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The ab-initio phase diagram of dense hydrogen is very sensitive to errors in the treatment of
electronic correlation. Recently, it has been shown that the choice of the density functional has
a large effect on the predicted location of both the liquid-liquid phase transition and the solid
insulator-to-metal transition in dense hydrogen. To identify the most accurate functional for dense
hydrogen applications, we systematically benchmark some of the most commonly used functionals
using Quantum Monte Carlo. By considering several measures of functional accuracy, we conclude
that the van der Waals and hybrid functionals significantly out perform LDA and PBE. We support
these conclusions by analyzing the impact of functional choice on structural optimization in the
molecular solid, and on the location of the liquid-liquid phase transition.

PACS numbers: 67.80.ff,63.20.dk,62.50.-p,64.70.kt

I. INTRODUCTION

As a consequence of being the most abundant element
in the universe, hydrogen can be readily observed to ex-
ist over a very large range of temperatures and pressures.
Additionally, for many applications, such as inertial con-
finement fusion or modelling Jovian planets, the pres-
sures and temperatures of hydrogen can vary by orders
of magnitude within a given system. Understanding the
behavior of such systems necessitates an accurate phase
diagram over large range of thermodynamic conditions,
which by some estimates needs to be accurate to at least
1%1.

Attaining this level of accuracy is an ongoing challenge.
Despite hydrogen’s simplicity, significant nuclear quan-
tum effects (NQE’s) and electronic correlation cooperate
to give rise to a rich phase diagram. There are known to
be four insulating molecular solid phases, an insulating
molecular liquid phase, and a conducting atomic liquid
phase at high temperatures2. Most interestingly, the-
ory predicts the existence of a low-temperature metallic
phase above 350 GPa, which could be a superconduc-
tor with an unusually high Tc or even something more
exotic3–5.

Though a rough qualitative agreement between ex-
periment and theory has been reached for most of the
hydrogen phase diagram, ab-initio methods have strug-
gled quantitatively in the high-pressure regime of hydro-
gen. This is because the relevant energy scales in high-
pressure hydrogen are comparable to the errors intro-
duced by approximating NQE’s and electronic correla-
tion. Recent simulations show that using the quasihar-
monic approximation (QHA) produces noticeable quan-
titative differences from an exact treatment in quantities
like pair correlation functions and enthalpies of solid hy-

drogen structures6. Additionally, the approximation of
electronic correlation through the use of density func-
tionals has been shown to have a large effect on the pre-
dicted phase diagram. For example, the location of the
liquid-liquid phase transition (LLPT) in hydrogen could
change by as much as 160 GPa in path integral molecu-
lar dynamics (PIMD) simulations depending on whether
PBE or vdW-DF2 was used7. In the solid phase, it was
found that by using either optB88-vdW or vdW-DF2 in
PIMD, noticeably better agreement with experiment was
obtained for the band gap in the C2/c phase and the tran-
sition pressure between phases II and III as compared to
PBE6,8.

Recent algorithmic and computational advances al-
low a systematic treatment of NQE’s, for example with
PIMD or PI+GLE9. However, there have been, to date,
no systematic studies to identify the most accurate func-
tional for high-pressure hydrogen. PBE has been advo-
cated on error-cancellation grounds, but several previous
studies indicate that some functionals are more accurate
than the semi-local functionals. As dispersion forces are
significant in solid hydrogen, it is expected that non-local
functionals that include this effect will calculate the to-
tal and relative energies more accurately, hence previous
interest in vdW-DF2 and optB88-vdW. Additionally, hy-
brid functionals such as HSE are known to give better
band-gaps than semi-local functionals, hence the inter-
est in these functionals to describe the insulator to metal
transitions in high-pressure hydrogen7. Because of tech-
nological limitations, there is little high-quality experi-
mental data available for pressures higher than 200 GPa,
so identifying accurate functionals must be done using
theoretical methods.

The purpose of this work is to systematically bench-
mark several types of semi-local, non-local van der
Waals, and hybrid functionals against fixed-node projec-
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tor quantum Monte Carlo (QMC). QMC is an accurate
many-body method that has proven to be exception-
ally accurate in the study of hydrogen, making it suit-
able as a reference in regions where experimental data is
sparse. In section II and in the supplementary materials,
we provide details of the methods used. In section III,
we quantitatively establish that non-local density func-
tionals have superior energetics but poorer pressure esti-
mation as compared with LDA and PBE, justifying the
results of Ref. 8 and Ref. 6. We then compare how
functional choice affects the predicted hydrogen struc-
tures by looking at bond lengths, QMC enthalpies, the
shape of the intramolecular potential and the location of
the liquid-liquid phase transition. In section IV, we draw
our conclusions. We have also included supplementary
information, covering computational details, and provid-
ing detailed tables of density functional performance.

