EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-TR-648574

An Easy Method To Accelerate
An lterative Algebraic Equation
Solver

J. Yao

January 17, 2014



Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.



An Easy Method To Accelerate An Iterative
Algebraic Equation Solver

Yao, Jin

Lawrence Livermore National Laboratory, California, USA

Abstract

This article proposes to add a simple term to an iterative algebraic equa-
tion solver with an order n convergence rate, and to raise the order of conver-
gence to (2n — 1). In particular, a simple algebraic equation solver with the
5" order convergence but uses only 4 function values in each iteration, is de-
scribed in details. When this scheme is applied to a Newton-Raphson method
of the quadratic convergence for a system of algebraic equations, a cubic con-
vergence can be achieved with an low overhead cost of function evaluation
that can be ignored as the size of the system increases.

THE ORDER OF CONVERGENCE

—

An iterative equation solver for a set of algebraic equations F'(Z) = 0 is said to have
an order of convergence n when

|Bpr1 — Zi| = O(|T), — Z1]")
at the k' iteration. An almost equivalent definition is that
|ﬁ(fk+1)| = O(|Trs1 — T|")

in the case that the jacobian of the system J # 0 at the solution. The order of
convergence of an iterative solver is a measurement of how fast it converges to the
true solution.

Conventional methods for solving a regular non-linear equation f(z) = 0 of a
single variable have the property that the number of function calls required in an
iteration cycle equals the order of convergence. For example, a bi-section method
Tpy1 = 0.5(zx + x_1) which evaluates f(zy) at each iteration to determine which
line-section the solution falls into, is first order; a Newton-Raphson method with



g1 = Tx — f(zg)/f (x) which calculates two function values f(z) and f'(z) is
second order. The ratio R between the order of convergence and the number of
function values required for an iteration is usually 1.

The following new solution method has R =5/4, so it is faster than other
conventional iterative methods. There are two steps with this method. The first
step is the well-known Halley’s method!!l. Let z; be the n'* guess for the root. One
solves the equation (assuming f” # 0)

Flaw) + /@) + 5 @) = (1)

and the two roots are explicitly expressed as

5= (/@) = VP @ = 2f @) ()

1
F(zx)
For consistency with the Newton-Raphson method when the quadratic term van-
ishes, we pick only one root and it can be written as

sgn(f'(xx))
f”<$k)

in order to avoid the singularity as f’(xy) — 0. Note that the solution of eq.(1)
implies f(x), +6) = O(6%). The above step uses three function calls.

6= (V@I =27 @0 f @) - 17 @)

The next step uses one more function call to gain two more orders of convergence.
One adds a term f(x + d) into eq.(1), and solves

Flow) + Flae +6) + f/(a)A + o f(2) A7 =0 &)

The solution is similar to what is obtained in the first step

o %()D (VO @) =20 @) + Flae+ )7 (@) — | (o)) -

Finally, let z.1 =z, + A for completion of the current iteration cycle.

One computes only four function values f(xy), f'(zg), f"(xr), and f(zx + 9).
However, the above scheme is fifth order convergent as shown below.

From a Taylor’s expansion one obtains
1 1
flax +A) = f(op) + f(2) A+ if”(ﬂfk)Az + gf[s} () A% + O(A").
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From eq.(2), it is equal to — f (1, + ) + fB(z) A% /6 + O(A*). However, from eq.(1)
and the Taylor expansion of f(xy + d), the above estimate becomes

éf[?’](a:k)(A?’ — 0%+ O(AT - 6Y) = (A - 5)0(A2,6).

By subtracting eq.(1) from eq.(2) one arrives at
(A = 0)(f'(wr) + O(8)) = —f(ax + ) = O(0”). (3)
It tells us that A and ¢ are of the same order and
(A —8) =O(5%).
One clearly sees that
f(@rg) = floe +A) = O(A?).

Therefore the method is 5 order convergent, however employs only 4 function
values.

