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Abstract 

 
Experiments directed towards the study of the collisionless interaction between two counter-streaming 
plasma flows generated by high-power lasers are designed in such a way as to make collisions between the 
ions of the two flows negligibly rare. This is reached by making flow velocities v as high as possible and 
thereby exploiting the 1/v4 dependence of the Rutherford cross-section. At the same time, the plasma 
temperature of each flow may be relatively low, so that collisional mean-free paths for the intra-stream 
particle collisions may be much smaller than the characteristic spatial scale of the unstable modes required 
for the shock formation. The corresponding effects are studied in this paper for the case of the ion Weibel 
(filamentation) instability. Dispersion relations for the case of strong intra-stream collisions are derived. It 
is shown that the growth-rates become significantly smaller than those stemming from a collisionless 
model. The underlying physics is mostly related to the increase of the electron stabilizing term. Additional 
effects are an increased “stiffness” of the collisional ion gas and the ion viscous dissipation. A parameter 
domain where collisions are important is identified.  
 
I. INTRODUCTION 
 
 Electromagnetic instabilities of two counter-propagating plasma flows [1, 2] are 
an interesting example of the plasma physics effects important for astrophysics. In 
particular, these instabilities can be responsible for generation of magnetic field in 
initially un-magnetized plasmas, formation of collisionless shocks, and particle 
acceleration (see, e.g.,  Refs. 3-8 and references therein). Significant attention has been 
drawn by the possibility of studying these effects in the plasma flows obtained by the 
plasma ablation from the properly-oriented targets irradiated by intense lasers (e.g., [9-
13]). The interpenetrating flows are expected to generate the ion Weibel instability 
leading to formation of current filaments aligned with the flow. The magnetic field 
generated by these currents scatter the charged particles and may lead to the formation of 
colisionless shocks and to particle acceleration. 
 The ideal plasma for investigating collisionless shocks in counter-streaming flows 
would be a hydrogen plasma. However, for practical reasons the targets (and, therefore, 
plasma jets) are made not of hydrogen, but of materials like beryllium, carbon, or 
polymers. This leads to an increase of the ion-ion collision cross-sections, which scale as 
the ion charge Z to the fourth power. Still, the conditions in these experiments can be 
adjusted in such a way as to make collisions between the ions of the two jets (inter-jet 
collisions) negligible. For the typical carbon ion densities in the flows of order of 1018  
cm-3 and the flow velocities approaching 108 cm/s the carbon-carbon collisional mean-
free-path (m.f.p.) is on the order of 10 cm, whereas the size of the interaction zone of the 
two streams is a few millimeters [9-13].  
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 On the other hand, the collisions between the ions in each jet may be important 
(see, e.g., [10, 14]). This is a consequence of the fact that the jets, by design, have high 
Mach numbers, so that the plasma temperature T is much lower than the ion directional 
energy, whereas the Coulomb collision cross-section scales as 1/T2. In a case where the 
ion temperature is 100 times lower than their directional energy, the mean-free path for 
the intra-jet ion collisions may become very short.  
 In this article we study the effect of intra-jet collisions on the linear stage of the 
Weibel instability and identify regimes where these collisions significantly affect the 
instability. For realistic plasma parameters, not only ion-ion, but also electron-ion 
collisions may play significant role. Additionally, the presence of hydrogen or deuterium 
in the plasma (as is the case for plastic targets) may have a strong stabilizing effect. Our 
overall conclusion is that, for the typical densities of the experiments of the type [9], the 
collisional effects on the Weibel instability become decisively unimportant for the plasma 
temperatures in each stream exceeding 1 keV, as is the case in, e.g., Ref. 10. At lower 
temperatures one must be careful in comparing experimental results with the results of 
collisionless simulations.  
 
Table 1 The collisionality characteristics of two interpenetrating streams*  

 
1 2 3 4 5 6 7 8 9 
 lZZ, 

µm 
νZZ, s-1 leZ, 

µm 
νeZ, s-1 lHZ, 

µm 
νHZ, s-1 c/ωpi 

µm 
(v/c)ωpi 

s-1 

 
Te=Ti=0.25 

keV 

 
0.85 

 
7.5×1010 

 
10.9 

 
8.7×1011 

 
22 

 
2×1010 

 
60 

 
1.2×1010 

 
Te=Ti=0.50 

keV 

 
3.4 

 

