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Abstract

The accurate description of the thermodynamic and dynamical properties of liquid water from

first-principles is a very important challenge to the theoretical community. This represents not only

a critical test of the predictive capabilities of first-principles methods, but it will also shed light

into the microscopic properties of such an important substance. Density Functional Theory, the

main workhorse in the field of first-principles methods, has been so far unable to properly describe

water and its unusual properties in the liquid state. With the recent introduction of exact exchange

and an improved description of dispersion interaction, the possibility of an accurate description of

the liquid is finally within reach. Unfortunately, there is still no way to systematically improve

exchange-correlation functionals and the number of available functionals is very large. In this article

we use highly accurate quantum Monte Carlo calculations to benchmark a selection of exchange-

correlation functionals typically used in Density Functional Theory simulations of bulk water. This

allows us to test the predictive capabilities of these functionals in water, giving us a way not only

to choose optimal functionals for first-principles simulations, but also giving us a route for the

optimization of the functionals for the system at hand. We compare and contrast the importance

of different features of functionals, including the hybrid component, the vdW component, and

their importance within different aspects of the PES. In addition, we test a recently introduce

scheme that combines Density Functional Theory with Coupled Cluster Calculations through a

Many-Body expansion of the energy, in order to correct the inaccuracies in the description of short

range interactions in the liquid.

PACS numbers:
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I. INTRODUCTION

Water is a unique substance. Not only is it ubiquitous to life and plays a critical com-

ponent to almost all chemical, biological, and geophysical processes, it plays a principal

role in many fields of physics including surface physics, energy production, geology, plan-

etary science, high-pressure physics, and numerous others1. Even after intense efforts for

many decades, from both theoretical and computational approaches, the prediction of wa-

ter’s properties at ambient conditions remains a challenge. Despite its apparent simplicity,

liquid water possesses a set of anomalous and fascinating properties, mainly related to a

non-monotonous dependence of thermodynamic and dynamical properties with temperature

(e.g. a minimum in the isothermal compressibility)2. The description of these anomalous

properties from first-principles remains a challenge to the theoretical community. The main

problem lies in the non-trivial interaction between several subtle effects in the liquid, which

include a strong directional hydrogen bonding between neighboring molecules, weaker but

important dispersion interactions, and strong nuclear quantum effects (NQE). These un-

usual properties, together with the vast array of physical processes occurring in the liquid,

make water a very complicated but essential substance to understand using an atomic scale

description.

Within the Born-Oppenheimer approximation at low temperatures, the only interaction

between ions and electrons comes through the potential energy surface E0(R), defined as

the solution of the electronic hamiltonian for a fixed set of ionic coordinates. This ap-

proximation reduces the calculation to two independent parts, the accurate calculation of

E0(R) (the electronic structure problem) and the integration over R (NQE). As shown re-

cently, NQEs can be treated accurately and efficiently in combination with first-principles

electronic structure methods in condensed systems using a path integral representation3–5.

The PIMD+GLE method6, which involves the use of colored thermostats combined with a

PIMD representation leads to a particularly efficient simulation methodology. With the use

of PIMD methods, the largest remaining source of approximations in first-principles simula-

tions of liquid water comes from the calculation of E0(R). Due to its favorable ratio between

accuracy and computational cost, DFT has become the workhorse in the field. The quality

of EDFT (R) defines the predictive capabilities of the resulting first-principles simulation. In

fact, the recent explosion in the popularity of first-principles methods is, to a large part, due
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to the success of DFT in providing a fairly accurate description of the electronic structure,

and a large range of observables, at a reasonable computational cost.

