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Abstract

Traditional algorithms for First-Principles Molecular Dynamics (FPMD) simulations only gain a mod-
est capability increase from current petascale computers, due to their O(N3) complexity and their heavy
use of global communications. To address this issue, we are developing a truly scalable O(N) complex-
ity FPMD algorithm, based on density functional theory (DFT), which avoids global communications.
The computational model uses a general non-orthogonal orbital formulation for the DFT energy func-
tional, which requires knowledge of selected elements of the inverse of the associated overlap matrix. We
present a scalable algorithm for approximately computing selected entries of the inverse of the overlap
matrix, based on an approximate inverse technique, by inverting local blocks corresponding to principal
submatrices of the global overlap matrix. The new FPMD algorithm exploits sparsity and uses nearest
neighbor communication to provide a computational scheme capable of extreme scalability. Accuracy is
controlled by the mesh spacing of the finite difference discretization, the size of the localization regions
in which the electronic orbitals are confined, and a cutoff beyond which the entries of the overlap matrix
can be omitted when computing selected entries of its inverse. We demonstrate the algorithm’s excellent
parallel scaling for up to O(100K) atoms on O(100K) processors, with a wall-clock time of O(1) minute
per molecular dynamics time step.

1 Introduction

Classical Molecular Dynamics (MD) simulations rely on parameterized potentials that directly describe in-
teractions between atoms, modeled as classiscal particles, without calculating the electronic structure. While
classical MD can be used to model billions of atoms, it is not applicable in many physical situations where
classical potentials fail or are not even available; for instance, in simulations involving various conditions
of pressure and temperature, or in situations where the breaking (or making) of molecular bonds occur.
Thus, simulating matter at the atomistic level often requires the much more computationally demanding
calculation of the electronic structure (i.e. quantum electrons) to build realistic models.

First-Principles Molecular Dynamics (FPMD) is a very general and fundamental predictive tool to study
matter at the atomistic scale. It includes calculating the electronic structure of the atoms, as well as the
actual potential, which describes the “glue” that binds the atoms together. FPMD typically uses the Born-
Oppenheimer approximation, which is characterized by classical ions surrounded by quantum electrons. The
numerical solution requires solving an eigenvalue problem, the discretized form of the Kohn-Sham (KS)
equations of Density Functional Theory (DFT), to model the quantum electronic wave functions (see, for
instance, [9]).

Unlike classical problems in physics, such as fluid dynamics or elasticity, which can be modeled by partial
differential equations with a number of variables (such as temperature, pressure, etc.) which is fixed and does
not grow with the system size, the number of fields in quantum mechanics models (i.e. the electronic wave
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functions) is proportional to the system size. This leads to O(N2) degrees of freedom to represent O(N)
electronic wave functions for a problem composed of N atoms, and to O(N3) operations for the numerical
solution by standard eigensolvers.

The present practical FPMD computational limit is around 500 atoms, that is a 3D cell of about 8×8×8
atoms. This is not enough to go much beyond simple atomic geometries involving single atomic species
or small molecules. Many problems need to be simplified to be tractable, and the side effects of such
simplifications can be quite damaging. With a thousand-fold increase in computer power and the same wall
clock time requirements, an O(N3) algorithm would enable calculations with no more than about 5000 atoms,
that is a 3D cell of about 17×17×17 atoms only. Furthermore, many O(N3) algorithms are poorly scalable
and communication hungry, requiring a high data throughput on parallel computers. Advanced O(N3)
algorithms have been developed to distribute computational work efficiently on large parallel computers
using hybrid distributions, where each processor is responsible for a fraction of the coefficients describing a
fraction of the electronic wave functions [25]. Pushing such a strategy on today largest computers enable
very large calculations (100,000 atoms in Ref. [26]), but with a time to solution far too long to be useful for
any real application of interest to domain scientists.

To make an efficient use of current and emerging computing architecture with millions of cores, algorithms
with O(N) complexity and short-range communications are needed. This can enable large-scale simulations,
where the number of atoms is directly proportional to the number of processors available. A lot of research
has been carried out in the last 20 years in the physics and chemistry communities, in an effort to develop
O(N) algorithms for electronic structure calculations (see [7] for a recent review). Most O(N) algorithms
introduce some approximations or truncations of matrix coefficients to reduce computational complexity. It
therefore becomes important to evaluate and control the accuracy of the resulting algorithms [18]. Sufficient
accuracy often means that these O(N) algorithms become competitive only at large scale (more than 500
atoms).

An O(N) complexity is, however, not enough if one hopes to make an efficient use of petascale or
future exascale computers. Optimal algorithms also need to avoid global communications. One category of
algorithms with no major global communications is the so-called “Divide and Conquer” [40, 43]. In these
types of algorithm, the global problem is first divided into sub-problems made up of a local subset of atoms
and electrons. Then each sub-problem is solved independently, with a buffer region around the sub-domain
associated with the sub-problem. The total energy and the total electronic density are obtained as the sums
of sub-system contributions. Based on this idea, a few variants have been proposed [33, 40, 44]. However,
dividing a problem into sub-problems can be quite tricky, and can lead to hard-to-quantify errors [33], and
hard-to-solve (unphysical) sub-problems.

In this paper, we propose a new O(N) algorithm with excellent parallel scaling properties. It relies
on two major steps: The first step is the construction of a sparse representation of the invariant subspace
corresponding to the N lowest eigenvalues of the Hamiltonian operator. To do that, we rely on techniques
developed by the second author, and his coauthors, to find a solution of the Kohn-Sham equations given by a
set of strictly localized non-orthogonal functions. We use finite differences to discretize the KS equations and
represent these functions on a uniform real-space mesh. In the second step, selected elements of the inverse
of the Gram matrix resulting from the dot products of all the pairs of these localized functions need to be
computed in O(N) operations. We propose a new technique, which is inherently parallel and highly scalable,
to address this second step. The technique is justified by decay properties of the off-diagonal elements of the
inverse of the Gram matrix. A brief description of our approach is published in [34], and we present here
the details of the algorithm.

