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Abstract

An investigation is made of a shear Alfvén wave resonator for burning plasma
conditions expected in the ITER device. For small perpendicular scale-lengths the
shear mode, which propagates predominantly along the magnetic field direction,
experiences a parallel reflection where the wave frequency matches the local ion-
ion hybrid frequency. In a tokamak device operating with a deuterium-tritium fuel
this effect can form a natural resonator because of the variation in local field
strength along a field line. The relevant kinetic dispersion relation is examined to
determine the relative importance of Landau and cyclotron damping over the
possible resonator parameter space. A WKB model based on the kinetic dispersion
relation is used to determine the eigenfrequencies and the quality factors of modes
trapped in the resonator. The lowest frequency found has a value slightly larger
than the ion-ion hybrid frequency at the outboard side of a given flux surface. The
possibility that the resonator modes can be driven unstable by energetic alpha
particles is considered. It is found that within a bandwidth of roughly 600 kHz above
the ion-ion hybrid frequency on the outboard side of the flux surface, the shear
modes can experience significant spatial amplification. An assessment is made of the
form of an approximate global eigenmode that possesses the features of a resonator.
[t is identified that magnetic field shear combined with large ion temperature can
cause coupling to an ion-Bernstein wave, which can limit the instability.

PACS: 52.35 Bj, 52.35 Qz, 52.50 Qt, 52.55 Fa, 52.55 Fi
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I. INTRODUCTION

It has long been established that in a plasma containing two ion species, the
perpendicular component of the cold-plasma dielectric tensor vanishes at the ion-
ion hybrid frequency [1,2],
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where w,; and Q; refer, respectively, to the ion plasma frequency and the ion
cyclotron frequency of species j. This hybrid frequency acts as a collective
resonance for waves propagating across the magnetic field, e.g., the compressional
Alfvén wave (or fast wave), and is utilized in schemes for heating the minority ion
species in magnetically confined plasmas [3-7]. In contrast, the shear Alfvén wave,
which is also referred to as the slow wave, the electromagnetic ion-cyclotron (EMIC)
wave, or the ion-ion hybrid wave by different communities, propagates
predominantly along the magnetic field. For this reason, the ion-ion hybrid
frequency acts as a parallel cutoff for the shear wave and not a resonance. This
property is seen from a simplified shear-wave dispersion relation, appropriate for
large perpendicular wave numbers &,

ki =kde, (1-45), 2)
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where k|| is the parallel wave number for a wave of frequency w. The vacuum wave

number is k, = w/c, with ¢, the speed of light, and the parallel and perpendicular
dielectric tensor components for a cold plasma are ¢ and ¢, respectively. Equation
(2) is valid for large perpendicular wave number, satisfying k, c/w,; > 1, so that
the perpendicular wavelength is much smaller than the ion skin-depth. When this
condition is violated, coupling to the compressional wave occurs, and the dispersion
relation must be reformulated with the off-diagonal component of the dielectric
tensor, &y, included.

Because of the wave cut-off, a propagation gap is created for a cold plasma
within the frequency range Q; < w < w;; over which the shear wave is evanescent,
where (), is the cyclotron frequency of the heavier ion species. This separates the
propagating frequency range for shear waves into two bands, w < ; and w; < w <
(1,. When a shear wave in the upper frequency band propagates into a region of
increasing magnetic field, the wave reflects where the wave frequency matches the
local ion-ion hybrid frequency. This reflection has been confirmed by experiments in
a linear device [8] and in small tokamaks [9, 10]. For this reason, a magnetic well
can form a natural resonator for the shear wave. This idea was first introduced in
the context of the earth’s magnetosphere, and a resonator spectrum was calculated
and compared to satellite observations [11]. Insufficient resolution existed in the



satellite measurements, and the existence of the resonator could not be confirmed.
Moiseenko and Tennfors [12], motivated by analogies to low-frequency toroidicity-
induced Alfvén eigenmodes (TAE), have considered the role of vanishing €, in
tokamak geometry. They identified a new class of high-frequency toroidal
eigenmodes that they named TLE (TAE-like eigenmodes), but they did not explore
the possibility of a resonator. An ion-ion hybrid Alfvén resonator has been verified
experimentally in the Large Plasma Device (LAPD) at the University of California,
Los Angeles (UCLA) [13]. In that study, shear waves were launched in a linear device
with a magnetic well configuration. The quality factors (Q) of the resonances were
observed to be between 11 and 18, a value much smaller than expected from cold
plasma considerations [14]. In a theoretical study that included both the effects of
the off-diagonal component of the dielectric tensor and finite-Larmor-radius (FLR)
effects, radial convection of the mode was also unable to explain the low quality
factors [15].

Due to the variation in magnetic field strength between the outboard and
inboard sides of a toroidal device, a resonator configuration is also naturally present
in a tokamak. A preliminary study by the authors [16] surveyed the properties of
such a resonator in a burning plasma. The study was limited to a one-dimensional
model that neglected Landau and cyclotron damping, and FLR effects. [t was
concluded that the resonator would be overmoded, and the modes would be
localized to the outboard side of the device. A subsequent study applied ray-tracing
techniques for parameters relevant to ITER to assess the complicated geometrical
effects on the resonator modes [15]. Finite-Larmor-radius effects were included to
determine their impact on wave propagation, but damping was excluded from the
analysis. [t was shown in [15] that the curvature of the field lines preferentially
increases the component of the wave vector anti-parallel to the curvature of the
field line. With the inclusion of FLR effects, this feature causes the reflection point to
change as the absolute magnitude of k, increases. This effect is most pronounced
for those modes amenable to ray-tracing, i.e., the resonator eigenmodes that have
relatively large quantum numbers.

