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ABSTRACT

Random projection is a tried-and-true technique in signal process-
ing for reducing sensing complexity while maintaining acceptable
performance of downstream processing tasks. In this paper, we in-
vestigate random linear projection of point clouds followed by topo-
logical data analysis for computing persistence diagrams and Betti
numbers. In this first empirical study of its kind in the literature, we
find that Betti numbers can be recovered accurately with high proba-
bility after random projection up to a certain reduced dimension but
then the probability of recovery decreases to zero. We further inves-
tigate how the mean of the persistence diagrams from several random
projections can be used favorably in Betti number recovery. Our em-
pirical study includes both synthetic data as well as real-world range
image and respiratory audio data.

Index Terms— Betti numbers, persistence diagrams, random
projection, topological signal processing

1. INTRODUCTION

An important aspect of the data revolution that is happening today
is that huge quantities of various types of data are being produced
at an ever accelerating rate. This necessitates the development of
novel tools to analyze and understand this data. While geometric
methods focus on measuring and visualizing the size of data, topo-
logical approaches help us qualitatively understand the shape of data
and provide high-level summaries. For example, in Fig. 1(a), the
point cloud sampled from the circle can be topologically quantified
as having one connected component, and one 1-dimensional ‘hole.’
Topological data analysis is now starting to be used in a variety of
challenging signal processing applications ranging from sensor net-
works, to respiratory disease diagnosis, to social network analysis.

The data sampled from shapes in a high-dimensional space
equipped with a distance function are referred to as point clouds;
several approaches have been developed to infer the topology of the
shape from the point cloud. However, sensing and analyzing large,
high-dimensional, noisy point clouds possibly ridden with outliers
poses unique challenges. In this paper, we are interested in com-
puting the topological features of data from reduced-dimensional
measurements obtained with random projections [1]. This becomes
crucial largely from the sensing perspective, and also the storage
perspective in some scenarios, when the data is high-dimensional.

Specifically, we perform topological inference on point clouds
using random linear measurements obtained from them. Random
projections have been shown to preserve isometry in the data ap-
proximately [1]. Recently, this has been used to prove that they also
approximately preserve persistent homology [2]. However, so far
there has been no empirical analysis reported in the literature on the
effect of random projections on obtaining persistence. We perform
an extensive empirical analysis, and furthermore, we compute means
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Fig. 1. (a) Noisy point cloud from a circle in 2-dimensional space,
(b) persistence diagram for H0, (c) persistence diagram for H1.

of persistence diagrams obtained from multiple random projections
[3]. We show experimentally that by using mean persistence from
multiple projected versions of the data, we are able to recover ho-
mology cycles better than when using persistence from a single pro-
jection.

2. PERSISTENT HOMOLOGY AND BETTI NUMBERS

Let us denote the point cloud with T samples asX = {x1, x2, . . . , xT }.
A simplicial complex S can be built to approximate the topological
structure of X . We consider the samples X as vertices, and pro-
gressively add edges, triangles and high-dimensional cells creating
higher dimensional simplices that are connected to each other. The
simplicial complex is formally defined as the pair (V,Σ), where V
is the set of vertices, and Σ is a family of non-empty subsets of V ,
where each subset denotes a simplex, with the condition that σ ∈ Σ
and τ ⊆ σ, implies that τ ∈ Σ. Using the simplicial complex S,
we can compute the Betti numbers, βk(S), which are the number of
k-dimensional holes of the complex. For example, if S is obtained
from a circle as in Fig. 1, we have β0 = 1, which is the number
of connected components (or 0-dimensional holes), and β1 = 1,
which is the number of 1-dimensional holes. Clearly, βk = 0 for
k > 1. Formally. the Betti number βk(S) is the dimension of the
kth homology group of the complex, Hk(S) [4].