The paper is organized as follows: In Section 2 we present the formulation of the electronic structure
problem and give a high level description of the numerical solution strategy. We also describe the parallel
layout of the problem data. In Section 3, we discuss some algebraic properties of the Gram matrix and its
inverse, and present mathematical and algorithmic details for computing selected elements of the inverse of
the Gram matrix. We also present an efficient data communication algorithm for gathering and distributing
local matrices between neighboring processors. Numerical results are presented in Section 4 that show the
scaling, accuracy, and performance of the FPMD algorithm; and we conclude in Section 5 with a summary
of our results and a discussion of future work.
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2 Electronic structure problem Formulation

2.1 Kohn-Sham energy functional and potentials

Solving the electronic structure problem in Density Functional Theory requires the solution of the Kohn-
Sham (KS) equations (see, e.g. [9, 41]). From a mathematical point of view, this boils down to determining
the invariant subspace corresponding to the N lowest eigenvalues of a non-linear operator. Traditionally,
this subspace is represented by a set of N orthogonal eigenfunctions, which correspond to the occupied
states. The numerical solution is then typically obtained by solving a KS eigenvalue problem with a non-
linear Hamiltonian operator. Here we assume a finite band gap between the eigenvalues associated with this
invariant subspace and the rest of the spectrum, thus excluding applications to metallic systems. This is a
necessary assumption to achieve O(N) complexity using the algorithm described in this paper.

Following earlier work in O(N) complexity algorithms [21], we adopt an alternative approach in which
the problem is formulated as a minimization problem for a set of non-orthogonal electronic orbitals. For a
system of N electrons and Na atoms, the DFT energy functional to be minimized takes the form (in atomic
units)

EKS [{φi}N
i=1] =

N
∑

i,j=1

(

S−1
)

ij

∫

Ω

φi(r)
(

−∇2
)

φj(r)dr

+
1

2

∫

Ω

∫

Ω

ρe(r1)ρe(r2)

|r1 − r2|
dr1dr2 + EXC [ρe] (1)

+
N

∑

i,j=1

(

S−1
)

ij

∫

Ω

φi(r)

[(

Na
∑

a=1

Va

)

φj

]

(r)dr.

where the φis represent the electronic wavefunctions, and ρe represents the electronic charge density defined
as:

ρe(r) =

N
∑

i,j=1

(S−1)ijφi(r)φj(r). (2)

In the remainder of this paper, the terms electronic wavefunctions or electronic orbitals or simply functions
may be used interchangeably to refer to the functions {φi}N

i=1. In order to simplify the presentation of (1)
and (2), we have neglected the spin and assumed that all functions are occupied by two electrons. We also
assume here, and in the remainder of this paper, that the functions are linearly independent.

The N × N matrix S is the Gram or overlap matrix, defined by

Sij =

∫

Ω

φi(r)φj(r). (3)

As is often the case for these types of problems, we assume periodic boundary conditions. On the
right-hand side of (1), the first term represents the kinetic energy of the electrons; the second term is the
classical electrostatic interactions between electrons; the third term is the exchange and correlation energy,
a purely quantum interaction between electrons; and the last term represents the energy of the electrons
in the potential field generated by the atomic cores. Note that by convention we use a positive function
to describe the charge density of the electrons, that is ρ(r) ≥ 0, and a negative function for the atomic
potentials, Va(r) ≤ 0 (potential well).

Each atomic core is modeled by a non-local separable pseudopotential in its Kleinman-Bylander form [27].
With this approximation, the potential generated by each atomic core is given by the sum of a diagonal
long-range operator (a multiplicative function with slow decay away from the atom center) and a low-rank
short-range operator (usually a sum of up to nine projectors onto local functions centered on the atom).

The exchange and correlation term EXC [ρe] has no known exact form, and hence is typically approxi-
mated. Here, we assume a standard approximation as an integral of a local term

EXC [ρe] =

∫

Ω

ǫxc(ρe(r),∇ρe(r))dr, (4)
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where ǫxc is the exchange-correlation density. This includes the Localized Density Approximation (where
ǫxc function of ρ(r) only) and the Generalized Gradient Approximation, two of the most commonly used
functionals in the field [41].

Remark 1. In the most common approach, the DFT energy functional minimization problem is formulated
in terms of orthonormal eigenfunctions. That is, the minimization of (1) is subject to the constraint

∫

Ω

φi(r)φj(r) = δij , (5)

and (S−1) is simply replaced by the identity matrix. The mathematically equivalent alternative chosen here
alleviates the need for the orthonormality constraints and will allow for localization constraints to be imposed
on each function (see Section 2.3). We will only assume that the functions {φi}N

i=1 are linearly independent.

2.2 Discretization and numerical formulation

We discretize the energy functional in (1) by finite differences on a uniform mesh. This is possible given
the shape of the pseudopotentials used to describe the atomic cores. We use a fourth order finite difference
scheme for the Laplacian and represent all the wave functions and potentials by their discrete values at the
nodes of the mesh.

The electrostatic term in (1) is computed by solving a Poisson problem. Because of the periodic boundary
conditions, it is necessary that the atomistic system be charge neutral. That is, we assume the charge of the
electrons exactly neutralize the charge of the atomic cores. To have a well posed Poisson problem with a
right hand-side corresponding to a neutral charge, we follow a standard procedure [17,22]. We first associate
to each atomic core, a spherically symmetric Gaussian charge distribution

ρa(r) = − Za

(
√

πra
c )3

exp

(

−|r − Ra|2
(ra

c )2

)

, a = 1, . . . , Na (6)

where Za is the charge of the atomic core, Ra its position, and ra
c is some parameter of order 1.

Let us define

ρs(r) =

Na
∑

a=1

ρa(r).

To compute the potential, vC , due to the neutral charge distribution ρe + ρs, we solve the Poisson problem

−∇2vC(r) = 4π(ρe + ρs)(r). (7)

This Poisson problem is efficiently solved on the discretization grid by a multigrid preconditioned conjugate
gradient (CG) algorithm [42].

The potential vC , in addition to the Coulomb potential due to the electronic charge density ρe, also
includes the potential, va, due to each charge distribution ρa. Each potential va is given by the analytical
form

va(r) = − Za

|r − Ra|
erf

( |r − Ra|
ra
c

)

. (8)

To compensate for that extra contribution in vC , we subtract the potentials va from the pseudopotentials Va.
As a result, the energy functional (1) can be rewritten in the totally equivalent form (see [17] for example)

EKS [{φi}N
i=1] =

N
∑

i,j=1

(

S−1
)

ij

∫

Ω

φi(r)
(

−∇2
)

φj(r)dr

+
1

2

∫

Ω

vC(r)(ρe(r) + ρs(r))dr + EXC [ρe] (9)

+

N
∑

i,j=1

(

S−1
)

ij

∫

Ω

φi(r)(

Na
∑

a=1

(Va − va)φj)(r)dr + Ediff + C.
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Here

Ediff =

Na
∑

a,b=1,a<b

ZaZb

|Ra − Rb|
erfc

(

|Ra − Rb|
√

(ra
c )2 + (rb

c)
2

)

,

for each pair of atoms, a and b, at positions Ra and Rb with core charges Za and Zb respectively; and C is
a constant dependent only on the number of atoms and their species.