II. METHOD

Gauging the accuracy of density functionals has been
typically done based on experimental data, for example
the G2 test set of molecular binding energies10. In con-
trast, our method is fully ab initio, and tailored to dense
hydrogen. We used DFT-PIMD simulations to generate
various “test sets” for a variety of phases and thermo-
dynamic conditions as described below. After establish-
ing reference energies and pressures with QMC, we per-
formed DFT calculations on our test set using up to 10
different density functionals. Various measures were used
to quantify functional accuracy. Full details are given
in the supplementary information. First we outline the
quantum Monte Carlo methods and then the various test
sets and error estimates.

A. Quantum Monte Carlo calculations

Several different QMC techniques were used. The
quantum Monte Carlo Package (QMCPACK)11,12 was
used in all diffusion Monte Carlo (DMC) and varia-
tional Monte Carlo (VMC) simulations. The Born-
Oppenheimer Path Integral Monte Carlo (BOPIMC)
code13–16 was used in all reptation quantum Monte Carlo
(RQMC) simulations. For all solid and liquid structures
considered in this work, we first performed a wave func-
tion optimization using VMC. We used Slater-Jastrow
type wavefunctions with backflow transformation in all
cases. The single particle orbitals were obtained from
a PBE-DFT calculation using the Quantum Espresso17

package. This was followed by DMC calculations, within
the fixed-node approximation. For a subset of the solid
configurations we use RQMC, combined with correlated
sampling, to calculate energy differences as we varied the
bond length of the molecules in the solid.

We used the virial estimator to calculate pressures
directly from QMC, which for the Coulomb interac-

tion has the form: P = 1
3Ω (2T + V ), where T (V )

is the kinetic (potential) energy and Ω is the simula-
tion (supercell) volume. In order to minimize system-
atic errors in the calculation, we rewrite the estimator as
P = 1

3Ω (E+T ), where E is the ground state energy, and

use an extrapolated estimator for the kinetic energy18,
Textrap = 2TDMC − TVMC , which produces a pressure
that is correct to second-order in the quality of the trial
wavefunction.

Controllable errors, such as time-step error, projection
time, and population bias, were reduced to be compara-
ble to our desired statistical error, giving an accuracy of
approximately 0.01mHa/proton for energy and 0.3GPa
for the pressure estimates. Finite-size effects were han-
dled through a combined use of twist-averaged boundary
conditions and post-processing corrections, which are de-
tailed in the supplementary information. The only source
of uncontrollable errors come through the use of the fixed-
node approximation, which we expect to be very small
for hydrogen.

B. Test Sets

We define a test set S as a set of M proton configu-
rations, RS = {R1, ...RM} all at a given density, tem-
perature and phase (liquid/solid). To broadly classify a
functional’s accuracy, it is important that these test sets
consist of uncorrelated but physically reasonable config-
urations, representative of the state of hydrogen at high
pressures. For this purpose, we use constant volume
PIMD simulations based on DFT. In particular, we use
the PI+GLE algorithm of M. Ceriotti, et al.9, which has
been shown to significantly accelerate the rate of conver-
gence of PIMD calculations with respect to the number
of imaginary time slices. By using PIMD to generate
our configurations we ensure that we adequately sample
both nuclear quantum effects and thermal fluctuations,
which are critical for a proper description of hydrogen.
Note that for hydrogen at 1000K, NQE are larger than
thermal effects. Care was taken to ensure that the se-
lected configurations were statistically independent and
well equilibrated.

For the molecular solid, we considered the following
structures obtained in previous structure searching stud-
ies: C2/c, Cmca-12, Pbcn19, and Cmca20. For each of
these structures, we first obtained zero temperature refer-
ence configurations from DFT, at pressures of PDF =200
GPa and PDF =300 GPa, by performing structural re-
laxation using the vdW-DF2 functional. The band gaps
calculated with this functional were in good agreement
with experimental measurements when nuclear quantum
effects are taken into account21. Starting from these con-
figurations, PIMD simulations were performed at a tem-
perature of T=200 K, also with the vdW-DF2 functional.
All the simulations in the solid, and hence the configu-
rations in the resulting test sets, were performed with 96
protons. PIMD+GLE simulations in the solid were per-
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formed with a modified version of the Vienna Ab-Initio
Simulation Package (VASP)22–25. We used the projector
augmented wave representation of VASP and a 3x3x3 k-
point grid in the simulations. For each combination of
pressure and structure, we generated configuration sets
with at least 20 configurations. It is important to re-
alize that, while we refer to the configuration sets by a
structure and a pressure, these are really constant density
sets. In addition, the density corresponds to that of the
static lattice optimized at the given electronic pressure;
thermal and quantum effects are not included during the
structure optimization. While the difference in density
for different structures optimized at a given pressure is
small, it is important to realize that PDF is simply a
convenient label unless otherwise indicated.

