactions.

Solid lines - original exp 6 potentials from ref. a [8], dashed lines - modification of the exp 6

potentials in order to avoid negative singularity in the vicinity of r → 0.

The free energy calculations for Pu-Ga systems with He bubbles is performed

in three steps in the manner similar to that in Subsection 2.2. The first step is355

the simulation of the NPT -ensemble to relax the system at specified conditions

and find its equilibrium size. Then, with the obtained size fixed, we simulate

the canonical NV T -ensemble to get equilibrium positions and rms deviations

(force constants) for atoms in the crystal, and the equilibrium size and center of

the bubble which are used for model potential (12). Then we choose values for360
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U0 and n. The latter should be large enough to make the wall of the potential

rather steep at |r− rc| > R and the bottom ”flat” (in our calculations, n = 10).

After that we perform the quasi-equilibrium transition from the state of interest

(λ = 1) to the reference state (λ = 0) in the same manner as we did for the Pu-

Ga crystal with dissolved helium. In Fig. 1 one can see the dependence of average365

potential energy 〈UII − UI〉λ on the coupling parameter λ in the successive

quasi-equilibrium transition from λ = 1 to λ = 0 shown by circles. The curve

is seen to combine the features of the λ dependent 〈UII − UI〉λ obtained for

the crystal (�’s and ×’s in Fig. 1) with rapid increase as λ approaches 0 that

corresponds to arbitrary approach of He atoms inside the potential well when the370

repulsion of the exp 6 potential ”turned off” by decreasing λ. The implemented

reverse transition from λ = 0 to λ = 1 showed the resulted values of 〈UII − UI〉λ
(shown by + in Fig. 1) to agree well with the values obtained in the direct

transition from λ = 1 to λ = 0 for all λ’s. As one can see in Fig. 1 the

dependence of 〈UII − UI〉λ on λ satisfies Inq. (6). Thus, we can assert that the375

transition is reversible and quasi-equilibrium and can be used to calculate the

free energy value using Eqs. (5),(10), and (13).

3. Solubility of He in Pu-Ga Alloys

The first CMD calculations of free energies using TIM we performed to verify

helium solubility in δ-phase fcc Pu-Ga alloys at the ambient conditions. We used380

systems of two kinds which were identical in composition and in the number

of atoms, but varied by micro-configuration. We generated a set of fcc Pu-Ga

samples with 4.7 at. % of gallium as disordered substitutional solid solution 21×

21× 21 unit cells (box size is ∼ 10 nm - 37, 044 atoms) and added 50 He atoms

in two different ways. The first is He atoms in the form of He atoms-vacancy385

complexes when we simply replaced by He randomly chosen 50 lattice atoms.

The second is He bubble with He concentration 1 atom per vacant site when

we replaced 50 lattice atoms in the center of the sample by He atoms. Thus,

the systems with distributed helium and helium in the form of bubble consist of
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identical number of particles and can be interpreted as rearrangements of Pu,390

Ga and He inside the box at the same conditions, and their internal and free

energies can be directly compared in order to make conclusions about energetic

and thermodynamic preference of those micro-configurations at the conditions

of interest. In order to have better statistics we generated ten samples of each

kind varying distribution of Ga and He atoms inside the samples. Obtained395

values of internal and free energies were averaged over the samples.

The procedure of free energy calculations using TIM for both kinds of sys-

tems is described in details in Subsections 2.2 and 2.3. The results of the

internal and free energies comparison are the following: the configuration with

a He bubble of 50 atoms with the concentration 1 He atom per vacant site was400

found about 19 eV (0.38 eV per atom) of internal energy and about 24 eV

(0.48 eV per atom) of free energy more favorable than the configuration with

uniformly distributed He atom-vacancy complexes. Comparing this energies

with kBT = 0.026 eV this outcome allows an unambiguous conclusion that,

in accord with CMD simulations with MEAM+exp 6 potential being used, un-405

der the ambient conditions He atoms do not dissolve in Pu-Ga alloys and do

not form a disordered substitution solution. Even low concentration and small

size He bubbles compared to those reported in [14] are preferable from the

thermodynamics than the uniformly distributed in the lattice He atom-vacancy

complexes.410

The next series of calculations we performed to investigate interaction of

single He atom-vacancy complexes with He bubbles of various size and He con-

centration. Again the CMD calculations of free energies using TIM were done

for two kinds of systems which were identical in composition and in the number

of atoms but varied by micro-configuration, and then their internal and free415

energies were compared to assess thermodynamic preference. As initial step

we generated a set of fcc Pu-Ga samples with 3 at. % of gallium as disordered

substitutional solid solution 19× 19× 19 unit cells (box size is ∼ 9 nm - 27, 436