The existence of an ion-ion hybrid Alfvén resonator in a fusion environment
would have relevance to the alpha-channeling concept [17]. Experimental evidence
of alpha-channeling has been reported in wave experiments conducted in the
Tokamak Fusion Test Reactor (TFTR). In these experiments, energetic deuterium
beam ions were used as test particles to examine their interaction with mode-
converted ion Bernstein waves [18,19]. Anomalously high loss rates of beam
particles were observed. It was proposed that the effect was mediated by an internal
eigenmode excited by the ion Bernstein wave (IBW) [20]. Further, the TFTR results
showed that fast-ion loss occurred at its greatest level when the mode-conversion
layer was close to the axis, but on the outboard side [18]. In principle, such features
could be associated with the excitation of the ion-ion hybrid resonator. The basis for
the conjecture is a theoretical study by Lashmore-Davies and Russell [21] that
showed that the upper-frequency branch of the shear wave can be driven unstable
by a superthermal ion distribution. Finally, in recent minority-heating experiments



on Alcator C-Mod, mode conversion into both shear waves and IBWs at the ion-ion
hybrid resonance occurred [22], leading to strong toroidal rotation of the plasma.
Numerical simulations have been performed to better understand this observed
mode conversion process [23].

[t is the aim of this study to describe the role of kinetic effects on the ion-ion
hybrid resonator and to assess the possibility of an instability driven by a fusion-
born alpha population. The results presented here should also guide further studies
of both mode-conversion processes and alpha-channeling scenarios.

The manuscript is organized as follows. Section II examines the kinetic
dispersion relation for the shear wave in the upper frequency band for parameters
relevant to a D-T burning plasma. Section III applies a one-dimensional WKB
analysis based on the kinetic dispersion relation for radial profiles from ITER
reference scenario-4, type-II [24]. The general eikonal structure of the modes is
considered, but in the analysis presented in this section, shear of the magnetic field
is neglected. The eigenfrequences of the trapped modes are determined, and kinetic
damping is assessed as a function of radius, perpendicular wave number, and mode
number. In Sec. IV, an instability due to a superthermal alpha-particle distribution is
assessed. The analysis considers the model distribution function for the alpha-
particles used by Lashmore-Davies and Russell [21] to calculate the temporal
growth, but here the relevant convective amplification is obtained. Section V
explores the effect of variations of the perpendicular wave number due to magnetic
field shear. Conclusions are presented in Sec. VI.

II. DISPERSION RELATION

Consider a warm plasma with two ion species: deuterium and tritium. The
confining magnetic field is chosen to point along the z-direction of a Cartesian
coordinate system, (x, y, z), with the wave vector lying in the x-z plane, k = k, X +
k) Z. The general dispersion relation can be written as

DsD; + Dy — 2k ky[kéey 65y + €4, (K2 — ki)
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with k2 = k2 + kﬁ. In these expressions, D and Ds represent the individual

dispersion relations of a pure compressional, and a pure shear root, respectively,
with Dy representing coupling between the two modes. The other terms in Eq. (3)
are associated with finite ion temperature and are first order or higher in the
Larmor radius. To simplify, it is first assumed that the wave frequency is on the
order of the ion cyclotron frequencies so that w~Q; K wp; K Wpe, .. Further, the
perpendicular wavelength, 1, is assumed to be much larger than the electron
Larmor radius, p,, so that k| p, < 1. This allows the electrons to be treated as cold
except in the parallel dielectric tensor component, ¢,,. Next, it is assumed that the
Alfvén speed is much larger than the ion thermal speed. This condition can be cast in
the form,

B(KG)? -
T(keV)n(cm~3) > 10 14' (7)
where B is the confining magnetic field in kiloGauss, T is the plasma temperature in
keV, and n is the electron number density. For an ITER-like plasma, B = 50 kG,
T ~ 10 keV,and n ~ 10'* cm3, so that the left hand side of Eq. (7) is on the order of
10712 and the condition is satisfied. Further, the toroidal field varies weakly
compared to the rapid decreases in temperature and density near the edge, and this
relation holds over the whole plasma column. Because of this condition, the off-
diagonal components of the dielectric tensor, &,, and ¢,,,, can be neglected. With
these assumptions, the dispersion relation is simplified to

DSDC + DX = O (8)

Expressions for the components of the dielectric tensor for a warm plasma can be
found in various textbooks, e.g. [25], and are given by

e = Z _Zm T " A= ZCxa), 9

= xx+zz pi _Z At (=02 (ni)) (10)

£ry z Z Ay (—x0iZ () (11)

eZZ=1—§i§z'<ﬁ:_>—z ’”Ao+zklz’l - Ok el a2
[ Ve i n#0




In the previous expressions, Z is the plasma dispersion function with argument

= (a) nf); )/\/_k”v the function, A,, is related to the modified Bessel function,
In, through the relation, A (/1 ) =1 (/1 )exp( —A; ) with argument 4; = kLp] , and the
Larmor radius defined as p; = ¥;/();. The thermal velocities of the relevant species

of mass m; are related to the temperature through v; = /T;/m;, and the Debye
wave number is defined by k,; = w,,;/7;. Finally, the subscript, j, can represent the
electrons, e, or the ions, i, and the cyclotron frequency of the electrons is taken to be

positive with the sign explicitly shown.