 
2.65×1010 

 
44 

 
3.7×1011 

 
88 

 
7×109 

 
60 

 
1.2×1010 

 
Te=Ti=1.00 

keV 

 
13.6 

 
9.4×109 

 
175 

 
1.1×1011 

 
350 

 
2.5×109 

 
60 

 
1.2×1010 

* Velocity of each stream is v=8×107 cm/s, kinetic energy of the carbon ions in each stream is WZ=40 
keV, total electron density is ne=2×1019 cm-3. The ion plasma frequency ωpi in this table is evaluated 
for a purely carbon plasma, and the effect of the hydrogen admixture on the carbon density at a given 
total electron density is neglected (~20% changes are discussed in the corresponding parts of this 
article). Notation:  lZZ  and νZZ are carbon-carbon mean-free path and carbon-carbon collision frequency 
for the intra-stream collisions;  leZ (lHZ) and νeZ  (νHZ) are the corresponding quantities for the electron-
carbon (hydrogen-carbon) collisions.   

 
 To illustrate relative role of various types of collisions, we summarize the mean-
free-paths and collision frequencies for a range of plasma temperatures in Table 1. The 
last two columns contain the characteristic wave-number of the ion Weibel instability,  
  k =! pi / c ,          (1) 
where ! pi is the ion plasma frequency and c is the speed of light, and the characteristic 
growth rate  
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  ,         (2)  

where v is the flow velocity. In order for a certain type of collisions to be unimportant, 
the corresponding mean-free path has to be longer than 1/k and the corresponding 
collision rate has to be smaller than the characteristic growth rate . However, with 
regard to the growth rate, one must remember that the actual growth rate in a number of 
cases is almost an order of magnitude lower than its “characteristic” value (see below). 
 The ion-ion collision frequencies given in Table 1 are evaluated based on Eq. 
(2.5i) in Ref. 15. The electron-ion collision frequencies are evaluated based on Eq. (2.5e) 
in Ref. 15; the ion density in this case is a total ion density of two streams, as the electron 
thermal velocity is much higher than u in all cases, and the electron-ion scattering 
frequency can be evaluated under the assumption that the ions have no velocity spread. 
The Coulomb logarithm was taken to be equal to 10 in all cases. The mean-free paths are 
evaluated by dividing the thermal velocity  - defined by vT = 2T /m , with the mass and 
temperature of the species in question  - by the corresponding collision frequency.  
 We show below that the actual instability growth rate is much smaller than the 
reference value (column 9 in Table 1), so, actually, a relatively low collision frequency 
for the hydrogen-carbon collisions (column 7) remains much higher than the growth rate. 
In this regard, the hydrogen is collisional for the parameters in first two rows of Table 1. 
Some apparent difference between the electron and hydrogen m.f.p. at the same electron 
and ion temperatures is related to the fact that the electrons scatter on the ions of both 
flows.  With increasing electron temperature, electrons become collisionless for the 
temperatures exceeding 0.5 keV.  
 We consider the case of symmetric jets, with identical parameters, propagating in 
the opposite directions. The electrons, due to their very high thermal velocity, behave as a 
single component, into which both ion streams are immersed. For the symmetric jets, this 
component in the unperturbed state is at rest. Each ion stream in a highly collisional 
regime is to be described by hydrodynamical equations and is characterized by the 
temperature, density and directed velocity; hydrodynamic viscosity has to be included to 
account for the internal friction in the ion flow. The same approach will be applied to the 
electron component when it is collisional.  
 The paper is organized as follows. In Section II, we specify the geometry used in 
the stability analysis and write down basic equations. In Sec. III, we study the ion 
dynamics for the case of one ion species. In Sec. IV, we do a similar analysis for the 
electron component. Having found the electron and ion current perturbations and 
substituting them to the Maxwell equations, we find a dispersion relation, which is 
derived and analyzed in Sec. V. In Sec. VI we consider an effect of the light ion 
admixture and find that it can lead to a strong decrease of the growth rate due to 
increased compressional “stiffness” of the ion population and higher viscosity of the 
mixture [16, 17]. In Sec. VII we summarize the results. 
 