atoms), then we took away atoms inside spheres of various radii from 0.8 nm to

1.5 nm in the center of the samples and filled those voids with He atoms with420
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various concentrations 1, 2, 2.5, 3, 4 He atoms per vacant site (see Fig. 3a). In

order to have better statistics we generated ten samples of each combination of

radius and He atom concentrations in the bubbles varying distribution of Ga

atoms in the samples.

The initial samples were thermalized at the ambient conditions in NPT -425

ensemble CMD simulations with periodic boundary conditions for rather long

time for CMD simulations (∼ 2 ns). The long-time CMD simulation of equili-

bration of He atoms in the fcc lattice of Pu-Ga alloys is crucial, since, as it was

demonstrated in [8], if we stop the simulation at t ∼ 100 ps we can come to

erroneous conclusion that He bubbles are unstable in the frames of CMD with430

MEAM potential [7] based on the damage of the fcc lattice around the bubbles

seen for that instance of time. However, if we continue the simulation up to a

couple of ns the crystal lattice around the bubbles recovers after damage, and

He bubbles obtain their equilibrium size and shape. Note, that effective pressure

in He bubbles is estimated to be rather high (∼ 3 GPa) [37], that manifests435

itself as an expansion of the bubbles compared to the initial taken away sphere

of Pu or Ga atoms, and this expansion is higher for the higher He concentrations

in the bubbles.

To the thermalized systems with He bubbles of various sizes and He con-

centrations we added 50 He atoms in two different ways. The first is when we440

added 50 He atoms in the form of He atom-vacancy complexes located away

from the initial bubbles. For that we added 50 He atoms (shown by magenta

dots in Fig. 3b) to the systems replacing 50 Pu or Ga atoms outside sphere

5 nm in diameter centered in the center of the initial He bubble (shown by gray

sphere in Fig. 3b). The second way is when we added 50 He atoms directly445

to the initial bubbles by replacing of 50 Pu or Ga atoms edging the initial He

bubble (see Fig. 3c). The resultant micro-configurations again were thermalized

in NPT -ensemble CMD simulations for ∼ 1 ns.

For the systems with increased in size He bubbles and with He bubbles and

50 additional He atoms distributed in the bulk of the samples we performed450

the calculations of absolute values of free Helmholtz and internal energies and
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Figure 3: (Color online) System configurations for investigation of solubility of helium in fcc

lattice of Pu-Ga alloys at the ambient conditions (Only He atoms are shown). a - initial

system with He bubble made by removing of Pu or Ga atoms inside sphere of certain radius

and replacing them by He atoms (shown by blue dots) with certain He atom per vacant site

ratio, b - 50 He atoms (magenta dots) have been added to the system by replacing 50 Pu

or Ga atoms outside sphere 5 nm in diameter centered in the center of the initial He bubble

(gray sphere), c - 50 He atoms (magenta dots) have been added to the system by replacing of

50 Pu or Ga atoms on the surface of the initial He bubble.

compared them. In Fig. 4 the results of such comparison, namely, the difference

between the internal (Fig. 4a) and free (Fig. 4b) energies of the systems with

the increased bubble (Fig. 3c) and the systems with the bubble and distributed

He (Fig. 3b) are presented. In other words in Fig. 4 the internal and free energy455

profit resulting from the joining of 50 He atom-vacancy complexes to He bubbles

of certain size and He concentration (shown by black points in Fig. 4) is shown.

The first one needs to notice in Fig. 4 is that the both the internal energy

difference (Fig. 4a) and free energy difference (Fig. 4b) are negative in the entire

ranges of He concentrations and bubble sizes. That is for all the sizes of the460

bubbles and He concentration both the internal and free energies of the systems

gain from the joining of 50 He atom-vacancy complexes to any of the bubbles.