The fast convergent scheme described above is more stable than Newton’s method
in the case of f'(z) = 0 at the solution. However the order of convergence is reduced
from 5 to 4 because when [’ = 0, eq.(3) gives (6 — A) = O(d?) instead of O(8?).
In practice if a x; is not close to the solution, the term under the squared root
f'(xr))? = 2f(zx) f" (2x) may become negative and break the iteration. In this case
this term can be set to zero to keep the computation going. When x;, is close to
the solution z*, if f’ is finite, because f — 0 the term in the square root would
be non-negative; if f/ = 0 at the solution, setting this term to zero (if it becomes
negative) would give § = —f'(zx)/f"(zx), and which is similar to a Newton’s step
by the L’Hospital’s rule.

A NUMERICAL EXAMPLE

We take an simple equation cos(z) = x to demonstrate the efficiency of the proposed
scheme. Its numerical solution is z* = 0.739085133215160641638918505..... Because
a trigonometrical function costs a lot to evaluate, it is certainly desired to use fewer
function values for a specified order of accuracy. All numerical evaluations below
are done with MATHEMATICA with an accuracy of 100 digits.
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Let f = o — cos(x) one has f' = 1+ sin(z) and f” = cos(x). We take an
innocent initial guess that xq = 0.
Now perform the first iteration, by first solving f(xo) + f/(x0)d + 5 f"(20)6* = 0,
or
—1+6+6%/2=0
one finds that (take the first 25 digits)

0 = 0.73205080756887729352744634...

Then perform the second step of this iteration by solving

f(xo) + f(l‘() + 5) + f/(Io)A + %f”(l‘o)A2 =0

to 25 digits to obtain A = 0.73882397464992265839862270... Therefore 1 = xg +
A = A here (with g = 0). Be aware that this is off the exact solution by about
only 2 x 1074,

Now perform the second iteration by first solving f(z1)+ f'(x1)0+ % f"(21)6% = 0
to obtain that § = 0.00026115856404338119688100463655...

Now practice the second half of this iteration by solving
1
f(@y) 4+ flor+06) + fl(x) A+ §f”($1)A2 =0,
one obtains A = 0.0002611585652379832402958... and which makes
ro = x1 + A =0.739085133215160641638918505,

and the value of the equation is now — 2.74365 x 10~2°. Because the value of f’ is
order O(1), the accuracy of the root must also be O(1072°).

We have observed that, with one iteration, 4 digit accuracy is obtained and
with two iterations, one obtains 20 digits of accuracy and the order of convergence
is 20/4 = 5, the same as mathematically proven. However, only four function values
are used in each iteration that f(z), f'(z), f"(z), and f(xz + ¢).

GENERALIZATION OF THE SCHEME

In the case that an iterative equation solver of n® order convergence based on a
finite Taylor’s expansion by solving

S )6 =0, n
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with 0x = xx11 — xp can be improved with solving again

n—1

Flar+0k) + > M) (Ag) =0, (5)

=0

and taking z,1 = xp + Ag.

By taking the difference between eq.(4) and eq.(5) (and obtaining (A, — 0x) =
O(67)), one arrives at f(ry1) = O(A"!) following an approach similar to the
previous proof for convergence of the fifth order convergent scheme. Thus with
(n 4+ 1) function values evaluated, a Taylor expansion based equation solver can
achieve an order 2n — 1 convergence rate with adding a single term, provided the
root of the polynomial expansion in eq.(4, 5) is relatively easy to find. This is
true when the evaluation of function values is much more expansive than evaluation
of power terms. The 5 order convergent scheme eq.(1, 2) obtained in previous
discussions can be employed to find the root of a polynomial efficiently.

For a system of equations, the most commonly used root finding method is the
Newton’s method, i.e. to obtain the solution of F\(Z) = 0, with F' = (Fy, Fs, .....Fi)
and T = (1, xa, .....xp) (M a positive integer) by solving

F(Z) + VF(Z),) -0, =0 (6)

with @1 = T} + 5k, and this scheme is second order convergent. By adding the
term F(Z) + J;) and solve again that

with Ty = 7 + ﬁk The improved scheme is a third order convergent one (proof
similar as before).