For liquid hydrogen, we considered configurations of
54 protons at three densities given by rs = 1.30, 1.45,
1.60, where rs is the Wigner-Seitz radius, and a temper-
ature of T=1000 K. The three densities correspond to a
fully dissociated atomic liquid, a molecular liquid in the
neighborhood of the liquid-liquid phase transition and a
fully molecular liquid, respectively. These test sets al-
low us to compare the performance of DFT functionals
in different environments in the liquid. The PIMD+GLE
simulations in this case were performed with a modified
version of QE and the vdW-DF2 functional. We used a
Troullier-Martins norm-conserving pseudo-potential with
a cutoff of 0.5 Bohr and a 2x2x2 k-point grid. Test sets
in the liquid were generated with approximately 100 con-
figurations at each density.

Finally, we used an enlarged set of zero-temperature
configurations in order to study the influence of the
choice of functional on structural properties in the solid.
Specifically, we study the following structures from previ-
ous structure searching studies: C2/c, Cmca-12, Pbcn19,
Cmca20, and mC24-C2/c26. Ground state structures
were relaxed using the PBE, vdW-DF, and vdW-DF2
functionals at PDF = 200 GPa, 300 GPa and 400 GPa.

For additional details on the configuration sets used in
this work, see the included Supplementary Information
section.

C. Density Functional Comparison

For each configuration in a test sets in the solid,
we calculated its energy and pressure using the follow-
ing ten functionals: LDA, PBE27,28, vdW-DF29, vdW-
DF230, vdW-optPBE, vdW-optB8831, vdW-optB86B32,
BLYP33, vdW-TS34, and HSE35. We used a restricted
set of functionals for the liquid test sets: LDA, PBE,
vdW-DF, vdW-DF2, and HSE.

For all M configurations in a given test set S, we com-
pute the density functional error of an observable A as
δADF = ADF −AQMC . From this, we used two general
measures of error. The first is the average error which

we define as:

〈δADF 〉S =
1

M

∑
Ri∈S

δADF (Ri) (1)

We also use a more general error measurement, akin
to a mean-absolute error, which we define as:

〈| ˜δADF |〉S =
1

M

∑
Ri∈S

|δADF (Ri)− cDF | (2)

Here, c is an density functional dependent offset, cho-

sen by minimizing 〈| ˜δADF |〉S′ over some set S′ (which
does not have to equal S). In the Results section, we
will devise two error measures for energies that differ in
their choice of reference point, but the motivation and
justification will be handled later.

III. RESULTS

A. Benchmarking

Our concern in this section will be to establish how
well various functionals capture different features of the
Born-Oppenheimer (BO) potential energy surface; i.e.
how well a functional calculates the electronic energy
as a function of the proton positions. We will facilitate
this discussion by distinguishing between two concepts:
“global energetics” and “local energetics”. Additionally,
we complement this discussion by considering how well
density functionals capture pressures.

“Global energetics” will refer to how well a given func-
tional is capable of capturing energy differences between
arbitrary configurations at a fixed density. This is rele-
vant in structure searching studies, for example, to decide
which structure from a list of different structures has the
lowest energy.

“Local energetics” will refer to how well a functional
captures energy differences between a structure and per-
turbations around that structure, at a fixed density. In
the case of a solid where a well-defined local minimum ex-
ists in the potential energy surface, we need to describe
the shape of the potential energy well as accurately as
possible. This is relevant for applications involving ther-
mal and quantum fluctuations, such as the calculation of
phonons and vibrational spectra, since what is relevant
are energy differences between closely related structures.
Thus, the ability of a functional to accurately capture
these small energy differences will affect the quality of
those predictions.

The previous two definitions refer to how well differ-
ent features of the BO energy surface are captured at a
fixed density. When determining phase stabilities how-
ever, it is often important to compare energies between
structures at different densities. By using basic thermo-
dynamic identities, we can relate the error in the pressure
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to how much the energy error changes between similar
structures at slightly different densities:

∂

∂ρ
δeDF = ρ−2δPDF (3)

We will focus on the errors in the pressure in this discus-
sion, appealing to the above relationship.