There are a few important consequences of this formulation. First of all, Ediff can be computed as the
sum of short-range terms in O(N) operations, by dropping terms corresponding to pairs of atoms that are
far apart. Secondly, for each atom, Va − va is a short-range potential. As a result, the term involving the
atomic potential in (9) can be computed by restricting the sum over all the atoms, to just a sum over a few
local atoms. Thus the only remaining global coupling is through the electronic structure represented by the
set of functions {φi}N

i=1. The remainder of this paper is focused on showing how the calculation of these
{φi}N

i=1 can be done in O(N) operations with short-range (or nearest neighbor) communications only.

2.3 Electronic structure solver

The solution to the minimization problem (1) may be expressed as a matrix Φ, whose columns consist of the
electronic wavefunctions φi, i = 1, . . . , N . In principle, each of these φis is dense, with non-zero entries at
each mesh point in the global domain. In this form, the solution requires O(N2) storage and the numerical
solvers require O(N3) operations.

However, since (1) does not assume any particular representation of the solution to the invariant subspace,
one can possibly consider a sparse representation. For instance, the so-called Maximally Localized Wannier
functions [32], which minimize simultaneously Eq.(1) and a functional representing the sum of the spreads
of each function, are very localized for systems with a finite band gap. However, computing these functions
requires O(N3) operations if no strict localization is assumed a priori.

An alternative, which we follow in this paper, is to search for an approximation to Φ by assuming its
sparsity pattern is known a priori. One major advantage of formulating the DFT energy functional in the
general form (1) without orthogonality constraints is the possibility of adding constraints on the functions
{φi}N

i=1. It has been previously shown [16,18,19] that constraining each function to be non-zero only inside
a finite spherical domain of radius Rc leads to O(N) degrees of freedom, and O(N) operations for the
most expensive parts of the computation. This restriction on the solution of the minimization problem
introduces a truncation error for physical quantities of interest, which decays exponentially with the size of
the confinement regions, Rc. We note that Rc is fixed and does not grow with the problem size, and we shall
refer to it as the localization radius.

The minimization procedure is based on the gradient of the energy functional, given by the residual of
the KS equations. The details of that procedure and the minimization algorithms are discussed in recent
papers [16,18,19] and only the general idea is described here. In our formulation, the gradient is given by

G(Φ) = HΦ − ΦS−1(ΦT HΦ). (10)

We use (10) in a preconditioned steepest descent minimization algorithm, utilizing a multigrid preconditioner
for fast convergence. The procedure is accelerated using an Anderson extrapolation scheme [1,15]. In order
to maintain sparsity in Φ, we truncate the correction applied to Φ at each step of the iterative algorithm.

Using this approach, each wavefunction has a constant number of nonzero entries, which does not grow
with the size of the problem. As a result, the total number of nonzeros in Φ is O(N). Furthermore, all
operations to evaluate the energy functional (1) and its gradient (10) become O(N), except the computation
of S−1, which is traditionally an O(N3) operation. Later in this paper, we shall address ways to efficiently
compute selected entries of S−1 that are needed to construct and solve the minimization problem.

2.4 Parallel data representation

The parallel algorithm utilizes a domain decomposition framework, with each processing unit owning a
subdomain of the global finite difference mesh. As a result, each localized orbital is distributed across a
finite number of neighboring processors. We assume that these localized orbitals are fairly evenly distributed
over the 3D domain. Figure 1 shows an illustration of the data layout. Each processing unit owns the part
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Figure 1: Parallel data representation, showing functions φi, φj , . . ., overlapping in different subdomains, as
well as their centers.

of the electronic orbital that overlaps with its subdomain, and handles any local computations involving
this part of the function. To compute the global Gram matrix, for instance, each processor computes a
partial contribution to the global matrix corresponding to functions that overlap within its local subdomain.
Thus, the entries in some row k of the Gram matrix are obtained by accumulating data from neighboring
subdomains that compute partial contributions involving function k.

This data representation leads to a very convenient and efficient way of handling computations involving
the electronic wavefunctions, such as computing entries of the Gram matrix. However, computing entries
of the inverse of the Gram matrix in such an efficient and straightforward way, is far more challenging.
While calculating S−1 typically requires O(N3) operations, it takes little time compared to other operations
in a standard O(N3) FPMD method, and its cubic scaling can even be ignored in O(N) FPMD methods
for values of N up to a few thousands [16, 19]. Nonetheless, for large-scale parallel simulations, the exact
calculation of S−1 can become a computational bottleneck. This is not only because of its growing cost, but
mostly because of the large number of communications necessary to build the elements of S, distribute them
according to a data layout appropriate for the linear solver, and then distribute the elements of S−1 to the
processors which need them. Later on in this paper, we shall describe a scalable strategy for computing the
entries of S−1, in order to make the overall O(N) FPMD algorithm truly scalable.

3 Properties of the Gram matrix and its inverse

From Equations (1) and (2), it is clear that we need not compute all the entries of the inverse of S. In
particular, one only needs to compute (S−1)ij for i and j corresponding to the nonzero dot products be-
tween φi and φj , φi and −∇2φj , or the term involving the atomic potential in (9). In recent years, several
fast algorithms have been proposed for computing exact selected entries of the inverse of sparse symmetric
matrices [8,30,31]. These algorithms rely on efficient Cholesky factorizations and divide-and-conquer strate-
gies, and their theoretical analysis have shown them to be more efficient than the traditional O(N3) direct
inversion of the full matrix. The numerical results from the literature also show that they exhibit superior
performance over the O(N3) method, on applications from electronic structure calculations. However, for
large-scale computations, the nonlinear complexity of these exact inversion techniques will affect the overall
complexity.