There are various approaches to compute simplicial complexes
from X . In the Čech complex with the scale parameter ε, denoted as
a Čech(X , ε), a simplex is created between a set of vertices G if and
only if there is a non-empty intersection of the closed Euclidean balls
B(xi, ε/2), ∀i ∈ G. In the Vietoris-Rips (VR) complex, V R(X , ε),
a simplex is created if and only if the Euclidean distance between
vertices belonging to every edge is less than ε. Hence a VR complex
is completely determined by the distance between the points in X .
Since both these complexes consider all the T points, they result in
a large number of simplices, thereby increasing the computational
complexity of topological inference. The witness complex proposed
in [5], overcomes this problem by computing the complex with only



L landmark points, where L � T . In this complex, an edge is
created between two landmarks if and only if there exists a witness
point in X whose two closest neighbors are those landmarks. In
the lazy witness complex, higher dimensional simplices are created
based on the 1-skeleton. Variants of the witness complex that depend
on a scale parameter ε, also exist [5]. Note that the scale parameter,
ε, will also be referred to as time.

The homological inference depends on the scale (time) at which
the complexes are constructed. Therefore, it is important to identify
the stable topological features across scales, i.e. that are persistent.
The persistent features provide a summary of the homological infor-
mation for many different values of ε at once. Considering only the
holes or the homology cycles, we can obtain persistence diagrams
for each Betti number that denote the birth and death times of each
homology cycle. Referring again to the example in Fig. 1, it can be
seen that the homology cycles that persist for a long time represent
the stable topological features. The diagram for Betti k is denoted as
Pk. Obtaining simplicial complexes at various scales and comput-
ing persistence diagrams involves a lot of computations even for a
moderate number of points. Therefore, the complexity is limited by
fixing the maximum scale as tmax and choosing a small set of sam-
ples, either randomly or adaptively from the point cloud to obtain
persistence diagrams. When the shapes are submanifolds, [6] dis-
cusses the conditions under which the homology can be inferred with
high confidence. Methods for obtaining linear size filtered simplicial
complexes, such that its persistence diagram is a good approximation
to that of VR filtration also exist [7].

3. STATISTICS ON PERSISTENCE DIAGRAMS

Since the process of constructing simplicial complexes and comput-
ing persistence diagrams involves sampling and numerical approxi-
mation, there is a need to eliminate the noise introduced in this pro-
cess to improve topological inference. For example, in Fig. 1(b),
clearly the homology cycles showing up close to the diagonal, be-
low the dotted noise threshold line, are born and die in a short time,
and hence are not significant. Eliminating the topological noise in
this case is equivalent to preserving only the homology cycles whose
difference between death and birth times are greater than a thresh-
old. Such topological signal processing strategies become important
when we attempt to extract and use topological features from real-
world data. Understanding the characteristics of the space of persis-
tence diagrams will help us develop more sophisticated topological
signal processing and statistical analysis methods.

In [8], the authors prove a stability property for the persistence
diagrams. In practical terms, we can expect that persistence dia-
grams obtained from two point clouds of two shapes that are close to
each other will be close. Furthermore, the space of persistence dia-
grams itself is a metric space endowed with the Wasserstein metric,
and it also allows for the definition of probability measures which
can be used to compute various statistical quantities [9]. In particu-
lar, the authors in [9] show that the Fréchet mean for a finite set of
persistence diagrams always exists. In [10], this idea is extended to
define a probabilistic Fréchet mean, that varies continuously for con-
tinuously varying diagrams. Another important result in this respect
is that the mean of a set of persistence diagrams is unique, whereas
the median need not be so [3]. Confidence intervals for rejecting the
noise from the signal in persistence diagrams are introduced in [11].

4. PROPOSED APPROACH

In order to examine the effect of random projections, we obtain per-
sistence diagrams from a randomly projected version, R(X ), of the
point cloud X . Each sample R(xi) ∈ R(X ) is the random projec-
tion of xi ∈ X ,∀i ∈ {1, . . . , T}, where R is the dimensionality
reducing random projection that preserves approximate isometry in
the Euclidean space. When the sensing budget is limited, random
projections can be beneficial in capturing essential topological infor-
mation at a low sensing and storage cost. Complexes can be directly
computed on R(X ), and since these depend only on the Euclidean
distance between the samples, the persistent homology will be ap-
proximately preserved. However, we note that the computational
complexity reduction achieved with random projections is not sig-
nificant, since computing the distance matrix is not the dominant
complexity step while obtaining the Betti numbers.