While DFT has been very successful in the description of many types of systems, e.g.

metals and weakly correlated systems, many of the currently available exchange-correlation

functionals in DFT possess well-known limitations7, including the failure to properly de-

scribe strongly correlated materials, self-interaction errors, dispersion interactions, etc. It

is recognized that even for water, the ab-initio molecular dynamics (AIMD) procedure is

currently not accurate enough, giving large errors in many basic properties including the

melting temperature, the diffusion constant, the compressibility, among others8,9. Nonethe-

less, much progress has occur during the last several years. The main advances include the

use of functionals with an improved description of dispersion interactions in the liquid10–14,

the use of hybrid functionals15, and the direct treatment of nuclear quantum effects3. The

combination of all of these advances in first-principles simulations of liquid water could lead

to an accurate description of its interesting properties and its local structure. At the same

time, the choice of exchange-correlation functional in DFT is still a source of complication,

mainly due to the large number of available choices and the inability to test their predictive

capabilities without resorting to full first-principles calculations of a large set of observables.

With the fast increase in computational power and the development of improved algo-

rithms, we are quickly approaching a time where we can go beyond mean-field methods in

the simulation of bulk systems, using accurate many-body methods like many-body pertur-

bation theory (MBPT), coupled-cluster (CC) and quantum Monte Carlo (QMC). Currently

these methods remain too expensive for regular use in first-principles simulations of bulk

systems, so we must resort to DFT. Nonetheless, both CC and QMC produce accurate re-

sults that can be used to both benchmark, and even improve DFT methods. While CC

is more efficient for small clusters, QMC offers an advantage over CC in bulk calculations

in terms of speed and scaling, in fact very few attempts have been made to apply CC to

periodic systems. While local formulations of CC for finite systems exist with very favorable

scaling, which offer considerable promise and could be extended to periodic systems in the

near future, QMC is the only alternative for accurate many-body calculations of the energy

of liquid water. QMC methods are generalizations of the classical Monte Carlo techniques to

quantum statistical physics and are fundamentally based on imaginary-time path integrals.

For a class of systems (bosons, one dimensional physics) such techniques provide an exact
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computational method. For general problems, while not exact, they are highly accurate and

systematically improvable. In the case of water and other weakly bounded systems, there is

a growing literature that shows the high accuracy of the method16–19.

Finite-temperature first principles simulation methods entirely based on QMC have also

been developed in the last decade. These are the Coupled Electron-Ion Monte Carlo

method20,21 and the QMC-Molecular Dynamics22, and have been recently reviewed in23.

However their application to condensed phases has been limited so far to high pressure

hydrogen, and hydrogen-helium mixtures because of the considerable computation cost of

those methods. While it is highly desirable to have QMC-based FP simulations that could

be applied routinely to arbitrary systems, this is probably not possible in the near future.

We need a way to incorporate the accuracy of these methods in more efficient mean-field

methods such as DFT. We propose one way to achieve this in this article: use QMC to

benchmark DFT functionals. This not only allows us to measure the accuracy of DFT be-

fore its use in first-principles simulations, but also it paves the way for the development of

functionals from reference QMC calculations. While this is done routinely for finite molec-

ular systems, using CCSD(T) as a reference for example, we show how this could also be

done in bulk systems with QMC.

In this work we present a comparison between QMC calculations and various DFT

exchange-correlation functionals on water at ambient conditions. We also discuss the use

a recently introduced correction scheme for DFT energies using a cluster decomposition of

the energy of the system combined with CC calculations on small clusters24,25. As we show

below, this offers a very promising and efficient alternative to hybrid functionals, potentially

leading to functionals with unprecedented accuracy in the description of liquid water. The

article is organized as follows: section II describes the details of the various computational

methods used in the calculations present in this work, section III presents the main results

of the comparison between QMC and DFT in bulk water configurations along with the

corresponding discussion, this is followed by a conclusion in section IV.

II. COMPUTATIONAL DETAILS

In this article we present a benchmark of the accuracy of various DFT functionals typically

used to simulate bulk water. To do this, we first generate various sets of water configurations
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from both MD and PIMD simulations of bulk water in the liquid and ice phases near

ambient density. For all of the configurations in the various test sets, we calculate QMC

and DFT energies, with the various functionals. We compare QMC and DFT calculations

on a diverse collection of test sets in order to sample the performance of DFT throughout

the configuration space that ambient water might reasonably be expected to sample.