In [14], Demko et al. present some theoretical results on the exponential decay rates for the off diagonal
elements elements of the inverses of banded matrices and general sparse matrices. They show that for an
N ×N positive definite matrix A that is bounded and bounded invertible, the size of the off-diagonal entries
of A−1 outside some nonzero pattern defined by the pattern of Aα, α = 1, 2, . . . , N , is bounded by an
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exponentially decaying term with an exponent of the order α + 1, and a decay factor that depends on the
bounds of the eigenvalue spectrum of A. The authors further show this result to be true for a 1D periodic
system. Later on, Benzi and Razouk [4] generalized this for N ×N sparse matrices by using principles from
graph theory, and by considering the distances between the nodes of the corresponding adjacency graph.
Furthermore, they show that an O(N) approximation for the inverse is feasible if, for a sequence {AN} of
N × N matrices of increasing dimension N , the following are satisfied:

1. for all N , there exists a compact set bounded away from zero, that contains all the eigenvalue spectra
of the matrices in {AN}, and

2. the condition numbers of the corresponding eigenvector matrices are bounded independent of N .

Notice that if each matrix of the sequence is symmetric, then the second condition is trivially satisfied.
In order to make use of these results for an O(N) approximation of S−1, we show that the overlap matrix

S defined in (3) satisfies the above conditions. To see this, we note that S, by construction, is symmetric and
positive definite. It is however, not diagonally dominant. In what follows, let P denote a problem of interest,
that is a set of atoms defined by their pseudo-potentials and a number of electronic wave functions defined
on the domain Ω. Consider a decomposition of P into several subproblems associated with non-overlapping
subdomains similar to the domain decomposition framework described in Section 2.4. We shall refer to each
of these subproblems as a base problem. Now, suppose that each base problem has at least one electronic
orbital overlapping with it, and let Pe denote the e-th base problem. To each base problem Pe one can
associate a local overlap matrix, denoted by Se, made up of the local contributions to the global Gram
matrix S. That is, the parts of the dot product computed by integrating over the subdomain associated
with Pe. Let us denote by pmax the maximum number of subdomains that share (or overlap with) any given
function. Using an analogy between a base problem and a finite element, we now state a proposition that
is just a corollary of a result of Fried [20], but is of fundamental importance to the theory presented in this
paper.

Proposition 1. Let S be the Gram matrix corresponding to a problem P, and let Se be the Gram matrix
for the e-th base problem obtained by a decomposition of P. Define λmin and λmax to be the minimum and
maximum eigenvalues of S, and define also λe

min and λe
max as the minimum and maximum eigenvalues of

Se. Then
λmax ≤ pmax max

e
(λe

max) (11)

and
min

e
(λe

min) ≤ λmin (12)

From (11) and (12), we have the following bounds for the condition number κ(S) of S:

1 ≤ κ(S) ≤ pmax

maxe(λ
e
max)

mine(λe
min)

. (13)

Notice that the value of pmax depends on the size of the base problem domain, relative to the size of the
localization radius Rc. It is easy to see that defining each subdomain to have a side of length of at least 2Rc

yields pmax = 8 (in 3D). From a practical point of view, (13) suggests that one can impose conditions on
the wavefunctions so that S is well conditioned. Thus, we can assume there exist two positive constants γ

and β, which bound the spectra of the base problems, such that

γ ≤ min
e

(λe
min) (14)

and
max

e
(λe

max) ≤ β. (15)

In practice, condition (14) is checked and satisfied at the beginning of each MD step to ensure that the
localized wavefunctions are linearly independent.
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(b) 30,208 atoms polymer sample

Figure 2: Inverse entries in one column of S−1 as a function of the distance between this column and the
orbitals associated with its nonzero entries. Left: 1888 atoms polymer sample; and Right: 30,208 atoms
polymer sample.

Let {SN} denote a sequence of overlap matrices. From Proposition 1 it follows that the eigenvalue
spectrum of each matrix S ∈ {SN} is closed and bounded. Let C ⊂ R denote the union of these eigenvalue
spectra. Clearly C is also closed and bounded. Furthermore, Proposition 1 and condition (14) imply

γ ≤ λmin

for all the matrices in {SN}. Thus, the eigenvalue spectra of {SN} is bounded, and bounded away from zero
by some positive distance.

These properties of S imply that S−1 has off-diagonal coefficients that decay exponentially, and thus, an
O(N) approximation to S−1 is feasible [4, 14]. Consider the adjacency graph of S, where there is an edge
between nodes i and j if the wavefunctions i and j overlap. Then the decay property of S−1 implies that the
longer the path from one orbital function to another, in the adjacency graph of S, the smaller the coefficient
in S−1. Figure 2 gives an illustration of the decay of the off-diagonal elements of S−1 obtained from a real
application. The figure shows the absolute value of the entries in one column of S−1, as a function of the
geometric distance between the center of the corresponding localized wavefunction and the centers of all
the other wavefunctions in the system. Here, S is obtained from a periodic system of polymers initially
containing 472 atoms and 536 electronic orbital functions. Thus, S has size 536, with about O(300) nonzero
entries per row. The Figure 2a shows the decay for the initial Gram matrix and Figure 2b illustrates the
same problem replicated by a factor of 4 in the X, Y , and Z- directions.

For sufficiently large problems, this decay property suggests that one can obtain a sparse representation
of the inverse, by dropping small terms. Furthermore, as we will show later, an entry (S−1)ij need not be
computed exactly, and may be appropriately approximated without any significant effect on the accuracy of
the numerical solution. As shown in Figure 2a, the decay of the off-diagonal entries of S−1 leads to very
little sparsity for small problems, primarily due to the shorter paths or distances between the nodes in the
adjacency graph of S. Thus, approximating S−1, or exploiting sparsity on S−1 by dropping small terms, is
possible only for fairly large problems (N ≥ 1000).

In [7], Bowler et al. review a number of methods for computing an approximation to the inverse of the
Gram matrix for O(N) electronic structure calculations. For these strategies to be effective, it is necessary
that the error incurred in approximating the inverse be smaller than that of the overall algorithm. Many
of these methods impose sparsity constraints on the matrix in order to achieve linear complexity. While
these methods may be favorable for O(N) algorithms, their parallel implementations generally require some
global communication, which can affect parallel efficiency. Next, we present an efficient parallel strategy for
approximately computing the entries of S−1 that are needed to evaluate (1) and (2).
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3.1 Computing selected entries of S
−1

To compute entries in S−1, we follow the approximate inverse strategy, commonly used to construct a
preconditioner for the iterative solution of sparse linear systems [5, 6, 10, 28]. The basic idea is to find some
N×N matrix M , such that M ≈ S−1. One way of achieving this is to decompose S into its Cholesky factors,
S = LLT . A matrix G, is then constructed such that G ≈ L−1, and thus M = GT G. The approximation, G,
may be computed in many different ways, and while these so-called factorized approximate inverse techniques
are well-known in the literature (see for instance [5, 6, 28]), they are difficult to parallelize [7]. As a result,
they are not very feasible for O(N) algorithms at large-scale.