 II. FORMULATION OF THE PROBLEM  
  We assume a uniform and stationary unperturbed state and consider the 
perturbations depending on space and time as exp(!t + ik " r) , where Γ is a complex 

! =! pi
v
c

!
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growth rate and k is the wave vector). We assume that the streams are flowing along the 
axis z, and the wave vector is perpendicular to this axis. We orient the coordinate frame 
so as to make axis x parallel to the wave vector. In other words, wave vector has only x 
component.  This is a canonical setting for the Weibel instability (e.g., [1-2], [18-19]). In 
this geometry, the perturbed magnetic field will have only the y component (!By ) and the 
perturbed electric field only the z component (!Ez ). The appropriate components of the 
Maxwell equations then yield: 

 ikx!By =
4"
c
! jz         (3) 

and 
 ikx!Ez = !!By  .        (4) 
For symmetric streams, the unstable modes are found to be the modes of a pure growth, 
with a real Γ.  
 In the further sections, we will express the current perturbation in terms of !By
and !Ez , and thereby close the system of equations (3), (4). The solubility condition for 
this linear homogeneous set of equations then yields the dispersion relation. 
 
III. THE ION RESPONSE 
 
 Consider the ion stream moving in the positive direction of the axis z. We find its 
contribution to the current perturbation and then find the contribution of the oppositely 
directed stream just by changing a few signs in the first expression. We consider here a 
plasma with a single ion species. A generalization to a plasma consisting of both heavy 
and light species is described in Sec. VI.  
 The perturbed hydrodynamic equations for the ions of a stream propagating in the 
positive z direction are: 

 !!vx = "ikx
!pi
Ampni

"
Zev!By

Ampc
""bkx

2!vx ,     (5) 

 !!vz =
Ze!Ez

Amp

""skx
2!vz ,       (6) 

where subscripts “b” and “s” designate the bulk and shear viscosities that differ by a 
factor of order one (see below). The ion density ni relates here to a single stream. The 
total ion density is  
 2ni=ne/ Z          (7) 
where ne is the total electron density. The pressure perturbation is related to the density 
perturbation by 

 .          (8) 

Given a strong ion collisionality, we use a collisional ion adiabat. The ion density 
perturbation is related to !vix via the continuity equation: 
 !!ni + ikxni!vix = 0         (9) 
We emphasize that these equations are related to a single ion stream.  

!pi =
5
3
Ti!ni
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 For the stream moving in the opposite direction, the density perturbation and the x 
component of the velocity perturbation have the opposite sign compared to the ion stream  
moving in the forward direction; the z component of the velocity perturbation has the 
same sign. This circumstance can be seen from Eqs. (5-6) and (9) upon the change of the 
sign of the unperturbed velocity.  
 The ion current perturbation is: 
        (10) 
where the dots mean a contribution of the opposite stream. The unperturbed velocity v 
for the second stream is negative and, as mentioned, the density perturbation in it has an 
opposite sign with respect to the density perturbation in the first stream, whereas the z 
component of the velocity perturbation has the same sign. This means that the total 
perturbation of the ion current is just twice the current perturbation of the first stream:  

 ! jzi = 2Ze(ni!vzi + v!ni ) = ene !vzi + v
!ni
ni

!

"
#

$

%
&      (11) 

The total ion density perturbation is zero. Using Eqs. (5), (6), (8), (9) and (11), one can 
express the ion current perturbation in terms of the magnetic field perturbation: 

 ! jzi = i!By
! pi
2

4!kxc
!

"
"+!skx

2 +
kx
2v2

"("+!bkx
2 )+ kx

2s2
#

$
%

&

'
( ,    (12) 

where is the ion sound speed, and  is the ion plasma 

frequency. The drive for the filamentation instability is associated with the last term in 
the square bracket and is proportional to the square of the velocity of the 
counterstreaming jets. 
 
IV. THE ELECTRON RESPONSE 
 
 Due to a high electron mobility, electrons play a stabilizing role by partially 
cancelling the ion current and thereby disrupting the feedback loop. For the electron 
temperature of 250 eV, the electron mean free path in a carbon plasma with the reference 
parameters of Table 1 is !ei ~10

!3cm , and the electron-ion collision frequency is 
!ei ~10

12 s!1 . In other words, the electrons are also highly collisional, and their response 
can be found by using a description via the electron hydrodynamic equations [15]. In 
doing so, we note that the electron thermal velocity even at a relatively low temperature 
of 100 eV is still much higher than the velocity of the ion streams. So, electron collisions 
with the ions can be considered as scattering from ions having a zero velocity spread. 
Then, the z-component of the electron momentum equation can be written as: 