Eight different sets of configurations were studied, each one produced from a different

type of simulation. Both classical and quantum simulations are used, as well as several

types of ionic interactions. A summary of the details of the simulations used to generate

configurations is presented in Table II. The Forced Matched potential used in the con-

figuration set FM.25C was produced by Huang and Schwegler26. It uses the same rigid

molecular geometry as SPC27 with electrostatic charges of -0.48 on the oxygen site and 0.24

on the hydrogen sites. However, the core repulsion is not maintained with a Lennard -

Jones interaction. Instead, there is a pairwise spline potential between each pair of inter-

acting sites (OO, OH, HH). The OO spline potential contains a strong repulsion at small

r and a shallow attractive region, similar to a Lennard - Jones interaction. The OH and

HH splines are relatively weak compared with other interactions in the system, but they

are meant to capture hydrogen bonding characteristics of the many - body system. The

forced matched potential is parametrized by matching the model forces with those from

DFT-GGA calculations. Therefore, it is designed to be an ab initio - like potential that

closely resembles results from ab initio electronic structure calculations. TIP5P refers to

the empirical water model of Mahoney et al.28, while vdW-DF refers to DFT calculations

with the non-local exchange-correlation functional of Dion, et al.10,29,30 and vdW-DF2 refers

to its revised version by Lee et al.11. While TIP5P and the Force Matched potential are

rigid molecule models, the first-principles simulations with vdW-DF and vdW-DF2 are fully

flexible, which allows us to differentiate different ranges of the molecular interactions in the

liquid. On the other hand, the simulations with the TIP5P model on liquid and ice at

T = 0◦C sample configurations that either strongly favor hydrogen bonding in the solid,

with those where the hydrogen-bond network has been destabilized in the liquid.

DFT calculations were performed with both Quantum Espresso (QE)31 and VASP32 sim-

ulation packages. In the case of QE calculations we employed Ultra-Soft pseudo-potentials

(USPP)33,34, while in the case of VASP calculations we employed the Projector Augmented

Wave method (PAW)35,36. In both cases, we used USPP and PAW from the standard distri-
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Label # mols # confgs T (◦C) Ion Interaction Classical/Quantum State Flexible

FM.25C 32 30 25 Force Matched Classical Liquid No

TIP5P.CL.25C 32 23 25 TIP5P Classical Liquid No

TIP5P.PI.0C.ICE 32 20 0 TIP5P Quantum Solid No

TIP5P.PI.0C.LIQ 32 47 0 TIP5P Quantum Liquid No

TIP5P.PI.100C 32 44 100 TIP5P Quantum Liquid No

TIP5P.PI.25C 32 18 25 TIP5P Quantum Liquid No

PIMD-vdW-DF 64 50 27 vdW-DF Quantum Liquid Yes

PIMD-vdW-DF2 64 50 27 vdW-DF2 Quantum Liquid Yes

TABLE I: Summary of the details of the simulations used to generate the configurations in this

study. The labels defined in the first column will be used throughout the paper to refer to the

given configuration set.

Label L(̊a)

FM.25C 9.8625

TIP5P.CL.25C 9.8625

TIP5P.PI.0C.ICE 9.697

TIP5P.PI.0C.LIQ 9.697

TIP5P.PI.100C 9.697

TIP5P.PI.25C 9.697

TABLE II: Simulation box lengths for NVT simulations of FM and TIP5P.

butions of the software packages generated with PBE. We verified that the final conclusions

do not depend on this choice. A single pseudo-potential was chosen in order to make a

homogeneous comparison of all DFT functionals, since some of the functionals employed in

this work do not yet allow for the production of pseudo-potentials. All simulations were

performed at the Γ point of the supercell in order to be consistent with the corresponding