So, the increased size He bubble configuration is more preferable than the bubble

with distributed He atoms in both the energy and that is more important in

thermodynamic sense. This means that if He atom-vacancy complexes can465

diffusively migrate in the lattice at the ambient conditions they would ”prefer”

to join any of the He bubbles rather then stay as singe substitutional He atom

in the lattice. In other words, under the ambient conditions He atoms do not
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dissolve in Pu-Ga alloys.

The second important feature in Fig. 4 is dramatic difference in the character470

of the internal energy surface and that of free energy. That is why it is absolutely

necessary to investigate the free energy surfaces rather than the internal energy

if one needs to study relative thermodynamic stability at finite temperatures

especially for the mixes of the crystal structure and the liquid in the bubble.

The main result we obtained is that the surface of free energy difference (free475

energy profit from the joining of 50 atoms to the initial He bubble) has minimum

in the point C ≈ 2.7 and R ≈ 1.1 nm. This can be interpreted in the following

way. If 50 single He atoms distributed in the bulk of a sample as substitution

atoms would join to He bubble of such size and He concentration it would

result in the highest decrease of free Helmholtz energy of the system which is480

the most preferable from the thermodynamic point of view. Thus the values of

C = 2.7 and R = 1.1 nm can be treated as estimates for the thermodynamically

equilibrium parameters of He bubbles in the Pu-3 at. % Ga fcc alloy at the

ambient conditions. The calculated equilibrium size is slightly higher than the

experimentally observed value of average He bubble radius which is of the order485

0.7−0.8 nm [14], while the obtained equilibrium He concentration value C = 2.7

agrees well with the experimentally observed values of order 2−3 He atoms per

vacant site [14].

4. Equilibrium size of He bubbles

In the present section we introduce a way to estimate thermodynamically490

equilibrium size of He bubble with fixed He concentration in the lattice of Pu-

Ga alloy. In the following we fixed He concentration to be C = 2.7 that agrees

with the experimentally observed 2− 3 He atoms per vacant site [14]. In order

to obtain dependence of Helmholtz free energy of the system on the size of He

bubbles we need to perform a series of CMD calculations to get free energies495

of the systems which were identical in composition and in the number of atoms

but varied by micro-configuration increasing the size of the bubble keeping He
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Figure 4: (Color online) (a) - internal and (b) - free energy differences of the systems with all

He atoms placed in the bubbles and systems with He bubbles and distributed away from the

bubbles He atoms as functions of helium concentration (number of He atoms per vacant site)

and the size of initial bubbles. Calculations of the internal and free energy differences were

performed for the parameters shown by the black points, and color surfaces with isolines are

2D spline interpolations of the values at the black points. Red point marked by white arrow

corresponds to the minimal value on the surface.22



concentration constant. That would require TIM free energy calculation with

rather big samples containing one bubble the size of which will increase, small

bubbles or distributed He atoms as the source of He atoms for the main bubble500

growth, and non-defective crystal which fraction in the entire sample will grow

with increasing size of the bubble. The CMD simulations with big samples

with the sampling for better statistics for rather long times would require vast

computational resources and more importantly huge computational time.

On the other hand, free energy is an additive function meaning that the free505

energy of the entire system is equal to the sum of free energies of its parts at

the same conditions. In order to check if the free energies values calculated in

CMD simulations using TIM satisfy the additivity rule we performed series of

simulations in the following manner. We generated two sets of Pu-3 at. % Ga

samples 21 × 21 × 21 and 42 × 21 × 21 unit cells (10 samples of each kind510

for statistics) and thermalized them in NPT -ensemble CMD simulations at

the ambient conditions. Then we calculated free energy values for non-defective

samples of both sizes. The result is that average free energy of the bigger samples

within the confidence band is twice the average free energy of the smaller ones.