Equation (8) can be solved numerically for k;, as a function of k, and w in
order to examine the field-aligned propagation properties relevant to shear waves.
To do so, Newton’s method is used to converge upon a solution. An initial guess is
required, and this is chosen by finding the solution to Eq. (8) in the inertial limit, i.e.,
in the limit that k” — 0. In this limit, the components of the dielectric tensor are
independent of k|, and the plasma dispersion function can be replaced with its

asymptotic expression for large argument to yield,
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and the solution to the dispersion relation is given by
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where 8, = ¢/w,, is the electron skin depth. The appropriate sign must be chosen
for the shear root. It is not specified here as the choice depends on the value of the
wave frequency relative to the cyclotron frequencies of the individual species.



When Eq. (17) is set to zero, it can be solved for a frequency as a function of the
perpendicular wave number. This frequency is a generalization of the ion-ion hybrid
frequency at which reflection of the shear wave occurs; it includes FLR effects and
the coupling of the shear wave to the compressional wave. At this frequency, for
moderate values of k |, the wave propagates perpendicular to the magnetic field and
is essentially electrostatic in nature, resembling an ion Bernstein wave. However,
this mode still exists in the cold plasma limit when FLR effects are negligible and
exhibits properties of the shear wave away from this generalized ion-ion hybrid
frequency. Thus, Eq. (8) can be solved using the inertial solution as an initial guess
near this contour in (k,, w) space where the inertial limit is precisely valid and both
cyclotron and Landau damping are negligible. Discretizing the parameter space in
terms of frequency and perpendicular wave number, Eq. (8) can then be solved by
stepping outward from this contour using the closest known solutions to
extrapolate a guess for the adjacent point. In evaluating the plasma dispersion
function, a technique proposed by Weideman is used [26], supplemented with the
asymptotic forms for large argument.

The numerical procedure outlined previously is used to generate Figs. 1-3.
The plasma parameters are n, = 5.9x10'3 cm™3 and T, = 31.1 keV, with the
deuterium and tritium densities, n, = ny = n,/2, and temperatures, T, = Ty =
27.8 keV, and a background magnetic field of B = 53 kG. In Fig. 1, the real part of k;,
is examined. The top panel, Fig. 1(a), shows contours of the real part of the scaled
parallel wave number, k“vA/QT, with the scaled frequency, w/Qy, on the horizontal

axis and the scaled perpendicular wave number, k, §,, on the vertical axis, where 6,

refers to the electron skin-depth, and v, is the Alfvén speed. The portion of the
parameter space for which the wave is evanescent is represented by the dark (dark-
blue in color display) region; the border of this region represents the point at which
a parallel cutoff occurs. At small values of k §,, significant coupling to the
compressional or fast wave develops, and accordingly the wave propagates over the
entire frequency range. At intermediate values of k, §,, the cutoff frequency
approaches the value given by of the ion-ion hybrid frequency, w;;/Q; = /3/2 =
1.22. At large wave numbers, FLR effects become significant, and the cutoff
frequency approaches the cyclotron frequency of tritium. In the middle panel, Fig.
1(b), line-cuts of the contour plot are made at different values of k, §,.. The
horizontal axis is the scaled frequency, and the vertical axis, the real part of the
scaled parallel wave number. The cuts are made at the values k6, = 0.045 (solid),
0.145 (dashed), 0.245 (dashed-dotted), and 0.345 (solid with dotted markers). From
these line- cuts, the dependence of the cutoff frequency on perpendicular wave
number is clear. Further, the parallel wave number rises most rapidly at smaller
values of k| .. The bottom panel, Fig. 1(c), displays the argument of the plasma
dispersion function, labeled ¢, for the dominant terms that contribute to the
damping. The horizontal axis corresponds to the scaled frequency, and the vertical
axis, to {. For the electrons, represented by the black curves, Landau damping is
dominant, thus the parameter, { = x,,, is shown. For the ions, damping at the
fundamental cyclotron frequency is dominant; accordingly, { = x;; is displayed for



deuterium and tritium, the red and blue curves, respectively. The line styles
correspond to the same perpendicular wave number values displayed in the middle
panel. Damping is large for the electrons when the parameter, ¢, is close to unity,
with the inertial and adiabatic regimes corresponding to { > 1 and { < 1,
respectively. For the ions, cyclotron damping is greatest when { = 0, though
cyclotron damping is still significant when {~1 and becomes negligible when { > 1.
It is clear that the electrons are adiabatic over most of the frequency range. Strong
cyclotron damping due to tritium ions takes place over most of the frequency range,
with heavy damping due to deuterium also occurring, peaking at the cyclotron
frequency of deuterium, w/Q; = 1.5. Close to the wave cutoff, all of the damping
parameters diverge to infinity due to the vanishing of the parallel wave number,
indicating that the waves are undamped.

In Fig. 2, the imaginary part of k|, is examined. The top panel, Fig. 2(a), is a

contour plot of the imaginary part of the scaled parallel wave number with the
scaled frequency on the horizontal axis, and the scaled perpendicular wave number
on the vertical axis. In the bottom panel, Fig. 2(b), line-cuts are made of the top
panel at various values of the perpendicular wave number. Again, the line-styles
correspond to the same values of k, §, as in Fig. 1(b). At small values of k, §,, where
coupling to the compressional wave is strong, the damping is weak. As the value of
k, 6, increases and the wave begins to exhibit properties of the shear wave, the
damping becomes significant. As k, §, increases further, the absolute magnitude of
the damping decreases. To assess the effect of damping on the resonator, the
parameter,n = 2r Im(k”)/Re(k”), is evaluated; it measures the amount of damping

experienced in one parallel wavelength. This quantity is shown in Fig. 3. The top
panel, Fig. 3(a), is a contour plot of the relative damping, with the scaled frequency
on the horizontal axis and the scaled perpendicular wave number on the vertical
axis. The white curve corresponds to the value 171 =1. Signals in the region to the

right of this curve damp by more than one e-folding in a wavelength. The region to
the left of the white contour is weakly damped, and candidate resonator modes may
occur in this portion of the parameter space. The bottom panel, Fig. 3(b), shows line-
cuts of the top panel at different values of k, §,, with the line-styles corresponding
to the same values as in Fig. 1(b).