1. Global Energetics

To establish which functional has the best global en-
ergetic properties, we looked at the mean-absolute errors
in the energy per proton. For a particular DFT pressure,
PDF , we build a test set S′ by including all the con-
figurations consistent with that pressure, including ones
with different structures. Then, for each pressure and
density functional independently, we choose a reference

point cDF (PDF ) by minimizing 〈 ˜|δeDF |〉S′ . In practice,
this amounts to choosing the median of δeDF on this ag-
gregated test set S′. Using this choice for cDF (PDF ),

we calculated 〈 ˜|δeDF |〉S over each structure and aver-
aged this over all structures to obtain what we denote

〈 ˜|δeDF (PDF )|〉global.
In the top of Figure 1, we plot 〈 ˜|δeDF (P )|〉global versus

functional for solid molecular hydrogen. We included re-
sults for both the P = 200 GPa and the P = 300 GPa
structures, which are marked with striped and dotted
bars respectively. Two things immediately stand out.
The first is that nearly all of the hybrid and improved
van der Waals functionals, excluding vdW-TS, noticeably
outperform the LDA and PBE functionals. Secondly, the
vdW-DF functional seems to have the best global ener-
getic performance out of all functionals considered, fol-
lowed by BLYP and HSE.

In the bottom of Figure 1, we show a plot of

〈 ˜|δeDF (ρ)|〉global for the liquid configurations. We have
included data for the three densities rs=1.30, 1.45, 1.60,
which are identified in the legend. Notice that as in
the solids, vdW-DF is the best performing functional,
although the hybrid functional HSE is a close runner up.

Despite the vast differences in structures and densities,
we see a very consistent picture regarding how accurate
various functionals are in capturing global energetics. For
the solid test set, we find that PBE is accurate to ap-
proximately 0.3 mHa/proton in dense hydrogen, whereas
vdW-DF and HSE are good to 0.19 mHa/proton and
0.24 mHa/proton respectively. The errors are smaller in
the liquid phase, but the ordering of these functionals is
the same for both cases with vdW-DF noticably more
accurate.

2. Local Energetics

To measure the local energetics, we again used a shifted
mean absolute error for the energy per proton, but with

LDA PBE vdW-DFvdW-DF2 HSE vdW-TS optPBE optB86B optB88 BLYP
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FIG. 1: (Top) 〈 ˜|δeDF (P )|〉global versus functional for
solid molecular test sets. Data for P=200 GPa and

P=300 GPa is shown in the legend. (Bottom)

〈 ˜|δeDF (P )|〉global versus functional for the liquid test
sets. Data for rs =1.30, 1.45, and 1.60 shown.

the reference point chosen to be specific to a given struc-
ture. For a test set S corresponding to a particular struc-
ture at pressure P , we again let the energy shift cDF be

chosen to minimize 〈 ˜|δeDF (P )|〉S on the same set S. Aver-

aging 〈 ˜|δeDF (P )|〉S over all structures gives us a pressure
dependent measure of the local energetic errors, which

we will denote 〈 ˜|δeDF (P )|〉local. Notice that in this case,
we are only concerned with relative errors between close
configurations in the potential energy surface; systematic
shifts between the various structures are not considered.

In Figure 2, we show 〈 ˜|δeDF (P )|〉local versus density
functional for solid molecular hydrogen. The results for
P = 200 GPa and P = 300 GPa are shown on the plot
with dashed and dotted bars respectively. The vdW-
DF functional was the most accurate in capturing rel-
ative energy differences between similar configurations
with BLYP a close second. After these functionals, the
optPBE and HSE functionals exhibited fair performance.
The worst performing DF was LDA, followed by vdW-



5

LDA PBE vdW-DF vdW-DF2 HSE vdW-TS optPBE optB86B BLYP

DFT Functional

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
〈 |δ̃eD

F
|〉 lo

ca
l (

m
H

a
/a

to
m

)
P=200Gpa
P=300GPa

FIG. 2: 〈 ˜|δeDF (P )|〉local versus functional for solid
molecular test sets. Data for P=200 GPa and P=300

GPa is shown in the legend.

TS, and then jointly by vdW-DF2 and PBE. This same
trend was observed for the global energetic performance
in Figure 1.

It’s interesting to note how the magnitudes of the
global energetic and local energetic errors compare. LDA
and vdW-DF2 have local errors that are approximately
70% the size of their global errors, and thus experience
only modest accuracy gains when considering energy dif-
ferences between closely related structures. HSE and
PBE perform moderately better, having local errors that
are approximately 50% and and 60% of their global er-
rors. Lastly, the vdW-DF functional, beyond having the
lowest magnitude of global energetic errors, experiences
a local energy error that is approximately 25% of the
global errors.

In summary, we find that the van der Waals function-
als were most able to calculate relative energy differences
around local minima, with vdW-DF and BLYP having
the smallest local energetic errors. This might have been
guessed from the previous section, as these same func-
tionals were, on average, the best for capturing large scale
energy differences. Thus, for structural relaxation, zero-
point energy calculations, QMD, and other applications
where location and shape of the local minimum is impor-
tant, the vdW-DF functional is strongly recommended.