We will perform an empirical analysis of the probability of ac-
curate recovery of Betti numbers from the random projected point
cloud. Furthermore, we will also compute the Fréchet mean of mul-
tiple persistence diagrams, P (m)

k ,m = {1, . . . ,M}, obtained from
the random projected point clouds, Rm(X ),m = {1, . . . ,M}, for
the homology group k, and analyze the effectiveness of recovering
βk from the mean diagram P̂k. The mean persistence is obtained as

P̂k = argmin
Pk

M∑
m=1

W 2
2 (Pk, P

(m)
k ) (1)

where W2(., .) is the 2-Wasserstein distance between the two dia-
grams, and the minimum value of the objective is the variance. Com-
puting the 2-Wasserstein distance involves pairing each point in one
of the diagrams with a point in the other, and summing the squared
Euclidean distances between the paired points. One of the paired
points can be on the diagonal, since it contains homology cycles that
are born and die at the same time.

The outline of the algorithm to compute the mean persistence is
as follows [3]:

1. Initialize P̂k to one of the M diagrams, randomly.

2. Compute the optimal pairing between the points in P̂k to each
of the diagrams, P (m)

k ,m = {1, . . . ,M}, using the Hungar-
ian algorithm.

3. Update each point in P̂k, with the arithmetic mean over its
pairs in all the diagrams. Note that each point in P̂k is paired
with a unique point on each of the diagrams, {P (m)

k }Mm=1,
and one of the points in the pair can be on the diagonal.

4. Continue steps 2 and 3 until the objective in (1) converges.

5. EXPERIMENTS AND RESULTS

In this section, we present the experimental results of the approach
proposed in Section 4.

5.1. Data Sets and Experimental Setting

We conduct the experiment using three data sets: one synthetic data
set and two real-world data sets. The synthetic data set consists
of a point cloud sampled from the unit torus in four dimensions
with additive uniform noise drawn from the range [0, 1/4]. To this
4−dimensional data, we append 46 dimensions of uniform noise
drawn from the range [−1/20, 1/20]. This data set contains 10,000
points. The true Betti numbers for this data set are: β0 = 1, β1 =
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Fig. 2. Number of simplices in (a) torus, (b) range image, and (c)
wheezing audio data sets averaged over 50 trials.

2, β2 = 1, and all others zero. The first real-world data set has
15,000 vectors of 25 dimensions obtained from range image patches,
i.e. image patches indicating distance from the observer to objects in
the scene, as described in [12]. The Betti numbers for the range im-
age patches are found to be β0 = 1, β1 = 1, and all others zero.
The second real-world data set is a delay embedding from the audio
domain. It is derived from a clip of a wheezing patient. This data set
is 100-dimensional with 4,000 data points and ideally should have
Betti numbers β0 = 1, β1 = 1, and all others zero [13].

In the experiments, we sweep over two parameters: the reduced
dimension via random linear projection, and the number of data
points. The random projection matrices are drawn uniformly from
the Stiefel manifold [14], and the data points are randomly sampled
without replacement from the full data set. We use lazy witness
complexes for computing persistence diagrams with 75 landmarks
chosen in a sequential min-max way starting from a random initial-
ization. We compute persistence diagrams for 50 random trials at
each pair of reduced dimension and number of data points. For the
first two data sets, we set tmax = 0.25 and for the third, tmax = 0.6.

5.2. Results and Discussion

The average number of simplices that are created across the trials are
plotted for the three data sets in Fig. 2. The number of simplices has
a direct relationship with computation time. In the torus and range
image data sets, we see that the maximum number of simplices oc-
curs at a high number of points and intermediate reduced dimension.
In the wheezing audio data set, many simplices are found at very
low number of points and the pattern of the other two data sets oc-
curs in the remainder of the space. Computational complexity is
an important but secondary consideration, since random projection
affects only the computation of distance matrices, which is not the
dominant complexity step in obtaining persistence diagrams.