II1. WKB ANALYSIS

In analyzing the resonator modes, a cylindrical approximation of the
tokamak geometry is made. In this approximation, the magnetic flux surfaces are
concentric circles of radius, r, centered on the magnetic axis. The poloidal angle is 6,
and in these coordinates, the toroidal field has the dependence,

B
B,=——F—, (19)
1+ R Cos 0



where R is the major radius and By, is a characteristic value for the toroidal field. The
safety factor is defined by

B,

q(r) = RB (20)
p

The total magnetic field strength is given by

B3 ro\?
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In this expression, the small aspect ratio approximation is made, and it is sufficient
to approximate the total magnetic field strength as due to the toroidal field alone.
Within this approximation, the distance traversed by a field line is related to the
poloidal coordinates through the relation,

s =0+ R2q(r)? +r? = Rq(r)6. (22)

Profiles for the electron density, safety factor, and electron and ion temperatures
are found from simulation results reported in Fig. 41(c) and (d) of Gormezano et al.
[24]. The profiles were originally reported as functions of the scaled variable, x,
which relates to the flux coordinate, ®, through the relation x = (®/ma?B,)/?.1In
the cylindrical approximation, this reduces to x = r/a. The resulting profiles are
reproduced here in the cylindrical approximation as shown in Figs. 4 with the
minor radius chosen to be a = 200 cm. The top panel, Fig. 4(a), shows the electron
density (solid curve) and the safety factor (dashed curve). The vertical axis on the
left corresponds to the electron density, and on the right, to the safety factor. The
horizontal axis, common to both pannels, is the radius from the magnetic axis. The
bottom panel, Fig. 4(b), displays the electron (solid curve) and ion (dashed curve)
temperatures, with the vertical axis corresponding to temperature and the
horizontal axis to the radius from the magnetic axis. These profiles are used to
extract reasonable estimates of the type of behavior expected in a burning plasma.

With these profiles specified, a WKB method is implemented. In this section,
the effects of magnetic shear are neglected, and the perpendicular wave number, k ,
is assumed constant. The effects of shear are considered later in Sec. V. Because the
shear Alfvén mode predominantly propagates parallel to the magnetic field, the
modes are assumed to be localized about a radius, r. For this reason, a one-
dimensional model is adopted in which the spatial dependence appearing in the
wave equation is due to the variations in magnetic field strength along a field line,
from the outboard to the inboard side. In this approximation, the generic wave
equation takes the form,
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where W represents the characteristic amplitude of the shear wave. The
compressional wave is excluded in this formulation in an effort to determine the
intrinsic properties of the shear wave. Mode conversion effects should also be
described in a future comprehensive study of the trapped modes, but are not
considered here. The damping is assumed to be weak in this model and is treated as
a higher order correction in order to determine the quality factor, Q, of the resulting
modes. If, a posteriori, this assumption is violated, i.e., the resulting quality factor is
small, such modes cannot be considered candidate resonator modes. Thus, to
zeroth-order, the WKB quantization condition is given by

So(wn)
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where s, (w) is the distance along a field line, measured from the outboard side, at
which the wave is expected to reflect; it corresponds to the position determined
from Eq. (17) where k|| = 0. The value of k; is determined by solving Eq. (8) along
the field line trajectory. The constant, n, takes on integer values beginning at zero,
and corresponds to the quantum number of the trapped mode with eigenfrequency,
wy,- The WKB approximation is known to work best for modes with large quantum
numbers. For modes of small quantum number, an alternative formulation can be
used in which the parallel wave number is approximated locally as a parabolic
potential,

1
Re [Ki ()] =V(s) = V(0) + EV”(O)SZ. (25)

The well known quantization condition for such an effective potential is

2
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For the present application it is found that the difference between the fundamental
frequencies found by the WKB method and the parabolic fit differ typically by a
factor on the order of 0.1%. For this reason, in what follows the WKB method is
applied. However, an advantage in the parabolic approximation is that analytic
eigenfunctions result for the fundamental modes. These functions could be used in a
future study to construct approximate full-wave solutions for these modes.

V(0) = 2n + 1. (26)

To determine an approximate form for the quality factor, the axial WKB-
eigenfunction inside the well is first examined. This takes the form
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Utilizing the quantization condition given in Eq. (24), this can be rewritten as
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where the sign choice depends on the evenness or oddness of the specific mode, and
is unimportant for the present purposes. The form of the eigenfunction can be
interpreted as an incident wave from the left superposed with a reflected wave
traveling from the right. Variations in the amplitude are associated with the changes
in wave velocity. Considering k| to be complex at this point, the wave amplitude
decrease largely due to the phase factors present in the exponential functions. Upon
each round trip, the wave amplitude is reduced by a factor of

6_2 f_sgo Im [kll(sl)]ds’_ (29)

Thus, if a source is continually pumping the system with an input power of
P = w|¥,|?, the stored energy in the resulting wave is

%ol
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The quality factor is approximated as

1
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Although only kinetic sources of dissipation are considered here, the actual quality
factor in an experiment likely also exhibits a reduction due to radial convection of
the wave and mode conversion at the reflection point.