3. Pressures

For a test set S corresponding to a structure at partic-
ular density, we took our error measure to be 〈δPDF 〉S .
We averaged this over all structures at the same pressure
or density to obtain our error measure.

The top of Figure 3 shows 〈δPDF 〉 for the solids. We
see that in contrast to the local and global energetics sec-
tions, the semi-local functionals have some of the lowest
pressure errors. HSE is the best performing functional in

LDA PBE vdW-DFvdW-DF2 HSE vdW-TS optPBE optB86B optB88 BLYP
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FIG. 3: (Top) 〈PDF 〉 versus DFT functional for the
molecular solids. (Bottom) 〈PDF 〉 versus DFT

functional for the liquid configurations.

this regard. Note that the van der Waals functionals are
among the worst performing functionals for the average
pressures, with vdW-DF coming in just behind vdW-DF2
for highest pressure errors. These observations are also
seen in the bottom of Figure 3, which shows 〈PDF 〉 for
the liquid configurations.

For completeness, we looked at 〈| ˜δPDF |〉local for the

solids and 〈| ˜δPDF |〉global for the liquids, which was de-
fined in direct analogy to the energy errors in the lo-
cal and global energetic sections. We observed that the

magnitude of 〈| ˜δPDF |〉local across all configurations and
densities was statistically indistinguishable from the er-
ror bars of our QMC pressure estimates, indicating that
the errors in the pressure are roughly independent of the
configurations. Thus, the pressure errors observed were
mostly functional and density dependent constant offsets
from PQMC . Such was not the case for the energy.

To conclude, when it comes to capturing global and lo-
cal energy differences at a fixed density, including exact
exchange or van der Waals effects will generally improve
the energetics of density functionals for dense hydrogen.
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The vdW-DF functional in particular gives noticeable
improvements over PBE in capturing global energetics,
and does exceptionally well for capturing local energet-
ics. In spite of this, HSE and the semi-local function-
als outperform nearly all the van der Waals functionals
when it comes to correctly estimating pressures. Given
how systematic the pressure errors are, one can correct
the pressure of energetically favorable DF’s like vdW-DF
by estimating an overall correction from either LDA or
QMC. Fortunately, these errors are far more consistent
than the energy errors, and so there should be some way
of improving upon these functionals for future hydrogen
applications.

B. Effects of Functional Choice

In this section, we see how the energetic considerations
of the benchmarking section relate to current problems of
interest in the phase diagram of high-pressure hydrogen.
Specifically, we look at how accurately different function-
als predict H2 bond lengths relative to QMC optimized
structures. We also look at QMC cold curves for ground-
state structures optimized with different functionals, and
at the relation between the location of the LLPT and the
mean absolute error of a selection of DFT functionals.

1. Bond Lengths

The magnitude and pressure dependence of the bond
length of the hydrogen molecule in the solid depends sig-
nificantly on the DFT exchange-correlation functional.
The LDA and PBE functionals predict bond lengths that
are larger than that of the isolated molecule, while HSE,
vdW-DF and vdW-DF2 predict bond lengths that are
smaller. In order to measure the ability of each func-
tional to predict the correct magnitude and pressure de-
pendence of the bond length of the molecule in the solid
phase, we calculated the dependence of the energy on
bond length for several of the proposed solid phases of
hydrogen using QMC and compared with DFT predic-
tions. To do this we optimized a set of candidate struc-
tures (C2/c, Cmca, Cmca12, Pbcn, and mC24-C2/c)
with the PBE, vdW-DF and vdW-DF2 density function-
als at three different pressures: 200 GPa, 300 GPa and
400 GPa. For each combination of structure, density
functional and pressure, we calculated the dependence of
the energy as a function of the molecular bond length us-
ing a QMC correlated sampling technique. In particular,
we calculated the change in energy produced by scaling
all the molecular bond lengths in the solid by a given
fraction. Figure 4 shows an example of this procedure
for the C2/c structure. In this figure, the energy differ-
ence is with respect to the optimal molecular bond length
according to the density functional used in the structural
optimization. As described above, PBE shows a signifi-
cant overestimation of the bond length, while vdW-DF2

Structure 200 (GPa) 300 (GPa) 400 (GPa)

PBE [0.19]
C2/c 0.180(6) 0.186(9) 0.171(9)
Cmca 0.30(1) 0.15(2) 0.15(1)