 
!+ kx

2!se( )!vze = " em!Ez ""ei !vze "
! jzi
2ZenZ

#

$
%

&

'
( ,    (13)  

where ηse is electron shear viscosity. The term ! jzi / 2nZ represents an average (between 
two streams) perturbation of the z-component of the ion velocity. We recall that nZ is the 
ion density per stream. So, there are two relaxation terms in Eq. (13): the electron-ion 
friction (the term proportional to !ei in the right-hand side), and the viscous term in the 

! jzi = Ze ni!vz + v!ni( )+....

s = (5 / 3)(Ti / Amp ) ! pi
2 =

4"nee
2

mp

Z
A
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left-hand side. [Note that we neglected the friction force in the ion momentum equation 
because of a low electron-to-ion mass ratio.]  
 The viscous term causes relaxation of the sheared electron velocity. When the 
plasma parameters approach the collisionless limit, this term is replaced by the relaxation 
of the sheared velocity by the electron thermal motion. It is accounted for in the 
collisionless version of the electron response by the term ~ kxvTe [2, 18], which appears 
instead of the viscous term.  
 As the ion density perturbation is absent, and the plasma is quasineutral, the 
electron density perturbation is also zero. We also note that, since the electron fluid was 
at rest in the unperturbed state, there is no Lorenz force acting on the electrons in the 
linear approximation.  
 By noting that  
 ! jz = !ene!vze +! jzi ,        (14) 
one finds from Eq. (13) that the electron current perturbation is given by:   

 ! jze = i!By

" pe
2

4#kxc

!+
kx
2c2

4#$
!+ kx

2%se

       (15) 

 
V. THE DISPERSION RELATION 
 
A. Collisional case 
 
 By summing up Eqs. (12) and (15), and using Eq. (3), we arrive at the dispersion 
relation for the Weibel-like instability:    

  kx
2c2

! pi
2 = !

! pe
2

! pi
2

"+
kx
2c2

4"#
"+ kx

2$se

!
"

"+$skx
2 +

kx
2v2

" "+$bkx
2( )+ kx2s2

    (16) 

 The first two terms (those with the “minus” sign in front of them) on the right-
hand side are stabilizing terms. The first of them is related to the electron current that 
partially neutralizes the ion current in the z direction. The second comes from the term 
~ ni!viz in Eqs. (10), (11) and corresponds to the analogous ion contribution to the current 
neutralization. To establish connection to the standard Weibel instability, we drop these 
stabilizing terms in the dispersion relation; we drop also the viscous term. This yields: 

  !2 =
kx
2v2

1+ kx
2c2

! pi
2

" kx
2s2        (17) 

For v>>s the growth-rate of order of (2) is reached for k determined by Eq. (1).  
 Consider now the general dispersion relation (16). Normalizing Γ to  
and kx to , one can present the dispersion relation in the dimensionless form: 

 ,     (18) 

where we have introduced five dimensionless parameters: 

(v / c)! pi

! pi / c

k2 +µ !+ k2R
!+ k2Vse

+
!

!+Vsk
2 =

k2

! !+Vbk
2( )+ Sk2
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 ; ; ; ; ,    (19) 

which characterize the mass ratio (µ), the resistive effects (R), the viscous effects (Vse, Vs 
and Vb), and the ion sound speed (S). For the dimensionless wave number we use 
notation “k”. 

 

 
Fig 1. The dimensionless growth rate vs the dimensionless wave number for Te =Ti =0.15 keV (green line) 
Te =Ti =0.25 keV (blue line), and Te =Ti =0.35 keV (red line). Note that the grow rates at the 
“characteristic” wave number (1) is 10-30 times lower than the “characteristic” growth rate (2). The black 
curve corresponds to the collisionless dispersion relation for Te =Ti =0.15 keV and is presented here merely 
for reference (as the collisionality is actually high). This reference line lies noticeably above the green line. 
 
 To make a parameter scan of the instability at various values of Te and Ti, we 
present the values of all the dimensionless parameters (19) as functions of the 
temperatures for the fixed values of the electron density and ion directed velocity 
corresponding to Table 1: ne=2×1019 cm-3 and v=8×107 cm/s. Using Ref. 15, we find: 