Figure 5 shows the calculated eigenfrequencies as a function of radius. For
these results, the magnetic field strength is given by Eq. (19) with the characteristic
strength of the toroidal field taken to be By = 53 kG, and equal concentrations of
deuterium and tritium are assumed with quasineutrality satisfied. The
perpendicular wavelength is taken to be 4, = 10 cm, which gives a scaled
perpendicular wave number of k; §, = 0.0431 at the magnetic axis. This scaled
value increases as the density slowly decreases towards the plasma edge. In the top



panel, Fig. 5(a), the horizontal axis corresponds to radial distance from the magnetic
axis, and the vertical axis, to frequency in MHz. The lower solid black curve, labeled
by w,, gives the fundamental frequency of the resonator at a given value of the
outboard radius of a magnetic surface. Due to the overmoding that occurs, the cutoff
frequency at the outboard position is in close proximity to this value. Immediately
above this curve, the red line, labeled by wq-,(, represents the frequency of modes
having a quality factor Q =20 . Above this red dashed line there is cross-hatching

(blue in color) that indicates the region of heavily damped modes. In practice the
frequency of candidate resonator modes lies in the narrow strip between the
bottom solid curve and the dashed line. The slanted green line labeled by wp.x
corresponds to the largest frequency for which a reflection could occur on the
inboard side, i.e., the cutoff frequency on the inboard side. At larger radii, this
frequency is greater than the deuterium cyclotron frequency on the inboard side,
and loses meaning. For this reason, the line is terminated when it intersects this
cyclotron frequency. For reference, the cyclotron frequency of deuterium on the
inboard side is represented by the top orange curve. From this display, it is clear
that within this description, long-lived resonator modes exist in a narrow frequency
bandwidth, of roughly 200 - 300 kHz, near the cutoff frequency on the outboard
side. In the bottom panel, Fig. 5(b), the number of trapped modes as a function of
radius is shown. The horizontal axis corresponds to the distance from the magnetic
axis, and the vertical axis, to the number of modes. The solid curve corresponds to
the maximum number of modes, 1,4, having quality factors, Q, greater than 20.
This number stays around 15-30 over the domain shown; modes with larger
quantum numbers are heavily damped and are not expected to be excited.

The quality factors of the fundamental modes calculated for the parameters
associated with Fig. 5 are found to be in the range of Q > 10° across the entire
plasma column. Such large values of Q are, of course, not realistic, and simply
indicate that wave-particle damping due to electron Landau resonance and ion
cyclotron resonance is negligible for these modes. To determine the realistic quality
factor for these modes, a consideration of radial convection of wave energy and
mode conversion processes is necessary.

Figure 6 displays the dependence of the quality factor on mode number. For
the solid curve, the parameters are the same as in Fig. 5, with the calculation
performed at r = 50 cm, which corresponds to an electron temperature of
T, = 31.1 keV and a scaled perpendicular wave number of k, §, = 0.0433. For the
dashed curve, the same parameters are used, with the exception that the ion and
electron temperatures are both decreased proportionally so that the peak electron
temperature on axis is 10 keV. This corresponds to an electron temperature of
T, = 8.39 keV at r = 50 cm, where the calculation is performed. Finally, the dash-
dotted curve is calculated with the same parameters as the solid curve, except that
the perpendicular wavelength is decreased to 4, = 3 cm, resulting in a scaled
perpendicular wave number of k, §, = 0.1443. As mentioned previously, wave-
particle interactions are negligible for low mode numbers; these undamped modes



will be limited in actual experiments by other processes. For definiteness, an
undamped mode is considered here to be a mode for which @ > 100. For this reason,
the vertical axis in Fig. 6 is scaled to have Q=100 as its maximum value. The
undamped modes correspond to n < 8 for the solid line, n < 13 for the dashed line,
and n < 1 for the dash-dotted line. The curves rise rapidly towards unrealistic large
values near the fundamental mode, n = 0. From Fig. 6 it is seen that decreasing the
temperature decreases the damping, as expected, and that decreasing the
perpendicular wavelength increases the damping. This is primarily due to the
decrease in the rise of the real part of k|, as shown in Fig. 2(b), which causes the

eigenfrequencies to shift away from the cutoff frequency. This upshift in frequency
leads to an increase in the relative damping, shown in Fig. 3(a). Figure 7 shows the
number of modes that are not heavily damped at r = 10 cm. The vertical axis
corresponds to the number of modes with Q > 20, and the horizontal axis, the
scaled perpendicular wave number. The parameters used are the same as those
used for Fig. 6 with the exception that the perpendicular wave number now varies.

Figure 8 illustrates the poloidal extent of the modes. The horizontal axis
corresponds to the radius of the given flux surface at which the calculation is
performed, and the vertical axis corresponds to the poloidal angular (in degrees)
extent of the corresponding mode. The solid curve corresponds to the fundamental
mode, and the dashed line corresponds to a mode for which Q = 20. The angle
spanned by the fundamental mode decreases monotonically, rising sharply towards
the magnetic axis. The fundamental mode is largely localized poloidally over all of
the flux surfaces, except in a very narrow region near the center. The dashed line
exhibits similar trends, except that it rises sharply near the edge. This is due to the
rapid decrease in the density and temperature of the plasma. While this mode spans
a much larger poloidal angle, it is still largely localized over most of the flux surfaces.

IV. INSTABILITY DUE TO SUPERTHERMAL ALPHA-PARTICLES

In this section a methodology similar to that introduced by Lashmore-Davies
and Russell [21] is used to assess the possibility that fusion-born alpha particles can
drive the resonator modes unstable. The difference in the present study is that
spatial amplification is considered for a fixed real frequency, and medium
nonuniformities are retained within a WKB description. Instability corresponds to
Im[k”] < 0, with Re [k”] > 0, i.e., the wave grows in the direction of propagation.