Here we adopt another alternative first introduced in [2,3]. We consider an approximate inverse M that
satisfies

arg min
M∈RN×N

‖SM − I‖2
F (16)

in the Frobenius norm, where I is the identity matrix, and subject to the constraint that M is sparse. By
definition of the Frobenius norm, this minimization problem naturally decouples into N smaller sub-problems

arg min
mj∈RN

‖Smj − ej‖2
2, (17)

which can be handled efficiently in parallel. Here, mj and ej are the respective columns of M and I. Let Sj

be a sparse N ×k matrix, k < N , and whose columns correspond to k distinct columns of S, associated with
some prescribed non-zero pattern for mj . Define this set of k distinct columns as J , and let I represent the
set of non-zero rows of Sj . Then the solution to (17) is typically obtained by constructing from Sj , an r × k

matrix S̄j , where k < r and r < N , and solving the least-squares problem

S̄jm̂j = ēj . (18)

Here, S̄j = S(I,J ) is a restriction onto rows I and columns J of S, m̂j = mj(J ) represents a restriction
onto rows J of mj , and ēj = ej(I) represents a restriction onto rows I of ej .

The solution to (18) may be obtained by using the QR decomposition of S̄j . Alternatively, the normal
equations approach may be used [37, 38]. Notice that here, we have assumed that the non-zero pattern
of M is known a priori. Variants of the non-factorized approximate inverse technique that adaptively
determine the non-zero pattern of M , to satisfy a prescribed error tolerance, have also been proposed in
the literature [12, 13, 23, 24]. More details on the approximate inverse technique (both factorized and non-
factorized) may be found in [5–7, 10–13, 23, 24, 28] and references therein. Depending on the the accuracy
required for the approximate inverse and the corresponding sizes of r and k, the QR decomposition of S̄j

or the normal equation solution to (18) can be expensive to compute. A more efficient alternative can be
obtained by minimizing the norm of the residual in (17) only for the components in the non-zero pattern of
mj . In other words, instead of (17), we find M whose columns satisfy:

arg min
mj∈RN

‖PT (Smj − ej)‖2
2, (19)

where P ∈ R
N×k has orthonormal columns that are simply obtained from columns of the identity matrix

corresponding to the non-zero pattern of mj . That is, P = I(:,J ). Defining P in this way, we have that

Sj = SP and m̂j = PT mj . Defining also Ŝj = PT SP and êj = PT ej , (19) may be rewritten as minimizing

‖PT (SPPT mj − ej)‖2
2 = ‖PT (Sjm̂j − ej)‖2

2

= ‖Ŝjm̂j − êj‖2
2. (20)

The solution to (20) is obtained by solving the linear system

Ŝjm̂j = êj , (21)

The matrix Ŝj is a square matrix that represents a principal submatrix of S, whose columns are prescribed
by the non-zero pattern of mj . As a result, the linear system can be solved using an iterative solver or a

Cholesky decomposition of Ŝj , and thus, avoids the need to compute a QR decomposition of Ŝj or a normal
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Figure 3: Plot of region covered by Rs = 2αRc from orbital j. Red boundary: α = 1; Blue boundary: α = 2;
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equation solution. This approach is equivalent to re-weighting the equations (or rows of S) in (17) in favor
of those that are closest to the coefficients of mj that are of interest, and leads to more accurate results
compared to solving the original least-squares problem.

Defining Ŝj as a principal submatrix of S leads to some desirable spectral properties for Ŝj . First, Ŝj is
symmetric and positive definite by definition, since S is symmetric and positive definite. Furthermore, from
the interlacing property of the eigenvalues of a symmetric matrix [36], we have that the eigenvalues of Ŝj

are contained within the spectrum of S. As a result, the following relation holds for the condition numbers
of Ŝj and S:

κ(Ŝj) ≤ κ(S).

3.2 Imposing a sparsity pattern on M

Prescribing an appropriate sparsity pattern that gives a good approximation to the inverse can be challenging,
and adaptive methods have been shown to be more effective for general sparse matrices. Nonetheless, for
matrices whose inverse exhibit strong off-diagonal decay, a suitable sparsity pattern can be prescribed a
priori, which is generally more efficient than an adaptive approach. A common strategy is to use the sparsity
pattern of powers of S, Sα, where α > 0 is an integer [10,11]. From the adjacency graph of S, this approach
is equivalent to constructing Ŝj from columns of S associated with nodes that are up to paths of length α

from node j. A variant of this approach considers only the paths associated with neighboring nodes that are
strongly connected to node j. This is algebraically achieved by dropping small entries in S before extracting
the pattern of Sα [11,29,35]. In general, the bigger α is, the denser the j-th column of M . This results in a
larger size for the set of columns J , which typically yields a more accurate approximate inverse.

In this work, we exploit geometric information and use the geometric distances between the centers of
the electronic orbitals to determine the sparsity pattern of M . For each column j of M , the non-zero pattern
is obtained by considering only entries associated with localized orbitals centered within some distance Rs

from the localized orbital j. In practice, Rs is typically chosen to be a multiple of the localization radius,
Rc, used to define the confinement regions for the localized orbitals. Let ci and cj be the centers of the
functions i and j respectively. Then two orbitals, i and j, will overlap and share an edge if |ci − cj | ≤ 2Rc.
In other words, Sij will be a non-zero entry if the nodes i and j are separated by a path of length 1 in the
adjacency graph of S. Figure 3 gives an illustration of a region prescribed by Rs = 2αRc around a function
j, for different values of α. From this definition of Rs, it follows that if some function k lies on the boundary
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of the region defined by Rs, then the shortest path between nodes j and k in the adjacency graph of S has
length

d(j, k) =
Rs

2Rc

.

Note that the distance d(j, k) is based on graph theory, and does not translate to the geometric (or Euclidean)
distance between the functions j and k. In general, it is possible to have another function i in the region,
which may be closer to function j in terms of the Euclidean distance, but have d(j, i) > d(j, k). Since function
k is centered on the boundary of Rs, clearly the region prescribed by Rs also contains all functions l, such
that d(j, l) ≤ d(j, k). Following this result, Proposition 2 establishes a relationship between the sparsity
pattern prescribed by Rs, and that of Sα.