Cmca− 12 0.185(8) 0.24(2) -
Pbcn 0.37(1) 0.28(2) 0.23(2)

mC24 − C2/c 0.069(4) 0.079(5) 0.102(6)

vdW-DF [0.01]
C2/c 0.018(3) 0.007(3) 0.015(3)
Cmca 0.011(4) 0.007(4) 0.017(4)

Cmca− 12 0.016(3) 0.012(7) 0.023(4)
Pbcn 0.016(3) 0.016(3) 0.015(4)

mC24 − C2/c -0.005(3) 0.001(5) 0.008(3)

vdW-DF2 [0.22]
C2/c 0.197(6) 0.239(8) 0.247(7)
Cmca 0.25(1) 0.21(1) 0.22(1)

Cmca− 12 - 0.260(7) 0.24(1)
Pbcn 0.22(1) 0.216(8) 0.22(1)

mC24 − C2/c 0.222(2) 0.18(1) 0.22(2)

TABLE I: QMC energy difference (in mHa/proton)
between the structures at the optimal DFT and QMC

bond lengths. Error bars are shown in parenthesis. The
mean energy difference, averaged over all structures and
all pressures, is shown in squared brackets next to each

functional name.

underestimates it with a comparable magnitude. The
vdW-DF functional, on the other hand, agrees well with
the QMC predictions producing a structure with a neg-
ligible energy error due to the relaxation of the bond
length. This relaxation energy can be significant in struc-
tures predicted by the other functionals, and, since its
not guaranteed to be consistent between structures, it
can significantly bias structural predictions. While the
optimal bond lengths according to QMC are very similar
for this structure, they depend slightly on the other struc-
tural parameters; we only relax the bond lengths in this
calculation, leaving both molecular orientations and sim-
ulation cell fixed. As we discuss below this produces an
additional variation in the energy of the structures, mak-
ing them dependent on the functional used to optimize
them, even after the bond lengths have been relaxed.

Figure 5 shows the difference between the optimal
QMC and DFT molecular bond length for each structure
and density functional, averaged over all the pressures
considered. In general, the discrepancy between QMC
and DFT on the magnitude of the bond length is fairly
insensitive to pressure in the range considered. Table I
shows a summary of the difference in QMC energy be-
tween the optimal DFT and QMC bond lengths for all
the structures, pressures and DFT functionals considered
in this work. Figure 6 shows this same data in a scatter
plot, organized by PDF and DF. The spread of values
in the case of PBE is quite large, while the correspond-
ing spread for vdW-DF is very small. Inaccuracies in the
bond length can lead to important limitations in the pre-
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dictive capabilities of DFT in this regime of the phase
diagram, mainly due to the immediate proximity of this
regime to a dissociation and a metal-insulator transition
at higher pressures. Notice that more accurate electronic
structure calculations typically require the use of struc-
tures from more approximate methods, such as DFT. In-
correct predictions of structural properties will lead to
biases in the predictions of more accurate methods. On
the other hand, the ordering of structures can also be
significantly biased if structural parameters are not ac-
curate, in this case the existence of molecules with large
bond lengths present in many of the proposed structures
for hydrogen near metallization is put into question by
these calculations, since they have all been predicted us-
ing PBE which severely overestimates bond lengths.
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FIG. 4: (Color online) Molecular bond length
dependence of the QMC energy for the C2/c structure
at 200 GPa. The energy is measured with respect to
the optimal bond length according to DFT. Arrows

denote the equilibrium bond length predicted by DFT.

2. Ground State Structures

In Figure 7, we show the QMC enthalpies (relative
to the enthalpies of the PBE optimized structures) of
C2/c structures relaxed with the PBE, vdW-DF, and
vdW-DF2 functionals at PDFT =200 GPa, 300 GPa, and
400 GPa respectively. Structures relaxed with the vdW-
DF and vdW-DF2 functionals have lower enthalpies than
those generated with PBE, as we might have guessed
from the relative energetics and from the previous dis-
cussion of bond lengths. Notice that the QMC pressures
for all structures differ from their DFT values. The mag-
nitude of the deviance follows the ordering we discussed
above.

At the top of Figure 8, we show the relative enthalpies
for structures obtained through PBE and vdW-DF opti-
mization. As in the previous figure, relative deviations

C2c Cmca12 Cmca mC24 Pbcn
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FIG. 5: (Color online) Error in the molecular bond
length ` of selected DFT functionals, relative to QMC

optimized values. The results are averaged over all
pressures considered in this work, since the pressure

dependence of the error is small.

from data for C2/c structures optimized with PBE func-
tional are shown. We see that structures optimized using
the PBE and vdW-DF functionals exhibit similar qual-
itative features; the ordering of the ground-state struc-
tures is consistent between functionals, as are the pres-
sure trends in the relative enthalpy curves. However,
the vdW-DF structures are all lower in enthalpy than
their PBE counterparts, and there are noticeable quan-
titative differences. For instance, the relative enthalpy
differences between Cmca and mC24 − C2/c are much
larger in PBE around 200 GPa and 400 GPa than in
the vdW-DF functional.