As the next step we added to both kinds of the samples He bubbles containing515

54 He atoms with concentration C = 2.7, and calculated their free energies.

Average free energy of 42×21×21 samples with one He bubble of 54 atoms within

the confidence band coincides with sum of average free energy of 21 × 21 × 21

samples without helium and average free energy of 21×21×21 samples with the

54 atoms He bubble. Than we added to the bigger samples one more He bubble520

of the same size and He concentration but far apart from the initial bubble and

calculated their free energies. We got that average free energy of the bigger

system with two bubbles is twice the free energy of smaller systems with one

bubble in each. The final check of the free energy additivity we performed for

the 42 × 21 × 21 system with two bubbles. We increased the size of one of525

the bubbles by 54 atoms keeping He concentration the same. Thus, the bigger

samples contained 108 and 54 atoms He bubbles. In order to have the similar

constituent smaller system we made in the 21×21×21 samples He bubbles with
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108 atoms He concentration C = 2.7 as well. The comparison of average free

energy of bigger system with two 108 and 54 atoms He bubbles and the sum530

of average free energy of smaller systems with the He bubbles with 108 and 54

atoms and all the previous tests allow to conclude that the additivity rule for

Helmholtz free energy values in our CMD simulations is fulfilled.

The confirmed additivity of free energy values obtained in our CMD calcu-

lations using TIM allows us instead of time and computational resources con-535

suming CMD simulations with huge number of particles to perform the free

energy calculations by parts. We calculated the free energies of Pu-3 at. % Ga

samples 21×21×21 without He, Pu-3 at. % Ga samples 21×21×21 containing

He bubble of 54 atoms with concentration C = 2.7 (this bubble serves as the

source of growth of the ”main” bubble), and Pu-3 at. % Ga samples 21×21×21540

containing He bubbles with 108, 162, 216, 270, 324, 378, and 432 atoms with

concentration C = 2.7. Again for the statistic purposes we generated and ther-

malized 20 samples identical in composition and in the number of atoms, but

varied by distribution of Ga atoms in the lattice. In principle, we could do the

finer step in the bubble size, but that would require to increase significantly the545

amount of CMD simulations but would not change the character of the result.

One can imagine a system that consists of K subsystem of 21 × 21 × 21

with one He bubble of 54 atoms (the first row in Fig. 5). Lets denote the free

energy of such subsystem as F54. Than the free energy of the whole system is

F = K · F54. Now let replace one of the subsystems by a subsystem without550

helium (the free energy of such subsystem - F0). In order to keep the number of

He atoms in the entire system constant we increase the number of He atoms in

one of the bubbles by 54 atoms (the free energy of such subsystem - F108). Than

the free energy gain from the coalescence of two of the 54 atoms He bubbles

(the second row in Fig. 5) is ∆F108 = F108 + F0 − 2F54. Than we increase the555

size of the ”main” bubble by 54 He atoms to 162 and in accordance replace one

of the subsystems with 54 atoms He bubble by the non-defective crystal. Then

the free energy gain from the coalescence of three of the 54 atoms He bubbles

(the third row in Fig. 5) is ∆F162 = F162 + 2F0 − 3F54. The next bubble size
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Figure 5: (Color online) Illustration to the calculations of He bubble growth effect on free

energy of the system at the ambient conditions (Only He atoms are shown). In the first row

the system consists of subsystems 21 × 21 × 21 unit cells with He bubble of 54 atoms with

He concentration C = 2.7. In the second row the size of the first He bubble is increased by

54 atoms. In order to keep the number of particles and the composition in the entire sample

constant one of the subsystems with 54 atoms He bubble by non-defective crystal subsystem.

In the third row the size of the first He bubble again is increased by 54 atoms, and one more

subsystem with 54 atoms He bubble is replaced by the non-defective crystal subsystem, and

so on. As the result all the systems in the rows consists of the same number of particles and

have the same composition but various micro-configurations. Thus, their internal and free

energy values can be compared directly.
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free energy gain is ∆F216 = F216 + 3F0 − 4F54 and so on.560

In Fig. 6a the results of described above calculations for the internal (red

circles) and free (blue squares) energies are presented. The values in Fig. 6a have

the meaning of the internal and free energy gains resultant from the coalescence

of 54 atoms He bubbles while the concentration in the bubbles is kept constant

C = 2.7. The negative values of the internal and free energy changes with the565

growth of the ”main” He bubble means that the growth of the bubble with He

concentration C = 2.7 through the mechanism of coalescence of smaller (54 He

atoms) bubbles is energetically and thermodynamically profitable. Red solid

and blue dashed lines in Fig. 6a are polynomial regressions of the corresponding

values of the relative internal and free energies respectively.570

If we consider the He bubble growing in our CMD simulations as a system

at constant pressure and temperature that can exchange particles (He atoms)

with the surroundings then the condition for the thermodynamic equilibrium of

such system is the minimum of the chemical potential µ [38, 39]. The chemical

potential µ can be found as575

µ =

(
∂G

∂N

)
P,T

, (14)

where G - Gibbs thermodynamic potential, and N number of particles in the

system. Since, Gibbs potential is G = F +PV , and the pressure P is equal zero

in our simulations then

µ =

(
∂F

∂N

)
P=0,T

. (15)