DMC calculations, errors due to the lack of k-point integration were on the order of 0.03

mHa/molecule (for the smaller unit cells), small enough to be safely discarded. The plane

wave cutoffs were chosen to converge the total energies to better than 0.05 mHa/molecule.
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In this article we consider some of the density functionals commonly used to simulate

bulk water from first-principles. The list includes: GGA’s : PBE37, BLYP45,46, OLYP47; hy-

brid functionals : PBE038, B3LYP39,40; empirical dispersion corrected functionals : PBE-D41,

BLYP-D41, vdW-TS42; non-local correlation functionals : optB86b43, optB8844, optPBE44,

vdW-DF10, vdW-DF211, VV1048; and hybrid functionals with empirical corrections : B3LYP-

D. X-D, where X represents a given density functional, designates results using the empirical

dispersion corrections of Grimme et al.,41, in particular the DFT-D2 correction scheme as

implemented in VASP and QE. The list of functionals covers the two most important features

of advanced density functionals, hybrid functionals and improved dispersion interactions.

QMC has been shown to be a reliable benchmark in the study of small water clusters,

producing relative energies with an accuracy comparable to that of CCSD(T)16,24,49. It pro-

vides an accurate reference method to measure the quality of typical density functionals used

in simulations of bulk water. All DMC calculations were performed with the QMCPACK

software package50. A Troullier-Martins norm-conserving pseudo-potential (TMPP)51 was

used to represent both hydrogen and oxygen. In particular, we used TMPPs from the

CASINO pseudo-potential database52,53, which were recently shown to produce accurate re-

sults in the study of small water clusters. A Slater-Jastrow trial wave-function was used.

The orbitals in the Slater determinant were obtained from DFT calculations employing the

PBE exchange-correlation functional. We compared DMC energies generated with various

DFT functionals on a small subset of the configurations, the variation in relative energies

was quite small. The Jastrow term contains electron-Ion, electron-electron and electron-

electron-Ion terms, the variational parameters were optimized at the VMC level using a

variant the linear method of Toulouse, et al.54. A time-step of 0.01 Ha
−1 was found to be

sufficiently small to produce accurate total energies and approximately 4800 walkers were

used in the DMC calculations. Casula’s T-moves55 were used to reduce errors associated

with the locality approximation, while the Model Coulomb Potential (MPC) of Fraser, et

al.,56 and Chiesa’s57 correction scheme were used to estimate finite-size corrections to the

potential and kinetic energies respectively. Specifically, we performed the DMC calculations

using the Coulomb interaction between electrons, and used the MPC interaction to estimate

the magnitude of finite size effects on the potential energy.
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III. RESULTS AND DISCUSSION

We use the mean absolute difference (MAD) with respect to the DMC energies as the main

measure of accuracy for the different density functionals considered in this article. Since we

are interested only in the ability of the different functionals to accurately reproduce relative

energy differences between configurations within a given set and not on absolute energies,

we measure the energy differences with respect to the average energy difference in the set.

This is equivalent to shifting the zero of energy of each set so that it coincides with the

corresponding one from DMC. Specifically, we define the MAD as follows:

MAD =
1

Nc

Nc�

i=1

���EDFT
i − E

DMC
i

�
−

�
E

DFT
i − E

DMC
i

��� , (1)

where Nc is the number of configurations in the set, EDFT
i (EDMC
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FIG. 1: (Color online) Mean absolute difference in the total energy between DMC and DFT with

various exchange-correlation functionals. Results presented correspond to calculations using the

PAW formulation with VASP. Error on the presented results are smaller than 0.004 mHa and 0.006

mHa for fixed and flexible molecule configurations respectively. They are not shown on the figure

for clarity.

Figure 1 shows the MAD for all the density functionals studied with VASP in this work,

results are separated by configuration sets to allow a better comparison. While there are
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several significant results in the figure, the most noticeable feature is the large difference in

the scale of the MAD between rigid and flexible molecule configuration sets. This is not

completely unexpected since the larger energy fluctuations in the system are found coupled to

the intramolecular degrees of freedom of the molecule (e.g. molecular vibrations). While this

will, in general, complicate the analysis of the potential energy surface and the comparison

between different methods, it nonetheless provides a positive point since it offers a very clear

distinction for hybrid functionals.