  ; Vs =1.75!10
"2 Ti (keV )[ ]5/2 ; Vb = 2.53!10

"2 Ti (keV )[ ]5/2   

           (20) 
   Vse = 64 Te(keV )[ ]5/2 ; S =1.4!10"2Ti (keV )  
 If a dimensionless parameter of the set (19) is very small, this means that the 
corresponding effect does not influence the instability. For the parameter domain of the 
experiments of the type [9, 10], the resistive effects are small and the term proportional to 
R can be neglected. Conversely, the term related to electron viscosity can be important. 
The other effects are relatively weak but may lead to quantitative corrections of order of 
10-20%. However, their role may increase substantially for the plasmas containing a 
significant hydrogen component (Sec. VI).  
 Figure 1 shows normalized growth rates vs normalized wave numbers for several 
temperatures. We concentrate at the small-to-moderate values of k<2, as for the higher 
k’s the collisionality constraint may be violated for the electrons and, eventually, for the 
ions. A broader analysis accounting for this possibility is presented in Sec. VC. One sees 
that for the reference wave number (1) the growth rate is at least an order of magnitude 

µ =
Amp

Zme

R =
! pic
4"v#

Vse =
!se" pi

vc
Vb,s =

!b,s" pi

vc
S = s

2

v2

R = 1.06!10
"3

[Te(keV )]
3/2
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smaller than its reference value (2). One sees also that the growth rate increases with the 
temperature. This is mostly due to the higher electron viscosity at higher temperatures.  
 
B. Comparison to a collisionless case  
 
 The derivation of the dispersion relation for the collisionless case can be found in 
Ref. 2. The result can be presented as:  

 

kx
2c2

! pi
2 = !

! pe
2

1+ | kx |
"

2Te
"me

!G1
"2Amp

2kx
2Tz

#

$
%%

&

'
((+

kx
2v2

"2
G2

"2Amp

2kx
2Tz

#

$
%%

&

'
((
   

(21) 

where 

 G1(y) =
1
!

ye!x
2

x2 + y
dx

!"

+"

# ; G2 (y) =
2y
!

x2e!x
2

x2 + y
dx

!"

+"

# .    (22) 

For a quick orientation, we will use the following interpolations for the functions G1, G2:  

 G1(y) =
1

1+ 1
! y

; G2 (y) =
2y
1+ 2y

.      (23) 

These interpolations correctly capture the asymptotic behavior of these functions at both 
large and small y and are sufficiently accurate for the intermediate values of y.  
 With this substitution made, dispersion relation (21) acquires the structure quite 
similar to Eq. (18): 

 

k2 +µ !
!+Ue | kx |

+
!

!+Ui | kx |
=

k2

(3S / 5)k2 +!2
         (24) 

where  

  Ue,i =
vTe,i
v !

        (25) 

For our “standard” value of v=8×107 cm/s, one has: >1, whereas Ui is 
usually negligibly small. The terms containing U in the denominator are responsible for 
damping of the z component of the current by the perpendicular (along x) thermal motion 
of the electrons and ions. This effect is particularly important in the electron contribution 
that contains a very large factor µ.  
 Comparing Eqs. (18) and (24), one finds the following main differences: 1) The 
electron stabilizing term in the collisional equation (18) is suppressed by the electron 
viscosity, not by the free thermal streaming. This difference is key for the explanation of 
the lower growth rates in the collisional case: the viscous suppression of the sheared 
electron current is much weaker at lower temperatures than the suppression by 
unimpeded thermal motion in the x direction. 2) The stabilizing effect of the ion pressure 
(the terms proportional to S in both equations) is weaker in the collisionless case due to 
the factor of 3/5 in Eq. (24) that reflects a higher “stiffness” of the collisional gas. 3) 
Stabilizing viscous terms (those proportional to Vs and Vb) are absent in the collisionless 
case.  
 The difference in the structure of the stabilizing ion terms is unimportant, because 
these terms are small in both cases compared to the electron stabilizing terms.  

Ue =12 Te(keV )
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 The solution of the dispersion relation (24) is shown as a black line in Fig. 1, for 
reference. As anticipated, the difference between the two models is strongest at longer 
wavelengths. We will see in Sec. VI that the difference becomes much stronger for the 
CH2 case.  
 