Proposition 2. Let α > 0 be some integer, and let the set Fj contain all the orbitals corresponding to
non-zero positions in column j of M , prescribed by Rs = 2αRc. Let the set Qj contain all the orbitals
corresponding to non-zero positions in column j of M , prescribed by the non-zero pattern of Sα. Then
Qj ⊆ Fj.

Proof. Clearly, for any integral multiple, α, the region prescribed by Rs = 2αRc from some function j,
contains all nodes k such that d(j, k) ≤ α. The result follows from the fact that for any integer power p of
some matrix A, the non-zero pattern of some column j of Ap corresponds to nodes that are separated from
node j by paths of length p or less, in the adjacency graph of A.

3.3 Parallel communication algorithm

In this section, we describe the algorithm we use to assemble matrix elements from the partial computations
performed on each subdomain. This algorithm is used to build the matrix Ŝ in Section 3.1 and to scatter the
results to neighboring processors that need the computed selected elements of S−1. It is also used in other
parts of the FPMD algorithm to assemble other matrix elements needed to evaluate the energy functional
(1) and its gradient (10).

Parallel scaling can benefit from a data communication strategy that takes advantage of the physical data
representation of the underlying problem. Since the interactions between a pair of electronic orbitals cover
only a small subset of subdomains, it makes sense to exploit a nearest-neighbor communication pattern to
gather and distribute data between neighboring subdomains. In what follows, we define Rs as the spread
radius used to prescribe the extents from which to gather and scatter data within a subset of subdomains.
In other words, each subdomain or processor communicates within a 3D cube of neighboring processors,
determined by Rs. We note that the parallel constructs used in this work are based on the Message Passing
Interface (MPI) programming model.

One straightforward approach for communicating data among neighboring processors is to post multiple
send and receive operations between each processor and its cube of neighbors. This approach takes advantage
of the multiple communication links in the hardware of the parallel system, and can be ideal for architectures
with smaller bandwidths but large concurrency (or link network), such as the IBM Blue Gene systems.
However, depending on the size of the cube of neighbors and the size of the data to be communicated,
the cost of communication by this approach can be expensive. In this section, we propose an alternative
algorithm that processes data one direction at a time and allows for overlap between communication and
data assembly. Algorithm 1 formally describes this approach. For each processor, let nsteps be the number
of neighboring processors located within the distance Rs. Furthermore, notice that in each direction, each
processor has two adjacent neighbors - one on the left, and one on the right. Note that a processor at the
boundary will have a periodic neighbor as an adjacent neighbor. Let −nb and nb denote the left and right
neighbors, respectively.

Algorithm 1. Parallel communication algorithm

1. For each direction X, Y, and Z, do:

2. Copy local data to work buffer

3. For dir = {−nb, nb}, do:

4. Copy data from work buffer to send buffer

5. For l = 1 to nsteps, do:

11



6. Send data to the dir neighbor, and receive data from the −dir neighbor

7. Merge received data with local data

8. if l < nsteps Copy received buffer to send buffer

9. EndDo

10. EndDo

11. EndDo

Algorithm 1 begins by looping over the X, Y and Z directions, respectively. For each direction, the
algorithm sends data nsteps times to one adjacent neighbor, and receives data nsteps times from the other
adjacent neighbor. Note that here, we have assumed that nsteps is the same in each direction, however in
practice, depending on the processor grid topology, nsteps may be different for each direction. In order to
avoid sending duplicate data to the neighboring processors, the initial local data for each subdomain is first
copied into a work buffer, prior to the beginning of the data transfer, for a particular direction. At each
step of the innermost loop of the algorithm, data is first sent to the left adjacent neighbor, and data is
received from the right adjacent neighbor. The received data is then merged with the current local data,
and the receive buffer is copied into the send buffer. These steps are repeated nsteps times, corresponding to
the number of processor steps prescribed by the radius Rs. Note that since communication is only between
the two adjacent neighbors, after the first nsteps iterations, the initial local data on each subdomain would
be propagated up to the neighboring subdomain nsteps to the left. Likewise, each subdomain would have
received the local data of its nsteps neighbors to the right. This loop is then repeated, this time sending data
to the right, and receiving data from the left. In practice, step 8 for the current iteration and step 6 for the
next iteration can be performed while still working on step 7 for the current iteration in the inner loop of
the algorithm, thus overlapping communication with computation.

By the end of the pass in the X direction, each processor has accumulated data from its nearest nsteps

neighbors to the left and right, respectively. The accumulated local data is then used to initialize the work
buffer for the subsequent pass in the Y direction, and similarly in the Z direction.

At the end of the algorithm, each processor or subdomain, k, has accumulated data from the neighboring
processors associated with subdomains within a cube of (2× nsteps + 1)× (2× nsteps + 1)× (2× nsteps + 1)
subdomains, where the subdomain k lies in the center of this cube. The total number of sends and receives
for the algorithm is 3 × (2 × nsteps) = 6 × nsteps, which is significantly fewer than the (2 × nsteps + 1)3 − 1
communication operations that would be required by a more straightforward approach.

3.4 Parallel algorithm for computing S
−1

In what follows, let Fj be the set of all electronic orbitals that are centered within some distance Rs

from orbital j. We recall from the parallel data representation model that each processor holds some
partial contribution to the global Gram matrix, S. Furthermore, in computing the inverse, each processor
is responsible for solving (20) for the columns of M , corresponding to the orbitals centered in its local
subdomain. In practice, the localized orbitals centered on each local subdomain are close in proximity to
each other. Thus, it is practical to gather enough data to assemble a single matrix to be used in (21), for
all local columns. That is, let C denote the indices of the localized orbitals that are centered in the local
subdomain, and define

F =
⋃

j∈C

Fj .

Then one can construct a square matrix Ŝ, by considering the interactions between electronic orbitals in F .
As a result, Ŝ represents a principal submatrix of S, and may be used in place of Ŝj . The solution to (21)
then becomes simply solving a linear system with multiple right hand sides. Algorithm 2 formally describes
the parallel computation of the entries in S−1.