If we differentiate the polynomial approximations in Fig. 6a with respect to N

we get the dependence presented in Fig. 6b. Ones again we would like to draw580

attention of readers to the significant difference in the behavior of the inter-

nal and free energies at the finite temperatures and emphasize that in order

to determine relative stability of micro-configurations at finite temperatures it

is insufficient to compare internal energies. One must make conclusions about

thermodynamic preference of microstates based on the comparison of the ther-585

modynamic potentials. The blue dashed line in Fig. 14b have the meaning of
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Figure 6: (Color online) a - relative internal and free energies as functions of number of

particles N in He bubble with He concentration C = 2.7, b - derivatives of the internal and

free energies with respect to N .
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effective chemical potential of the He atoms in the bubble with He concentration

C = 2.7 which growths by the mechanism of coalescence of 54 atoms He bubbles

of the same concentration. The chemical potential dependence on N has mini-

mum at N ≈ 205 and the minimum chemical potential value µ0 = −0.315 eV .590

This means that in the frames of CMD with MEAM+exp 6 interatomic poten-

tial for Pu-Ga-He interactions [8] taking into account only one mechanism of

growth of He bubbles (coalescence of smaller bubbles) with fixed concentration

C = 2.7 at the ambient conditions there is thermodynamically equilibrium size

of He bubble N = 205.595

In Fig. 7 calculated in NPT -ensemble CMD simulations dependence of equi-

librium radius of He bubbles with the fixed He concentration C = 2.7 on the

number of He atoms in the bubbles is shown. Diamonds in Fig. 7 represent

values of equilibrium He bubble radii obtained for individual samples, circles

with the error margins are the mean values with the standard deviations for the600

corresponding number of He atoms N , solid blue line represents least-squares

regression of the diamonds, and red dashed line is the radius of a sphere with

the volume equal to the total volume occupied by the replaced atoms in the

initial non-defective lattice. As one can see for all the sizes of the He bubbles

presented in Fig. 7 with the fixed He concentration C = 2.7 the bubbles expand605

compared to the initial lattice void volume and suppress the surrounding fcc

lattice due to quite high effective pressure inside the bubbles.

If we combine the dependence of chemical potential µ on the number of

particles N (see Fig. 6b) with the dependence of the equilibrium He bubble

radius R on the number of particles N (see Fig. 7), we get µ (R) and can610

construct distribution function f (R) of He bubbles with the fixed concentration

C = 2.7. According to classical thermodynamics the distribution function will

be proportional to the Boltzman factor. Thus, up to normalization factor

f (R) ∼ exp

(
−µ (R)− µ0

kBT

)
. (16)

The distribution function given by Eq. (16) calculated using the data from

Figs. 6,7 is presented in Fig. 8 by blue dashed line in comparison with experi-615
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Figure 7: (Color online) Dependence of equilibrium radius of He bubbles with the fixed He

concentration C = 2.7 on the number of He atoms in the bubbles.
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mentally observed distribution function of He bubble radii [14] shown by bars.

The bar plot in Fig. 8 is a combined histograms presented in Fig. 4 of [14] ob-

tained for 26, 35, 36, and 42 year-old material and then divided by the maximal

number of counts.

Figure 8: (Color online) Calculated in the present paper helium bubble distribution function

with the fixed He concentration C = 2.7 (blue dashed line) in comparison with experimentally

observed distribution function on 26, 35, 36, and 42 year-old material [14].

As one can see in Fig. 8 the overall characters of the calculated in the frames620

of CMD and obtained by TEM [14] He bubble radius distribution functions

are quite similar. Although there are two major discrepancies between them,

namely, the location of maximum (∼ 1.6 nm in CMD dependence) and (∼

1.4 nm in the experiment) and the width of the distributions - experimental

distribution is much wider than the calculated one. We can propose a variety625

of plausible explanations for these discrepancies.