C. Generalized dispersion relation covering both collisional and collisionless 
electrons 
 
 In this section we will present a dispersion relation that covers both collisional 
and collisionless effects. We note that that the viscosity of a pure high-Z plasma (in 
particular, carbon plasma) is quite small, and the viscous term in Eq. (18) can be 
neglected. The second term in the denominator of the ion stabilization term is also small, 
and we neglect it. In this approximation, the ion-stabilizing term in both cases becomes 
merely one. As mentioned above, the magnetic diffusivity term in the numerator of the 
electron stabilizing term is small, and we neglect it.  
 In the remaining expression for the electron stabilizing term we use an 
interpolation between the large and small electron collisionality. To do that, we suggest 
presenting the denominator in the form: !+!e(| kx |) , where 

 !e(| kx |) =
(Vekx

2 )(Use | kx |)
(Vekx

2 )2 + (Use | kx |)
2

      (26) 

where Ve and Ue are defined by Eqs. (19) and (25), respectively. For a given wave 
number, the viscous term dominates at a lower temperature, whereas the streaming effect 
dominates at higher temperatures.   
 In a similar fashion, we use interpolation for the compressibility term in the 
denominator of the right-hand-side of Eqs. (18), (24). In these terms, the transition from 
collisional description to a collisionless one occurs for | kx | lZZ =1 . To describe the 
transition from the term Sk2 in the collisional case (18) to the term (3/5)Sk2 in the 
collisionless case (24), we use an interpolation function F(k) defined as

 
F(k) =1! 2

5
C | k |
1+C2k2 ,        (27)   

where the dimensionless parameter C (“collisionality”) is  

 C = lZZ! pi / c ,          (28) 
and k in this equation is a dimensionless wave number normalized to ! pi / c . For the 
basic parameters (ne and v) of Table 1, the numerical value of the coefficient C for carbon 
is:  

 C = 0.23Ti
2 (keV )          (29)  

The function F is equal to 1 at a high collisionality (small Ck) and 3/5 at a low 
collisionality (large Ck), so that the unified expression for the r.h.s. of Eq. (18) and Eq. 
(24) becomes: 

 

k2

!2 + SF(k)k2          
(30) 
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 This preparatory work leads to the following dispersion relation that unifies a 
collisional and collisionless case for a purely high-Z plasma:  

  
k2 +1+ µ!

!+!e(k)
=

k2

!2 +F(k)Sk2      (31) 
This equation is accurate to within a few percent for both collisional and collisionless 

domains and provides a smooth connection between the two. The dispersion curves for 
carbon are illustrated by Fig. 2  for the basic parameters (ne and v) as in Table 1.  

   
Fig. 2 A broad scan over the wave numbers and temperatures for a unified model: a) Scan over 
the ion temperatures for Te=0.35 keV; the ion temperatures are Ti=0.15 keV , 0.25 keV, 0.35 keV, 
0.45 keV and 0.55 keV from the upper to the lower curve; b) Scan over the electron temperatures 
for Ti=0.55 keV; the electron temperatures are Te=0.15 keV, 0.25 keV, 0.35 keV, 0.45 keV and 
0.55 keV from the lower to the upper curve. Note that the maximum growth rate is reached for k 
about 10 times higher than the reference value (1) and is roughly 2 times smaller than the 
reference value (2). 
 
VI. EFFECT OF THE LIGHT ION ADMIXTURE 
 
 In this section we consider the effect of a light-ion component present in both 
flows. One meets such a situation when both targets are made of a plastic, e.g. of  CH2. In 
the regimes where both ion components are collisional (within each jet, Table 1), the 
main effect caused by the presence of the hydrogen (or deuterium) is related to a 
significant increase of the viscosity. As noted in Ref. [16], the larger mean-free path of 
the Z=1 ions makes their contribution to viscosity very significant. In particular, the 
viscosity of CH2 plasma is roughly 20 times higher than the viscosity of a purely carbon 
plasma [16, 17]. Additional stabilization arises from an increased “stiffness” of the ion 
component, where there are now two more ions contributing to the ion pressure. 
 In plasmas with multiple ion species the number of possible collisionality regimes 
becomes too large to be treated in a comprehensive way. In this study, we focus on the 
regime of the modest-to-low temperatures (below 0.5 keV) and modest normalized wave 
numbers (k<3), where all the species are collisional. We leave a more detailed study of 
the regimes of intermediate collisionalities for future work.  
 When both ion components are strongly coupled, as is the case for the first two 
rows of Table 1, the ions in each stream behave as a single gas with a pressure  
 pi = nZTi (1+!) ,        (32) 
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where nZ is a heavy ion density per stream and α is a number of hydrogen ions per one 
heavy (Z) ion. The ion density per stream is  
 !i =mpnz (AZ +"AH ) ,        (33) 
where AH is an atomic mass of a light ion: we allow for it to be 1, 2, or 3 to account for 
the possible use of a deuterated or tritiated targets. The ion sound speed under such 
conditions is 

 s2 = 5
3
Ti
mp

1+!
AZ +!AH

        (34) 