At the bottom of Figure 8, we compare the rela-
tive enthalpy differences between structures optimized
with the vdW-DF and vdW-DF2 functionals. Note that
even though the relative enthalpies for vdW-DF2 are all
lower than for PBE, they always remain a little higher
than for structures optimized using the vdW-DF func-
tional. Both functionals illustrate the same qualitative
trends, although note that the quantitative agreement
is much greater than between vdW-DF and PBE. For
instance, the relative enthalpy difference between Cmca
and mC24− C2/c is much smaller with vdW-DF2 than
PBE.

3. Intra-Molecular Potential

While an accurate bond length is necessary for a pre-
cise prediction of the relative electronic enthalpy between
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FIG. 6: (Color online) Scatter plot of e∗DF − e∗QMC for
structures optimized with different functionals and at

different PDF . The asterisks denote that we are
measuring the QMC energy difference between a DF

optimized structure and a bond-length optimized
structure. The numbers on the x-axis correspond to the
PDF in GPa at which all ground-state structures were

relaxed. The names under each triplet of numbers
denote the DF used in the structural optimization.

different structures, the shape of the intra-molecular po-
tential is equally important for the accurate description
of both thermal and quantum ionic components of the en-
thalpy. From the calculations of the bond length depen-
dence of the energy, we can measure the ability of each
DFT functional to reproduce the intra-molecular poten-
tial of the hydrogen molecule in various structures. For
this purpose, similar to the RQMC calculations presented
above, we calculated the bond length dependence of the
electronic energy with PBE, vdW-DF and vdW-DF2, on
the same structures presented in section III B 1. From the
resulting energies, we obtain the curvature α of the po-
tential at the corresponding equilibrium bond length by
fitting a quadratic function. This curvature is directly re-
lated to the vibrational frequency of the molecule, which
is the leading contribution to the zero-point energy due
to its high frequency. Inaccuracies in the curvature of the
potential will lead to systematic errors in the zero-point
energies calculated with DFT.

Table II and Figure 9 show a comparison of the cur-
vatures of the intra-molecular potential between various
DFT functionals and RQMC calculations. It is clear that
PBE systematically underestimates the magnitude of the
curvature, by an average of ∼20% over the studied pres-
sure range. vdW-DF2, on the other hand, systematically
overestimates the curvature but by a smaller amount.
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FIG. 7: (Color online) Relative enthalpies of C2/c
structures relaxed with either PBE, vdW-DF, or

vdW-DF2.

In both cases, the variation with structure is large. As
can be expected, the vdW-DF functional shows a good
overall agreement with QMC, producing an average dis-
crepancy of ∼5% over the entire configuration set. This
is consistent with the results of section III A 2 that shows
that vdW-DF gives a more accurate estimate of the local
potential energy surface of the solid and of the relative
energies of different molecular configurations, relative to
PBE and vdW-DF2. As a consequence, both thermal
and zero-point components of the energies should be com-
puted with this functional for a more predictive calcula-
tion.

4. Liquid-Liquid Phase Transition (LLPT)

The location of the LLPT in hydrogen has been re-
cently shown to depend significantly on both NQEs and
on the treatment of electronic exchange and correlation7.
While the inclusion of NQEs typically reduces the transi-
tion pressure by ∼60-80 GPa, different DFT functionals
produce variations by as much as ∼200GPa. In this sec-
tion, we use the QMC calculations presented in section
III A 1 to show that there is a correlation between the lo-
cation of the LLPT estimated by a given functional and
the difference in the average energy between the QMC
energy and a DF energy.

The predicted transition pressure will be affected by
differences of errors in the two branches of the free energy
F (T, V ) isotherm at the transition point. To estimate the
principal effect of DF errors, we look at the difference in
DF internal energy errors between two different densities
corresponding to the atomic liquid and molecular liquid.
We begin, as in the global and energetic sections of this
paper, by defining a test set S′ to be the aggregate of all
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Pressure (GPa) C2/c Cmca Cmca− 12 Pbcn mC24 − C2/c

PBE (24.7)
200 -26(3) -28(5) -24(5) -21(4) -34(5)
300 -21(3) 43(16) -29(23) -23(4) -20(9)
400 -25(5) -12(7) 19(12) 3(9) -42(6)

vdW-DF (7.3)
200 -3(2) -17(2) -10(2) -9(1) -5(3)
300 -8(1) -6(3) -8(4) -9(2) -5(5)
400 9(5) 5(9) 0(7) -4(6) 11(7)

vdW-DF2 (19.2)
200 19(5) 20(6) - 27(3) 37(6)
300 10(3) 6(7) 15(7) 16(4) 22(8)
400 12(4) 10(7) 15(6) 25(6) 37(16)