First of all the result obtained in CMD simulations are determined totally
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by the used model of interatomic interaction. MEAM potential for Pu-Ga alloys

was parameterized for the certain conditions, and in spite of the fact that it has

shown oneself to provide good results for the modeling of the fcc Pu-Ga alloys630

in a variety of conditions, it does not necessarily describe the defective Pu-Ga

alloys with He in it with the same accuracy. On the other hand, the qualitative

replication of the experimental distribution function by the calculated one allows

to claim that the used MEAM+exp 6 interatomic potential captures the physics

of the interaction of He atoms with Pu-Ga fcc lattice qualitatively correct.635

The second plausible factor that affects the equilibrium parameters of the He

bubbles which requires deeper understanding is possible influence of the alloy

composition (local Ga concentration). If for example the equilibrium radius of

He bubbles depends on the Ga concentration then it would vary not only from

sample to sample with different average Ga content but also from region to640

region inside the same sample, since Ga content is not uniform inside δ-phase

Pu-Ga crystal grains (see for example [40]). If this is the case then it would

cause broadening of the distribution. For that it would be useful to repeat the

presented CMD calculations for other Ga content of the alloy.

Another factor providing the discrepancies between the experimental and645

calculated distributions is that in our CMD simulations we used the fixed He

atom per vacant site ratio C = 2.7. In reality there is a distribution of He bub-

bles with respect to the He concentration in them determined by the thermody-

namics as well. According to the estimate of [14] the average He concentration

in the experiments is order of 2 − 3. The distribution of He bubbles along He650

concentrations also results in the broadening of the overall distribution.

Finally, in our simulation we considered only one mechanism of the He bubble

growth, the coalescence of smaller bubbles with the same fixed He concentra-

tion. Of course at the finite temperatures it is not the only mechanism: there

are bubbles with different He concentrations and He atom-vacancy complexes655

produced as the result of α-decay. If those can migrate in the Pu-Ga lattice

at the ambient temperatures, this would cause modification of the He bubble

radius distribution function, its broadening and possible shift of its maximum.
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5. Conclusion

Within the scope of a theoretical study in the frames of CMD into the660

response of δ-phase Pu-Ga alloys on self-irradiation we have investigated the

behavior of He atoms in the fcc lattice of Pu-Ga alloy at the ambient condi-

tions. Because of the low mobility (from standpoint CMD) of He atoms in the

Pu-Ga alloy lattice their dynamics cannot be tracked in direct CMD simula-

tions. Instead, we used the Helmholtz free energy function to investigate the665

equilibrium thermodynamics of metastable states (micro-configurations) in an

initially perfect Pu-Ga crystal and perfect crystals with introduced He atoms

in different configurations.

Helmholtz free energy of metastable micro-configurations was calculated

through thermodynamic integration method (TIM) [22, 23, 24] which was shown670

to be effective, accurate and thermodynamically consistent through a set of nu-

merical tests. TIM was used to calculate the free energy of the fcc δ-phase

Pu-Ga alloy with distributed He atoms as disordered substitutional atoms and

with He bubbles of different sizes with various He concentrations (number of He

atoms per vacant site) in it. Based on the resulted absolute values of free en-675

ergy, we drew inferences about the relative thermodynamic stability of different

micro-configurations at the ambient conditions, specifically:

1) CMD calculations of solubility of He atoms in the fcc lattice of δ-phase

Pu-Ga alloys at the ambient conditions were carried out and it was found in

the simulations that for all the parameters of He bubbles used (radius of the680

bubbles and He atom concentration) the helium bubbles does not dissolve in

the matrix of fcc PuGa alloys. From the standpoint of thermodynamics the

He atom-vacancy complexes produced as the result of α-decay of 239Pu during

diffusive motion inside the lattice should join when meet each other and form

the bubbles.685

2) A series of CMD calculations using TIM were carried out in order to

investigate possible causes stopping He bubbles in the fcc Pu-Ga alloys from

continuous growing. It was demonstrated that free Helmholtz energy surface has
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minimum for the bubbles of the radius R = 1.1 nm and C = 2.7 helium atoms

per vacant site which is close to experimentally observed with TEM average690

equilibrium parameters of He bubbles in naturally aged material R = 0.7 nm

and C = 2− 3 He atoms per vacant site[14].