Fig. 3 shows the fraction of the trials in which we recover the
true Betti numbers, which is a sample estimate of the probability of
recovery. We calculate the Betti numbers by first capping the death
time of any homology cycle at tmax, and then counting how many
death time–birth time differences are greater than the noise thresh-
old: 0.1 for the first two data sets and 0.4 for the third data set.1 As

1These thresholds are empirically-determined; an alternative is to calcu-
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Fig. 3. Probability of correct identification of Betti numbers in (a)
torus, (b) range image, and (c) wheezing audio data sets estimated
using 50 trials.
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Fig. 4. Persistence diagrams of H1 of random trials of the torus data
set at reduced dimension 30 and 2000 data points.

would be expected, the further to the top right corner of the plots
we go, which involves ever greater sensing resources, the probabil-
ity of correct recovery goes to one. With the synthetic torus data
set, the probability of recovery exhibits a much more threshold-like
behavior in both parameters, whereas in the real-world data sets, the
degradation in this probability is much more gradual. Clearly, even
without sacrificing any probability of correct Betti number recovery,
it is possible to reduce a little bit of sensing complexity. Moreover,
if one is willing to sacrifice some of the probability of correct Betti
number recovery (from a single trial), then one can reduce the sens-
ing complexity even further. It turns out that the highest computa-
tional complexity in determining persistence diagrams, as revealed
by the number of simplices, tends to be at the points where the re-
covery probability is around 0.3 to 0.5, which is probably too low
for most applications anyway.

A common modus operandi in signal processing is to take sam-
ple averages for noise reduction. Here we examine the first homol-
ogy group of the torus data set which should have β1 = 2. Fig. 4
shows the persistence diagrams from the first three of fifty trials used
in estimating the values in Fig. 2(a) and Fig. 3(a) for a set of pa-
rameters that yields approximately 50% recovery of the true set of
Betti numbers. The first sample only has one point at death time
tmax whereas the other two samples have two each. The first sample
has two other points above the noise threshold whereas the others
have none. Thus, the estimate of β1 is three from the first sample
and is two from the others. The mean persistence diagram from the
first two samples, shown in Fig. 5, recovers the two salient points at

late confidence intervals [11].
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Fig. 5. Mean persistence diagrams of H1 of first (a) 2, (b) 3, (c) 4,
(d) 8, (e) 20, and (f) 50 random trials of the torus data set at reduced
dimension 30 and 2000 data points.

tmax but continues to have one other point above the threshold. In
mean persistence diagrams from larger numbers of trials, this extra
point remains when averaging three trials, is right at the threshold
for four samples, comes up above the threshold for eight trials, and
is correctly below the threshold for twenty and fifty trials. This ex-
ample illustrates that computing mean persistence diagrams is able
to improve Betti number recovery by eventually lessening the im-
pact of errors such as in the first sample. To illustrate this further, we
show plots of the probability for accurately recovering Betti num-
bers from mean persistence diagrams of three trials each in Fig. 6.
With all three data sets, the range of parameters over which we are
able to recover the Betti numbers with high probability is enlarged
via mean persistence diagrams. The average probability of recovery
across the parameter settings is 0.738, 0.610, and 0.455 for the three
datasets with mean persistence (Fig. 6), whereas it is 0.718, 0.566,
and 0.359 with individual persistences (Fig. 3).

6. CONCLUSION

Using empirical experiments, we have shown that random projec-
tions can be used for efficient sensing and storage, when the ultimate
objective to obtain persistence diagrams that describe the topology
of the data. To the best of our knowledge, this is the first work that
uses random projections on real datasets for topological signal pro-
cessing, and demonstrates the benefits in obtaining mean persistence
diagrams for removing topological noise. Future research directions
include incorporating prior knowledge of the geometry or the rough
topological structure to further reduce the sensing complexity and
using robust statistics on persistence diagrams to eliminate the spu-
rious homological cycles that may show up in persistence diagrams.
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