The alpha particles are assumed to be a perturbation on the wave
propagation properties, with the alpha particle density taken to be the expansion
parameter. Terms that are first order in this density are retained, and higher order

terms are neglected. To perform this expansion, the dielectric tensor components
0

are separated into a zeroth order contribution, ¢; i and a first order contribution,



si(jl). The components, xz and yz, do not have a zeroth order contribution, because

they do not enter into the zeroth-order dispersion relation, considered in Sec. II. For
this reason, the last three terms on the bottom line of Eq. (3) are neglected. Keeping
terms to first order,

Dc =D — kZel)), (32)

0
Ds = DI + e (k3eD — k3) + & (k2eX — keD)],  (33)

zz \ “xy

2
Dy = D + 2kZe)ely) (kZelD — k2) — ke (e ) (34)

where the zeroth order terms for Déo), Déo), and D)((O) are defined in Egs. (4)-(6), with
the dielectric coefficients evaluated with their zeroth order forms. With these
expressions, the dispersion relation, to first order, is

D=D® 4+ pW), (35)
0 0 0
p©® =pPp® 4+ p® (36)
DWW = —kgej(,;)Ds(o) + (kgség) — ki)[e,(é)Déo) + Zk(Z,S,(C;)e,(Cg,)

1 0 0 1 0 2 1 0 1 0
+£§Z)(k(2)e,(cx) - kﬁ)Dé ) kgeéz)(e,(cy)) — 2k, k, [kgsf,z)e,g )+ e,(cz)(k2 - kgej(,y))] .

y
(37)
Next, k| is similarly be expanded as k|| = kI(IO) + kl(ll)' Upon Taylor expanding D
about kI(IO)’ and solving for the first order correction,
@,
I oD
6k|| k(o)

This allows the first order correction to be determined for the zeroth-order mode
described in Sec. I1I. Instability arises in those portions of the device where

Im [kI(IO) + kl(ll)] < 0, indicating that drive from the alpha particles must overcome
the kinetic damping caused by the background plasma.

To model the fusion-born alpha particles, a ring-distribution is used. This
could have relevance for the core plasma of a tokamak in the immediate post-birth



phase before collisional relaxation can occur, and is therefore, of interest to the
alpha-channeling question. It takes the form,

1 L
j— 2v a
fa(0171) = e | 57— 802 = via) e (39)

where n, is the density of the alpha particles, and v, , and 7, are characteristic
velocities for the distribution. These velocities can be related to an effective
temperature through T, , = m,vi,/2 and T}, = maﬁﬁa/z, where T, + T)jq =

3.5 MeV, the energy of an alpha particle following a DT fusion event. This
distribution function is used to obtain the contribution to the dielectric tensor from
the alpha particles. The form of this contribution can be cast in terms of integrals
over the perpendicular and parallel velocity directions, which are readily evaluated
[25]. The result is
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where the notation used in Egs. (9)-(12) has been adopted, with the definitions of
Xne and p, generalized to x,, = (a) - an)/\/fk”ﬁ”a and p, = v,,/Q,, and where
Jn is a Bessel function with argument k, p,. The remaining undefined parameters
are,

JnJn (46)
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After examining the relative importance of the various terms presented in Egs. (40)-

(45), it is determined that the most important term for instability is s,(ci). This is not
surprising, because at these large values of k|, coupling to the compressional wave
is largely negligible. Upon examination of Eq. (39), it is apparent that the possibility
of amplification is determined primarily by the sign of P,,_;, with the fundamental
cyclotron frequency being the dominant contributor in this frequency range.

In order to making comparisons to the results of Lashmore-Davies and
Russell [21], we choose plasma parameters corresponding to r = 50 cm in Fig. 5:
B =49.1kG,n, =59%x102¥ cm™3,T, =31.1keV, T, = Tr = 27.8keV, T,, = 2 MeV,
T = 1.5 MeV, and n, = 0.01n,. The ion densities preserve quasineutrality
through the relation, n, = ny = n,/2 — n,. Figure 9 explores the possibility of
amplification for two values of k. On the horizontal axis is the scaled frequency,
w/Qr, and on the vertical axis is the imaginary part, Im[k”]. The solid and dashed

curves correspond to k, p, = 2.5and 4.5, k, 6, = 0.044 and 0.080, 4, = 9and 5 cm,
respectively. The local extrema of the curves immediately adjacent to the cutoff in
Fig. 9 occurs when x;,~ — 1, so that the alpha particle contribution possesses a
significant imaginary part but the background deuterium is still far from cyclotron
resonance, a conclusion which agrees with the work of Lashmore-Davies and
Russell [21]. From the sign of P;, the intervals of k, p,, which correspond to
instability, can be determined. These fall between the peak and successive zero of
the Bessel function, J;. The first two intervals are k, p, € (1.84,3.83) and k, p, €
(5.33,7.02). Itis seen from Fig. 9 that the value of k, p,, which is within the first
interval corresponds to strong instability, i.e., the curve falls below the y-axis for a
portion of the frequency domain. The value of k, p, that falls outside these two
intervals is damped. The second interval of k, p, for which J; < 0 exhibits much
weaker instability with Im[k”] reaching a minimum negative value roughly an order

of magnitude less than the solid line in Fig. 9. This is because of the larger cyclotron
damping that occurs in the background plasma at smaller perpendicular
wavelengths. A critical density for these two intervals of k, p, can now be



determined using the condition for marginal stability, Im [kI(IO) + kl(ll) = 0, where
kl(ll) is assumed to be at the critical density, n,.. So long as the perturbative model is

valid, kl(ll) is linear in n,. Thus, the marginal stability condition can be rewritten as

im |k + k() "‘“] ~0. (51)
n(l

This condition is scanned in frequency to determine the smallest critical density,
while choosing the value of k; for which P; is most negative within the interval of
interest. This procedure results in the critical densities n,/n, = 7.3x107° for the
first interval, and n,/n, = 3.6x1073 for the second, but it should be emphasized
that these densities are obtained at r = 50 cm, and these values will vary with
radius. Simulations of expected conditions for burning plasmas in ITER predict that
the alpha density will be 0.85% of the electron density on the magnetic axis [27].
This justifies the use of the alpha density as an expansion parameter. In the analysis
that follows, values of k, are chosen that fall in the interval of largest instability.