This convergence rate is obtained with no evaluation of second order derivatives,
but M function evaluations in addition to the cost of the Newton’s method. Consider
the Newton’s method requires M function values and M? derivatives, as M becomes
big, the improved scheme is considerably more efficient. The additional cost is
relatively insignificant, but provides an extra order of convergence. Not only this,
the inverse matrix of the gradient computed in the Newton’s step can also be reused.
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Figure 1: The convergence map (residue logarithm vs. number of iterations) of the
Newton’s method (diamonds, represent a parabola) and the proposed method (circles,
represent a cubic curve) for the equation system eq.(9).

MORE NUMERICAL EXAMPLES

This time we demonstrate the convergence rate of the new scheme for a high order
Taylor expansion scheme

f//($k)62 + f”/(xk;) 53 _'_ f////<xk;)5

4 _
2 6 24 = (8)

flar) + f(xe)d +

(which is 5" order convergent) with the previous example f(z) = cos(x) — z. We
take a initial guess that has 4 digits of accuracy that xy = 0.7388, and the above
quartic polynomial equation has the solution

0 = 0.0002851332151606416616318333984161...



and x; = ¢+ 6 gives f(z1) = —1.05768 x 1072°. This accuracy is expected because
the order of convergence here is 5 = 20/4, the ratio between digits of accuracy, with
this 5" order Newton’s scheme. Now we add the term f(z1) to eq.(8) and solve

fl// (.TO) " (l,0>

3 4_
6A+24A0

fz1) + f(zo) + f(x0)A + f”(2$0) A2 1

and expect the result, with the (2n — 1) order of convergence in theory, to have
9 x 4 = 36 digits of accuracy (n = 5 is the convergence order of eq.(8), and 4 is the
number of effective digits of x(). Indeed, we find

A = 0.0002851332151606416553120876738734033130443414832...

and the modified solution z} = x1 + A gives f(z}) = 1.17214333 x 107%. Therefore
the order of convergence with the proposed scheme is numerically 36/4 = 9 for the
proposed scheme, just as proven in the previous section (taking n = 5).

Finally we apply the new scheme to a system of algebraic equations

2 2 2 2
_l’_

f(z,y) = cos(7m)ey+sin(w 5 Y ), g(z,y) = sz’n(ﬂy)ez—i—cos(x ;—y ). (9)

This system has a solution at (z,y) = (1,0). With the initial guess (z,y) = (0.7,0.3),
the solution can be obtained by taking either a Newton iteration scheme

f(xk> + f£5I + fyéy = 07 g(l’k) + 933533 + gyéy - 0,

to solve for zy1 = T + 0x, Ypr1 = yYr + Oy; or with the proposed scheme that

f@pg) + fze) + foha + fyAy =0, 9(xrt1) + 9(zr) + g2 Az + g, Ay = 0,

to solve for
Tpy1 = T + A, Y1 = Yk + Ay
as the modified solution at the (k + 1) iteration.

The residues from both the methods are plotted in figure 1. The proposed
scheme, being third order, clearly converges much faster than the Newton’s method
of second order convergence.



CONCLUSION

For a Taylor’s expansion based iterative equation solver that is n'* order convergent,
the order of convergence can be raised to 2n — 1 by adding a single term to the
expansion. When the proposed scheme is applied to the Halley’s scheme, only 4
evaluations of function values are required for a 5" order convergence. When applied
to the Newton’s method for a system of M equations, a third order of convergence
can be obtained with only M evaluations of function values, in addition to the
M + M? evaluations of function values for the second order convergence of the
Newton’s method. This indicates the proposed scheme provides a 50% speed up in
average over the Newton’s method for M > 1.
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