In the case of flexible molecule configurations, hybrid functionals offer a much better

agreement with DMC results, producing errors typically a factor of two smaller than non-

hybrid functionals. These results shows the fact that hybrid functionals do a much better job

at describing the intramolecular potential energy surface. This is consistent with the recent

calculations of Gillan, et al.16 and with the recent calculations of the absorption spectra of

bulk water at ambient conditions of Zhang, et al.15. On the other hand, the functionals

that include an appropriate description of dispersion interactions offer a better comparison

with QMC in the rigid-molecule configuration sets. Intermolecular interactions are the

dominant energy contribution on these sets and the lack of an appropriate description of

dispersion interactions leads to a larger error. We can also see, on average, a small but finite

improvement with the inclusion of empirically corrected vdW functionals (PBE-D, B3LYP-

D), but the gain is small and cannot compete with non-local vdW functionals. Notice also

that the performance of hybrids in the fixed-molecule sets is comparable to the performance

of semi-local functionals, due to the fact that neither of these type of functionals can properly

describe dispersion interactions. Finally, the configuration set with the smallest overall MAD

is the one obtained from the calculations in the solid phase close to melting, illustrating that

most of these functionals can describe hydrogen bonded configurations (dominant on this

set) quite well.

When compared only across flexible or frozen water models, the average value of the

MAD and its magnitude relative to other density functionals is, to a large degree, only

slightly dependent on configuration set. Figure 2 shows the MAD for VASP calculations,

now averaged over frozen and flexible configuration sets, which we denote by TIP5P-32

and PIMD-64. For frozen molecule configurations, the optimized non-local vdW functionals

perform the best, with the optB88 functional producing the best overall results. On the other

hand, the vdW-DF functional has the worse performance; vdW-DF2 has a performance
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FIG. 2: (Color online) Mean absolute difference in the total energy between DMC and DFT with

various exchange-correlation functionals. TIP5P-32 refers to the average over all fixed molecule

configuration sets, while PIMD-64 refers to the average over all flexible molecule sets. Results

presented correspond to calculations using the PAW formulation with VASP.

comparable to most of the GGAs studied. In the case of the flexible molecule sets, the

picture is reversed. In this case, the vdW-DF functional offers the best performance of

the non-hybrid functionals, followed by vdW-DF2. The optimized vdW functionals have a

performance comparable to that of the GGAs.

As mentioned above, the comparison between the different density functionals is compli-

cated by the non-trivial combination of multiple types of interactions in the liquid. While

the use of frozen and flexible configuration sets present a clear distinction between the func-

tionals from the point of view of dispersion interactions (dominant in the former) and the

intramolecular interactions (dominant in the latter), it does not provide a definite picture of

the relative accuracy of the different functionals. This is best exemplified when comparing

optB88 and vdW-DF. While optB88 is apparently superior in the description of dispersion

in water, its description of the internal potential energy surface of the molecule is inferior

enough to provide a worse performance in the fully flexible case. This is consistent with

the recent calculation of McMahon, et al.,58, where the structure of water from PIMD cal-

culations with vdW-DF agree better with experiment than those obtained with PIMD and

optB88. Notice that PIMD combined with vdW-DF2 produces the best overall comparison

with experiment, producing an almost perfect comparison of the oxygen-oxygen pair correla-
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tion function and equilibrium density. The use of frozen molecule models presents a potential

limitation in the accurate description of molecular liquids, since it neglects any possible cou-

pling between molecular vibrations and structural properties. In the case of water, this can

be particularly signifiant since the liquid structure is determined by a constant competition

between highly directional hydrogen bonding and anisotropic dispersion interactions. This

was also suggested by McMahon, et al.,58, where the balance between these two competing

interactions can be shifted with the proper inclusion of nuclear quantum effects.
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FIG. 3: (Color online) Similar to Figure 2, but the DFT calculations were performed with a USPP

formulation in QE.