TABLE II: Comparison of the curvature of the intra-molecular potential of hydrogen between selected DFT
functionals and RQMC. The table shows the percentage of difference between RQMC and DFT, calculated as:

PE(%) = (αDFT − αRQMC)/αRQMC ∗ 100, where α is the second derivative of the total energy as a function of the
molecular bond length in the solid at the equilibrium distance. The relative mean absolute error, averaged over all

structures and all pressures, is shown in parenthesis next to each functional name. A missing calculation is
represented with a short dashed line.

liquid test configurations at rs = 1.30, 1.45, 1.60. Choos-
ing cDF to be the median of this aggregated set, we cal-

culate 〈 ˜δeDF (rs)〉 for rs = 1.30 and rs = 1.60. Then
(〈δeDF 〉at − 〈δeDF 〉mol) measures the mean energy shift
between the atomic and molecular states.

We then estimate the transition pressure using several
functionals; the procedure for calculating the transition
pressure is given in the Supplemental Information. In
Section III A 3, we found that there is a systematic and
sometimes sizable error in DF pressure estimates, which
causes an additional bias of the transition pressures. We
correct for this error by fitting the pressure errors to
δPDF (rs) = a0 + a1P

QMC(rs) + a2[PQMC(rs)]
2 for each

functional, where the coefficients ai are assumed to be
independent of density. We then solve this equation for
PQMC as a function of PDF , which gives us a corrected
transition pressure.

In Figure 10, we plot 〈δeDF 〉at - 〈δeDF 〉mol versus
the corrected transition pressure for all considered func-
tionals. We see that the errors change sign as we go
from PBE, LDA, and HSE to the van der Waals func-
tionals. If we knew the functional relationship between
the energy errors and the transition pressure, the point
where that function crosses the x-axis should coincide
with the correct transition pressure for a 54 atom system
at 1000K. Though our data is too sparse to characterize
this function, we can attempt to bound the transition.
By performing linear fits on the positive and negative
data points independently, we show in Figure 10 that
the transition probably lies between approximately 150
and 240 GPa. This is about a 40% reduction in the tran-
sition pressure uncertainty due to electronic correlation
pointed out in previous work7.

We have made preliminary estimates of the transition
pressure using the coupled electron-ion Monte Carlo13,

a method which treats the electrons with QMC. Using
quantum protons, we estimate the transition pressure for
a 54 atom system at T=1000K to be around 221 GPa;
details will be published in a future work. It is reassur-
ing to see that this estimate lies within the transition
pressure error bounds obtained in this section.

IV. SUMMARY AND CONCLUSIONS

In this article we presented a detailed benchmark of
DFT exchange-correlation functionals in high pressure
hydrogen using accurate QMC calculations. Particular
care was taken to control systematic errors in the QMC
calculations, including size effects, time step, twist av-
eraging, projection times and population control. We
find that the performance of most DFT functionals de-
pend on the property being studied. While LDA and
HSE consistently produce the best pressures in both solid
and liquid phases, vdW-DF is clearly superior in terms
of local energy differences in the potential energy sur-
face. HSE and vdW-DF perform equally well in terms of
energetics in liquid hydrogen close to metallization, but
with errors in opposite directions. In general, PBE does
a rather poor job at describing the relative energies of
configurations and describes quite poorly the properties
of the molecular bond. This leads to a large underesti-
mate of the metallization transition and of both thermal
and zero-point energy contributions. Predictions made
with this functional are much less accurate. While no
functional considered was capable of accurately describ-
ing relative energy differences over a large region of the
phase diagram, vdW-DF was found to produce excellent
results within a given phase, particularly for the repro-
duction of the intra-molecular potential and equilibrium
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FIG. 8: (Color online) (Top) Relative enthalpies of
candidate ground-state structures relaxed with either

PBE or vdW-DF. Structures relaxed with the vdW-DF
functional are shown with bold solid lines, and those
with the PBE functional with light dashed lines. The

color of the line denotes the structure. (Bottom)
Comparing vdW-DF and vdW-DF2 functionals. The
PDF = 200GPa Cmca and mC24− C2/c structures

optimized with the vdW-DF2 functional had
significantly lower QMC pressures than the vdW-DF

and PBE structures, and so these points are not shown
but were used in the fit.

bond length. This functional should be used to estimate
zero-point energy, which is dominated by energy differ-
ences close to an equilibrium configuration.
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