Algorithm 2. Parallel algorithm for computing selected elements of S−1

1. Define Rs

2. Gather data from neighboring processors according to Rs, and assemble Ŝ

3. for j ∈ C do:
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4. solve Ŝm̂j = êj

5. EndDo

6. Distribute inverse data mj to neighboring processors within some predefined radius

Algorithm 2 begins by first defining the radius Rs, which is used to determine the extents from which to
gather data to construct Ŝ in Line 2 of the algorithm. Since each processor owns some partial contributions
to the columns of the overlap matrix, gathering data from neighboring processors and assembling Ŝ can
occur simultaneously. This is handled efficiently by the data communication algorithm (Algorithm 1) in
Section 3.3. Once Ŝ is constructed, (21) is solved for each column of M , corresponding to orbitals that are
centered on the local subdomain (Lines 3− 5). In order to locally compute the electronic density in (2) and
evaluate (1), each processor requires certain entries of S−1 that may have been computed on a neighboring
processor. Thus, in the last line of the algorithm, the computed columns of M ≈ S−1 are distributed to
neighboring processors that need them for their local computations.

3.5 Some practical considerations

While in theory the principal submatrix Ŝ possess desirable spectral properties with respect to the over-
lap matrix S, in practice, obtaining a well-conditioned submatrix by accumulating data from neighboring
processors requires some care.

Recall that in assembling Ŝ on each subdomain, the accumulated data consists of the sum of partial
contributions of entries of the Gram matrix computed over the closest neighboring subdomains. As a result,
Ŝ may include columns or rows with incomplete entries and small diagonals. These incomplete columns or
rows come from subdomains that lie on the boundary of the region prescribed by Rs; since they may contain
partial contributions from functions that overlap predominantly outside this region of interest. The result is
that Ŝ may be poorly conditioned, even though the global Gram matrix may be well conditioned.

One way to improve the conditioning of Ŝ is by rescaling the small diagonals. An alternative approach,
which we follow, is that during the accumulation of data from the farthest subdomains that lie on the
boundary of the region prescribed by Rs (i.e. the last iteration of the inner loop of Algorithm 1), the data
from a new column j (non-existent in closer subdomains) is merged with the current local data only if
|Sjj | ≥ τ , for some threshold τ . This strategy essentially imposes some form of boundary condition on the

data communication algorithm to yield a better conditioned matrix Ŝ.
A typical MD code structure consists of an outer loop over the MD iterations during which atoms may

advance from one position to another. Each MD iteration consists of a series of inner iterations to solve the
electronic structure of the molecular system, for the current atomic positions. Within each of these inner
iterations, the current overlap matrix is assembled, and its inverse is computed by solving (21), in order
to compute the electronic density and update the solution to the energy functional. We solve (21) using
a preconditioned Krylov solver consisting of the GMRES accelerator [39], coupled with an incomplete LU
factorization (ILU) preconditioner. In practice, the preconditioner is only computed once at the beginning
of each MD iteration, and is reused for all the inner iterations within that MD iteration. In this work, the
number of inner iterations to update the electronic structure per MD iteration is O(10).

The preconditioner and linear system matrix in (21) are stored in compressed sparse row (CSR) format.
This allows for an easy and efficient assembly of the block matrix Ŝ in the approximate inverse algorithm. For
our numerical examples in Section 4, the ILU preconditioner used is the level-based ILU(0) preconditioner.
For each linear system solve, we assume convergence whenever the initial residual is reduced by a factor of
10−12. In practice, this relative residual tolerance is reached after about 5 iterations.

4 Numerical Results

We evaluate the performance of our algorithm on two condensed matter applications. The first problem is
a molecular system of polymers, with periodic boundary conditions. The initial problem is a cubic unit cell
of size 30.568 Bohr with 472 atoms (carbon and hydrogen), which results in 536 electronic orbital functions.
This problem is replicated by a factor of 2, 3, 4, 5, and 6 in each 3D direction, to generate larger test
problems with up to O(100K) atoms. The second example is a simulation of liquid water within a cubic unit
cell of size 23.46 Bohr. The initial problem consists of 192 atoms (i.e. 64 H2O molecules), which corresponds
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Figure 4: Plot of a single column error vs. block size for computing approximate inverse

to 256 electronic orbitals. For this example, the initial problem is replicated up to a factor of 8 in each 3D
direction, to generate larger test problems.

All runs for the results that follow were conducted on an IBM BGQ machine at the Livermore Computing
Center of the Lawrence Livermore National Laboratory.

4.1 Truncation error

Recall that Algorithm 1 is used to gather the data needed to build the block matrices used in computing the
approximate inverse. In general, the larger Rs is, the larger the resulting block matrix, which typically leads
to a more accurate approximation to the inverse. Figure 4 shows a plot of the error in one column of the
inverse corresponding to the entries of interest for that column, on the polymer problem. The initial system
has size of 472 atoms and 536 electronic orbital functions is replicated up to 4× in the X, Y, and Z directions
so that the resulting system consists of up to 30, 208 atoms and uses 34, 304 electronic orbital functions.
The figure shows the 2-norm of the error between the approximate inverse computed by using different
block sizes, and the exact inverse. The different block sizes are obtained by choosing Rs as different integer
multiples of Rc. The figure highlights two main observations: First, as expected, we see that the larger block
sizes yield more accurate entries for the approximate inverse. A second and less obvious, yet important
observation from these results is that the block size, needed to construct the inverse to a prescribed degree
of accuracy, remains the same irrespective of the global problem size. These results show that we can obtain
an approximation to the inverse for problems of arbitrarily large sizes, by inverting a small block matrix of
dimension independent of the global problem size. This is a direct consequence of the decay property of S−1,
and highlights the inversion algorithm’s potential to scale. For completeness, we note that once the size of
the region prescribed by Rs gets close to or larger than the size of the global domain, the submatrix Ŝ gets
close or equal to the global matrix S, and the error quickly converges to zero.