3) If we fix He concentration in the bubbles C = 2.7 than estimated ther-

modynamically equilibrium size of He bubbles is ∼ 205 He atoms or the radius

R ≈ 0.8 nm, while experimentally observed result for the average number of He695

atoms in the bubbles in the fcc lattice of the Pu-Ga alloys is 180 He atoms and

the radius R = 0.7 nm.

4) Calculated in CMD simulations He bubble radius distribution function

is compared to one observed experimentally [14]. Although the overall behav-

ior of the experimental and calculated distributions is quite similar there are700

some differences. The plausible explanations for that differences are discussed

in Section 4. The possible influence of Ga concentration on the equilibrium

parameters of the bubbles requires additional CMD calculations.

At the first glance it looks like that there is the contradiction between the

estimates of the equilibrium bubble radius obtained by two sets of calculations in705

Section 3 - R = 1.1 nm and in Section 4 - R = 0.8 nm. The difference is caused

by the fact that in the calculations we investigated two different mechanisms

of He bubble growth. The first one is the bubble coarsening by the diffusive

motion of secluded He atom-vacancy complexes, and the second - the growth by

coalescence of smaller bubbles. Our CMD calculations and experimental TEM710

observations [14] demonstrated that the existence of He atoms in the form of

single He atom-vacancy complexes is thermodynamically unfavoured. Although

the single He atom-vacancy complex is the initial state of the He atom just

after the α-decay the experimental TEM observations and our CMD simulations

evidence that if two diffusing He atom-vacancy complexes meet or He atom-715

vacancy complex meets another bubble they would join, and a nucleus of He gas

bubble would be formed. Moreover, it is thermodynamically profitable to form

the bubbles with He atom concentration 2 − 3 He atoms per vacant site. The

second mechanism of migration and coalescence of smaller bubbles have been
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observed by in situ TEM at elevated temperatures as the dominant mechanism720

of He bubbles growth [16]. Of course at the finite temperatures both of these

mechanisms can exist, but statistical weight of the first one and its contribution

to the overall radius distribution function is much smaller than that of the MC

mechanism. Thus, the second estimate R = 0.8 nm of the equilibrium He bubble

radius is more reasonable and related to the overall thermodynamic behavior of725

helium in the fcc lattice of δ-phase Pu-Ga alloys.

Note once more that all the described CMD calculations were done for ambi-

ent conditions which approximately correspond to material storage conditions.

It is interesting to repeat the presented calculations for elevated and reduced

temperatures to quantify the effect of temperature on the equilibrium parame-730

ters of He bubbles as it was done experimentally in [16].

The presented results of the CMD simulations for the calculation of ther-

modynamic potentials and determination of relative thermodynamic stability

of various micro-configurations of systems with artificially introduced systems

of defects allow to conclude that the TIM technique is applicable for the study735

of thermodynamics and predictions of behavior of defects whose dynamics is

inaccessible by direct CMD modeling. The presented approach can be applied

to other materials and kinds of defects, for example, we used the described

method of investigations to study relative thermodynamic stability of vacancy

complexes and their interaction with preexisting extended defects in the δ-phase740

Pu-Ga alloys (to be published elsewhere).

We have also to notice two significant shortcomings of the presented ap-

proach to the determination of relative thermodynamic preference of various

micro-configurations. While the approach provides the answer which of the ex-

amined micro-states is preferable from the standpoint of thermodynamics it does745

not predict the most thermodynamically stable state if this was not included in

the calculation set. In this sense the result of calculations depends on ”imag-

ination” and ”physics flair” of a researcher, meaning that one should generate

the micro-configurations for the simulations based on preliminary understand-

ing and available experimental information about the problem. The second750
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disadvantage of the presented pathway is coming from the equilibrium ther-

modynamics approach. The approach answers which of micro-configurations is

more thermodynamically stable, but does not answer the questions how fast and

how (if at all) will the system transfer from one micro-configuration to another?

The kinetics of transitions (in our case the kinetics of Helium bubble growth)755

can not be resolved by the equilibrium thermodynamics methods.
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