Next, the results of the stability analysis are related to the ion-ion hybrid
resonator in ITER. An amplification factor is defined as,

So

A=- flm[k”]ds, (52)

—So

indicating the exponential factor that a wave grows (or damps) during a single pass
through a resonator of total length 2so. If A > 0, this indicates that the drive of the
alpha particles is greater than the damping on the background plasma. In Fig. 10, the
imaginary part of k|, is displayed for five resonator modes at a radial position of

r = 50 cm, where the profiles specified in Figs. 4 are used. This corresponds to the
parameters, n, = 5.95x1013 cm™3, T, = 31.1 keV, and T; = 27.8 keV. The magnetic
field on the outboard side of the flux surface is B = 49.1 kG. For the alpha particles,
the same parameters are used as in Fig. 9. The perpendicular wavelength is chosen
to maximize instability drive, minimizing P; .The horizontal axis corresponds to the
distance spanned by the mode along a field line, and the vertical axis to the
imaginary part of k|, with both the zeroth order term and first order correction

included. The dashed, solid, and dashed-dotted curves correspond to three different
trapped modes, n = 7,17, and 27 with amplification factors, A = 2.6,3.1,and 2.6,
respectively. At this position, the n = 2 — 34 modes have positive amplification
factors and exhibit a narrow frequency range of f = 30.38 — 30.96 MHz, with

n = 17 the most unstable. The spatial undulations of the growth coefficient seeing
in Fig. 10 arise due to the lengthening of the resonator, maximizing cyclotron
resonance with the alpha particles, and minimizing cyclotron damping on the
background plasma. At small n numbers, cyclotron resonance with the alpha
particles is not possible because k| is too small over the resonator region. Thus, the



first unstable mode appears at n = 2. As the mode number increases, the mode
comes into cyclotron resonance with the alpha particles and the resonator-length
increases, leading to maximum amplification at n = 17. As the mode number
increases beyond this value, cyclotron damping on the background ions becomes
dominant and inhibits amplification of the resonator modes.

In order to illustrate the frequency bandwidth of amplified resonator modes
at different radii, Fig. 11 displays the amplification factor, 4, versus frequency at
four different radii. The four solid curves correspond to r = 25, 50, 100, and 150 cm,
and are labeled accordingly. At each radius, the bandwidth of the amplified modes is
roughly 600 kHz, with the frequency of greatest amplification shifting to lower
frequencies at larger radii, as expected from the eigenfrequency outline in Fig. 5(a).
Amplification of the modes is seen to increase towards the core and the edge. The
increase towards the core is a geometrical effect, which lengthens the resonator.
The increase towards the edge is due to decreased damping due to the lower
temperatures; however, the density of the fusion-born alpha population should
significantly decrease at these larger radii, likely limiting the amplification
experienced by the modes. Finally, it should be mentioned that while the amplified
frequencies are shown only at four different radii, the radius of the flux surface is a
continuous variable. For this reason, the eigenfrequencies of the resonator become a
continuous function of radius, and amplified frequencies for the entire plasma
column can vary over several MHz.

V. EFFECTS OF SHEAR

To explore the effects of magnetic field shear, an attempt is made to
determine the structure of the eigenmodes in the global geometry of the tokamak.
To do so, an eikonal form for the wave field is assumed, similar to that which is
commonly used in ballooning-mode analysis. This takes the form

E = Ege'¥, (54)

where ) is the rapidly varying eikonal and E; is the eigenvector which corresponds
to the shear Alfvén wave root. The amplitude of the eigenvector, Eg, is assumed to
vary much slower than . In this approximation, the wave number is related to the
eikonal through k = Vi). The poloidal coordinates are defined in the cylindrical
approximation as in Sec. III to be (r, 8). The toroidal angle is taken to be ¢. This
allows for the eikonal to be written as

Y = f k,(r,s)ds + m[¢p — q(r)(6 — 6,)] + k.1, (55)

where m corresponds to a Fourier decomposition of the modes in the toroidal
coordinate. This is done because azimuthal symmetry of the equilibrium profile is
assumed. Further, k,. is assumed constant, corresponding to the radial wave number,
and s is a coordinate, which measures the relative distance along a respective field



line. Coordinate surfaces are defined in a similar manner to nonlinear simulations
of tokamak turbulence using flux tubes [28]. The orthogonal coordinate surfaces are
described by the variables, r, corresponding to a unique flux surface, ¢ = ¢ —
q(r)(0 — 6,), which, for constant r, uniquely specifies a field line, and s, defined to
be orthogonal to the other coordinate surfaces; s = 0 is chosen to correspond to the
outboard side of the tokamak. An approximate form for s is given in Eq. (22). From
this form, it is apparent that if a Fourier decomposition of Eq. (55) is performed in
the poloidal angle through the basis functions, exp(il8), the result would contain
many values of [ because the modes are poloidally localized to the outboard side.
The quantity k| is independent of a, because, for fixed r and s, the dispersion
relation is invariant with respect to the field line chosen. With Eq. (55), the wave
vector is determined to be,