One surprising feature of this study came when we performed a comparison similar to

that showed in Figure 2, but using QE and USPP to perform the DFT calculations. Figure

3 shows the MAD, averaged over frozen and flexible configurations, for the density func-

tionals calculated with QE. Due to the inferior performance of QE with hybrid functionals

(compared to VASP), we were not able to study any of the hybrid functionals with QE.

Comparing figures 2 and 3, it is clear that the performance of some of the non-local vdW

functionals is different between the two calculations. In general, both vdW-DF and vdW-

DF2 perform better with QE and USPP than with VASP and PAWs, particularly in the case

of frozen molecule configuration sets. In the case, vdW-DF produces results comparable to

those of other GGA’s, while vdW-DF2 is comparable to both optB88 and VV10. In the case

of flexible molecule configurations, all vdW functionals result in a comparable performance,

with vdW-DF slightly ahead of other functionals by a very small amount. The difference is

produced by the use of an USPP formulation, since when either PAWs or norm-conserving

pseudo potentials are used in QE we obtain results consistent both with each other and with
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VASP. We currently can not explain this difference and merely limit ourselves to comparing

each case separately.

In a recent ground-breaking application of Many-Body Expansions (MBE) combined with

DFT and CC, Gillan, et al.16,24,25 showed how CC calculations on small water clusters could

be used to correct deficiencies in short-range interactions of DFT functionals in a systematic

and controlled approach. The main idea of the method is to rewrite the DFT energy of

the bulk system using a MBE and to substitute low order terms in the expansion with the

corresponding term from CC calculations. This can be seen as a corrected DFT energy,

which can be expressed as:

E
Corr
DFT = E

Bare
DFT +

Nmer�

i=1

(Ei
CC − E

i
DFT )

=
Nmer�

i=1

E
i
CC +

∞�

i=Nmer+1

E
i
DFT , (2)

where E
Bare
DFT is the original DFT energy (e.g. produced by VASP), Nmer represents the

highest term in the expansion (e.g. dimer, trimer, etc) and E
i
CC(E

i
DFT ) is the interaction

energy corresponding to isolated clusters of size i computed with CC (DFT). The expression

for the first 2 terms in the expansion are shown below:

E
1 =

N�

k

�k (3)

E
2 =

1

2

N�

k=1

�

q �=k

(�k,q − �k − �q) (4)

where �k is the energy of the kth molecule, �k,q is the energy of the (k, q) dimer, the sum over k

runs over all molecules in the unit cell and the sum over q runs, in principle, over all remaining

molecules including an infinite sum over periodic images. In practice, the interaction decays

quickly with distance and can be truncated at some appropriate cutoff. In this work, we

choose a cutoff of 4.5 Å for both dimer and trimer terms, since we are mainly interested in

showing the improvement of the correction over the studied functionals. Larger cutoffs are

needed to obtain optimum improvements, in particular for the dimer term. All calculations

on isolated clusters were performed with Molpro59,61–63. We used an aug-cc-pVQZ basis set60

in all calculations on clusters and employed the R12 method64 in all CCSD(T) calculations,

this produced results essentially at the CBS limit for the purposes of this work.
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FIG. 4: (Color online) MAD of corrected DFT calculations for a selection of the DFT functionals

in the vdW-DF2 configuration set.

Figure 4 shows the MAD of corrected DFT calculations for four of the DFT functionals

used in this work in the vdW-DF2 configuration set. As discussed above this configuration

set is dominated by the energetics associated with molecular vibrations and intramolecular

interactions, where all hybrid functionals offer a drastic improvement over other functionals.