The above results highlight the effect of Rs on the error in the computed entries of the approximate
inverse. However, in a practical MD simulation, what is important is the effect of this error on the physical
quantities of interest, that is, on the atomic forces. In the following example, we evaluate the error on the
atomic forces introduced by approximating the elements of S−1. We do this by increasing the radius Rs,
using multiples of Rc, to assemble the block matrix for computing the approximate inverse. The error on
the atomic forces is then computed by comparing the results of each simulation against that of a simulation
that uses exact entries of S−1. In the results that follow, the cutoff radius, Rc, used to confine the electronic
orbitals is set to 9.0 Bohr, which has been previously shown to be large enough to achieve the accuracy
needed for these types of problems (see [18, 19]). Figure 5 shows an exponential decay of the error on the
forces for increasing Rs, for both the water and the polymer problems. In practice, an error in the forces
of about 4 × 10−4 or less is considered accurate enough. Thus, in the scaling tests that follow, we choose
Rs = 2Rc = 18 Bohr.
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4.2 Parallel scaling

Next, we assess the weak scaling performance of the inversion algorithm on the polymer problem. Here, the
initial problem is decomposed into a 3 × 6 × 6 processor grid. We scale the number of processors with the
number of atoms so that the number of MPI tasks per atom remains constant. Figure 6 shows the wall clock
times for computing the inverse for each problem size. For this particular case, our choice of Rs prescribes
that each processor communicates within a neighborhood of 5×9×9 processors (subdomains are not cubic).
Thus, as we scale up to sufficiently large problem sizes, each processor will perform a total of 20 (4 + 8 +
8) sends and receives to gather data to construct Ŝ. This results in a block matrix of size about 2400 for
each MPI task. The figure shows very good weak scaling up to 101,925 atoms using up to 23,328 MPI tasks.
In this weak scaling study, the asymptotic regime is reached at the second data point, where the problem is
large enough for the block principal submatrix Ŝ to be smaller than the global S.

We demonstrate the scalability of our algorithm on the problem of liquid water with up to 131,072
electronic functions (98,304 atoms), using 100,352 processors. This choice of the ratio of the number of
processors to electronic functions is chosen to be close to the strong scaling limit for this problem using the
current implementation of our algorithm, and to obtain a balance between parallel efficiency and a fast time
to solution. Figure 7 shows the strong scaling performance of our algorithm on the IBM BGQ machine. The
processor grid topology used in the following weak scaling study corresponds to an MPI task per electron
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function ratio of ≈ 0.8. Figure 8 shows the wall clock times for one MD step of the weak scaling study, as
well as the corresponding wall clock times for the inner iterations to compute the electronic structure within
each MD step. Here, each MD iteration requires approximately 9 inner iterations to compute the electronic
structure. Once the electronic structure has been computed, the forces on the atoms are computed and used
to update the atomic positions and positions. These additional operations, in addition to some setup cost
incurred at each MD step due in particular to the displacement of the localization regions, account for the
difference between the time for each MD step and the time for computing the electronic structure.

At the beginning of this study, the problem sizes are small, and we observe O(N3) scaling between the
first and second data points. However, as the problem sizes get larger, the profile begins to flatten out as
we enter the asymptotic regime of weak scaling. The results indicate that the electronic structure part of
the simulation exhibits excellent weak scaling. A careful observation of the scaling profile for the electronic
structure part of the simulation reveals that the time to solution is a little faster for large problem sizes. This
improvement in performance is primarily due to a reduction in the communication time for these problems.
We believe this behavior is because the larger problems are better mapped to the BGQ network architecture,
and therefore take advantage of more torus links for communication.

The overall MD simulation also shows good weak scaling, although some slow growth is observed. This
observed growth is because at present, unlike the electronic orbitals, some atomic information is replicated on
all the processors, merely out of convenience. For small problem sizes, this cost is not discernible. However,
as we scale to larger problem sizes, it becomes a bottleneck. We are currently working on improving our
implementation to alleviate this bottleneck. This, coupled with additional code optimization, in particular
in our implementation of sparse data operations, can lead to a reduction in the time to solution on the BGQ
system. We note that running the same example on a Linux cluster with a 2.6GHz Intel Xeon processor
gave a time to solution of less than one minute per MD step, up to the fourth data point (in Figure 8). We
did not include these results here since we did not have enough resources on the cluster to get data points
for larger runs. Threading will be necessary on BGQ to reach such a fast time to solution.

5 Concluding Remarks

We have presented in this paper a scalable algorithm for First-Principles molecular dynamics (FPMD) based
on the Kohn-Sham model of density functional theory (DFT). The computational model uses a general
non-orthogonal orbital formulation for the energy functional in the DFT equations. We impose some local
approximations to the electronic orbitals to obtain an O(N) approximation to the numerical solution of
the electronic structure. The energy functional formulation for general non-orthogonal orbitals in the DFT
equations requires the knowledge of selected elements of the inverse of the associated Gram matrix S. We
have presented a scalable algorithm for computing selected entries of the inverse of the overlap matrix using
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the approximate inverse strategy. We have also presented theoretical and numerical results that support the
accuracy of such an approximation.

The FPMD algorithm makes use of a domain decomposition framework and has a modest memory
footprint, which is beneficial for large-scale parallel computations on current and future computers with
millions of cores. An important ingredient for the efficiency of the parallel algorithm, and its potential to
scale, is the use of an efficient data communication strategy. In computing the numerical solution, all (non-
local) operations involve communication between only a subset of neighboring processors. A communication
algorithm that takes advantage of this nearest neighbor communication pattern is developed and used in the
computation of selected entries of S−1. As a result, there is in principle no limit to scaling for the FPMD
algorithm, and the numerical results presented demonstrate excellent weak scaling and good time to solution
for realistic problems up to O(100K) atoms using O(100K) MPI tasks.

Nonetheless, there remain a few computational challenges that require some attention. First, several
real-life applications require long-time MD simulations. As a result, the time to solution is important for
these applications. Although our numerical results show good time to solution for each MD iteration, the
current algorithm uses a purely MPI implementation. A faster time to solution may be achieved by using
threading within each MPI task, in particular on the IBM BGQ architecture. Second, an a priori error
estimator is needed to better model the error in the O(N) approximation. This is of particular importance
in MD applications since the electronic properties of a system may change over time and lead to a regime
where initial truncation parameters are no longer appropriate.

Clearly, computing unoccupied states in general is not compatible with this algorithm, as it would require
using a single particle Density Matrix instead of S−1 alone [16]. But if we want to determine the lowest
unoccupied state only and compute the band gap, this can be done in O(N) operations by computing the
lowest eigenvalue of the Hamiltonian restricted to the subspace orthogonal to the occupied states {φi}N

i=1.
Finally, we note once again that the algorithm presented in this paper is designed for systems with finite

band-gaps, that is insulators and semi-conductors. The water system used for the weak scaling study has
a large enough band gap so that the inner iterations to compute the electronic structure for each MD step
converges in O(10) iterations. Systems with smaller band gaps may require a few extra inner iterations per
MD step. The electronic structure calculation for metallic systems is also an important area of interest.
However, efficient O(N) algorithms for metallic systems are still a challenge, and are the subject of current
research.
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