For the CH2 plasma, s2 = (5 /14)(Ti /mp ) . 
 The number of electrons (in two streams) is 
 ne = 2nZ (Z +!)         (35) 
and the ion plasma frequency is 

 ! pi
2 =! pe

2 me

mp

Z +"
AZ +"AH

.       (36) 

For the CH2 plasma, the ratio ! pe
2 /! pi

2  that enters the dispersion relation is 
(7 / 4)(mp /me )  and is slightly lower than for the pure carbon plasma. The presence of 
hydrogen, causes a reduction of the number of carbon ions per one electron (by 25% in 
case of CH2). This leads to a slight decrease of the collisionality, which is almost entirely 
determined by the heavy ions. 

 

   
Fig. 3 The growth rates for the CH2 plasma: a) Te=0.25 keV and Ti=0.15 keV, 0.25 keV, 0.35 keV, 0.45 
keV, 0.55 keV (from the upper to the lower curve); in all cases the growth-rate for the characteristic wave 
number of k=1 is less than 1/20 of the normalized growth rate. b) Ti=0.35 keV and Te=0.15 keV, 0.20 keV, 
0.25 keV, 0.35 keV, 0.45 keV and 0.55 keV (from the lower to the upper curve). For Te=0.15 keV the mode 
is stable; in other cases, the growth rate for k=1 is below ~1/15 of the reference growth rate (2).   
 
 As mentioned at the beginning of this section, the most dramatic change occurs in 
the ion viscosity that increases by a factor of 20-30 compared to the pure carbon case. 
Using the simple expression presented in Ref. [16] one finds that, for the CH2 plasma (of 
a given electron density) the increase is approximately a factor of 25.  
 We are now prepared to assess the growth rates for the CH2 plasmas. The 
dimensionless parameter µ is now 3220, and the other dimensionless parameters entering 
Eq. (18) have to be changed in the following way: R and Vse multiplied by ¾; Vsi and Vbi  
multiplied by 25; S increased by 2.6. The results are presented in Fig. 3.  
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 As anticipated, the enhanced viscosity leads to a further decrease of the growth 
rates compared to the case of a pure carbon plasma, especially at higher ion temperatures. 
Taking these effects together, the presence of the light component makes the instability 
significantly weaker than it was for a pure carbon. Hotter electrons cause some increase 
in the growth rates. 
 Numerically, the growth rates become quite low. For the plasma parameters of 
Table 1 and the wave number equal to the reference wave number (1), the growth rate is 
in the range of (2-3)108 s-1. For the typical duration of the interaction phase of two 
streams of 2-3 ns, this is insufficient to give rise to well-developed filaments. Even for 
three times higher wave-numbers the growth rate is still quite small. Note that the 
collisionality effects are particularly strong in the presence of a light species.  
 
 VII DISCUSSION 
 
 The changes introduced by collisional effects in the filamentation instability of 
two colliding plasma jets can be quite significant. They occur predominantly due to the 
effect of electron-ion collisions on the electron contribution: the electron stabilization 
becomes much stronger due to the suppression of the free electron streaming in the 
transverse direction. The other changes caused by the collisionality are the increased 
“stiffness” of the ion gas and the appearance of the ion viscosity. The last two effects are 
particularly important for the streams containing hydrogen or its isotopes. For the wave 
numbers below, roughly, 3(! pi / c) , the growth rates become significantly smaller than 
those predicted by the collisionless model. At higher wave numbers (shorter 
wavelengths) the collisional effects become less important albeit non-negligible.  
 There are interesting intermediate regimes where the high-Z ions are strongly 
collisional (within each jet), but electron collisions and proton collisions with these heavy 
ions become weak. This occurs due to the different dependence of these collisions on the 
heavy ion Z: the Z-Z collision cross section scales as Z4, while the e-Z and H-Z cross-
sections scale as Z2. Derivation of the dispersion relations for these intermediate regimes 
is a subject of future studies.  
 In order to reach fully collisionless regimes, one can use two approaches, 
separately or in parallel. The first would be to increase both the directed energy and the 
temperature of the plasma streams, so that the intra-jet collisions become less significant, 
while the Mach number would remain high, allowing for a clearer identification of 
collisionless shock formation. The other approach would be to use streams made of 
lighter materials, like beryllium or lithium.  
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