In addition to the MAD of the bare DFT functional, figure 4 shows results of the MAD

including corrected energies up to monomer, dimer and trimer terms. A very interesting be-

havior is seen in the four cases presented, for non-hybrid functionals the monomer correction

is large and agrees very well with the corresponding monomer corrected hybrid functional;

we choose these four functionals because they represent two pairs of functionals with similar

correlation functionals and differing mainly on the inclusion of a percentage of Hartree-Fock

exchange. In the case of hybrid functionals, the monomer correction is much smaller. The

correction from successive terms is very small, leading to a slow convergence with expansion

order. Notice that the expansion is not fully converged with respect to cluster cutoff, which

leads to an even slower convergence.

While the slow convergence with cluster size can be expected because larger clusters

are needed to capture long range interactions, including dispersion, the current framework

offers a very promising alternative to hybrid functionals for simulations. Currently, hybrid

functionals are too expensive for everyday use in ab-initio molecular dynamics simulations,

requiring large scale computational resources for their use. From these results it is evident

that the corrected functionals provide an equally accurate alternative, leaving only the long
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range interactions described at the mean-field level, short-range interactions are described

at the very accurate CC level.

IV. CONCLUSIONS

In this article we present the use of QMC calculations to benchmark the accuracy of a

various exchange-correlation functionals typically used in ab-initio molecular dynamics sim-

ulations of bulk water. This provides a direct measure of the expected accuracy of DFT.

Combined with a path integral representation, this allows us to minimize the approxima-

tions employed in the simulation of water and other aqueous solutions, by identifying the

best functional currently available in the very large list of available ones. The comparison

with QMC clearly showed the poor description of the intramolecular potential energy sur-

face offered by non-hybrid density functionals. We also showed how the use of a correction

scheme recently introduced by Gillan, et al.,16, leads to a dramatic improvement in the

description of the short-range interactions in the liquid, leading to non-hybrid functionals

with an accuracy similar to hybrid ones. In the case of long range interactions, the proper

description of dispersion interactions was shown to be important, regardless of the accu-

racy of the functional in the description of the short-range interactions. We found that,

while optB88 seems to provide the best description of dispersion in the liquid, the vdW-DF

and vdW-DF2 functionals offer the best agreement of all non-hybrid functionals when fully

flexible, realistic, water configurations are considered.

To the authors’ knowledge, this is the first attempt to use an accurate many-body method

to benchmark mean-field approached based on DFT. While this was limited to water at am-

bient conditions, it presents a very promising route for the development of density functionals

tailored for bulk calculations. Not only does this allows us in general to make a judgment

of the quality of a functional before its use in first-principles simulations, but it also shows

us a path for the systematic improvement of the functionals by adjusting free parameters

to minimize the errors, e.g. the MAD. DFT users will often point to experimental data to

validate the quality of a chosen functional. Water has an additional complication of using

experimental data; namely because of the importance of quantum zero-point effects of the

protons, fitting of the experimental data becomes particularly problematical. A common ap-

proach is to do a simulation of the classical system and assume the effective classical system
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includes effects of ZPE, however this introduces a further unnecessary approximation. What

we have shown is that we can use highly-accurate QMC methods as a reference, removing

the need of experimental data in the construction of the functional.

While much work remains to be done in developing QMC-based finite-temperature FP

methods, the calculations presented here show one possible use of accurate many-body

calculations, developing DFT functionals by directly fitting points on the potential energy

surface of the system from QMC. This could be seen as fitting QMC results within a DFT

framework. This is an ideal combination of both approaches, offering the possibility to

retain the accuracy of QMC at the mean-field cost of DFT. Combined with powerful modern

clusters and the parallel nature of the problem (independent QMC calculations across the

PES), this could represent a new path for many-body methods in the accurate simulation

of condensed systems. Thus simulations can thereby become much more predictive, and not

just produce universal properties but details important to applications and experiment. We

are currently using the dataset of QMC calculations and the correction scheme based on the

cluster decomposition to optimize the long range behavior of the vdW density functionals

for an optimal description of bulk water. If successful, we plan to apply a similar approach

for other molecular systems.
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