k = kb + k.t + k,F, (56)
B q(r)
kk=m—=m——-, (57)
RBp r
]
= o U k“ds] —mq'(r)(6 — 6,) + k., (58)

where the unit vectors are £, normal to the flux surfaces, t = &3 Bp/B -0 B:/B, lying
in the geodesic direction,and b = ¢ B,/B + 8 B, /B, lying parallel to the magnetic

field. The perpendicular wave number, k, = \/k? + k2, is now seen to vary with
position. It should be mentioned that since { lies predominantly in the 8 direction, k,
can be approximately interpreted as the poloidal wave number. Further, choosing m
to be an integer preserves periodicity in the toroidal direction. Subtle issues
involving periodicity requirements for the poloidal angle are unimportant to the
trapped modes examined here, because they exhibit strong localization in the
poloidal direction.

To apply this method, an iterative process is used in which the variable s is
first discretized. The outboard location, s = 0, is chosen as a starting point at which
the value of k,, is specified. The new value of k,, is computed at the adjacent grid
point using the value of k| at the initial point. This new value of k,, is then used to

compute kj; at the new point, thus the method resembles a finite difference scheme.
Using Eq. (22) to express Eq. (58) as a function of s, yields

4 mq'(r)
kn :alif k”dS:l—W(S—SO)-Fkr. (59)

With this form, the difference scheme becomes



KUD = O 4

ak(j) '
I _ma (r)] ds. (59)

or Rq(r)

For definiteness, 6, and k, are defined to vanish at the outboard location. This is
done to minimize radial propagation of the mode so that perpendicular propagation
initially occurs solely in the geodesic direction. As the wave evolves, it develops a
nonzero component of k,., which causes the energy to travel radially because of the
non-ideal feature of the shear Alfvén waves in this regime.

First, to provide insight into the role of magnetic shear, the methodology is
applied to an idealized cold plasma. Figure 12 illustrates the calculated parallel and
perpendicular wave numbers as a function of the variable s. The magnetic well is
examined at the radius v = 50 cm, with electron density, n, = 5.9%1013 cm™3, and
safety factor, ¢ = 1.45. The frequency of the wave is chosen to be w = 1.01wy;,
where w;; is given by Eq. (1) with the cyclotron frequencies evaluated at s = 0. The
solid, dashed, and dash-dotted curves in the top and bottom panels correspond to
the m-numbers, m = 4, 8, and 12. The choice of m results in a minimum value for
the absolute magnitude of k; because k; is unaffected by the magnetic shear, as
seen in Eq. (57). Increasing m causes the wave to begin with a larger initial k, thus,
minimizing coupling to the compressional wave. In the top panel, Fig. 12(a), the
vertical axis corresponds to kﬁ, and in the bottom panel, Fig. 12(b), the vertical axis

corresponds to the scaled perpendicular wave number, k, §,. It is seen from the top
panel that the there is little variation in the cutoff point for the three cases. This
arises because, in the cold plasma case, variations in the cutoff position are caused
by coupling to the compressional mode. At the cutoff location, the effect of magnetic
shear increases the value of k,; sufficiently that this coupling is weak. The degree to
which the value of k| §, changes is largely determined by the first term on the right-
hand side of Eq. (58), because, from Fig. 4(a), it can be seen that the derivative, q' (1),
is very small at the flux surface being examined. The behavior illustrated by Fig. 13
indicates that resonator modes can clearly exist for cold plasma conditions.

Next, the effects of finite ion temperature in the presence of magnetic shear
are considered. Figure 13 is the analog of Fig. 12, but at a slightly lower frequency,
w = 1.005w;;, and with ion temperature included. For this case, m = 4 is chosen for
both displays. The ion temperature at this flux surface is T; = 27.8 keV, and
corresponds to the solid line in both panels. For the dashed line, the ion
temperature is artificially lowered to T; = 7.0 keV, to provide a comparison. It is
found that for temperatures below T; = 2.8 keV the cold plasma result shown in Fig.
14 is recovered, but it is not shown. The top panel, Fig. 13(a), illustrates coupling to
an ion-Bernstein wave (IBW), as evidenced by the lobes that appear in the display.
The appearance of these lobes causes an increase of both the length of the resonator
and of the area under the curves shown in this panel. When magnetic shear and FLR
effects are included, the quantization condition, Eq. (24), causes the value of the
eigenfrequency to decrease for a given n. The bottom panel, Fig. 13(b), illustrates
the corresponding increase in the value of k, . The variations in k| have two



significant consequences. First, the damping of the wave increases with increased
k,.Second, the instability driven by the alpha particles can be tuned and detuned
depending on the local value of k. Such a spatial variation is expected to reduce the
amplification factors reported in Sec. [V. However, many different modes can be
amplified at each poloidal position, and subsequently can carry the energy to other
locations.

VI. CONCLUSIONS

The present investigation of an ion-ion hybrid Alfvén resonator for D-T
burning plasma conditions expected in the ITER device is motivated by well-
established experimental observations. In a large, linear magnetic confinement
device, operating with plasmas having two ion species, shear Alfvén waves have
been measured to reflect at the position where the wave frequency equals the value
of the ion-ion frequency [8]. In the same device, but operating with a magnetic well
configuration, this reflection property has been used to demonstrate the formation
of resonator modes [14]. In a research tokamak [9], waves launched by a small
antenna in a hydrogen-deuterium plasma have been observed to experience guided
propagation along field lines, and to exhibit strong poloidal localization determined
by the value of the ion-ion hybrid frequency. The present analytical and modeling
study has explored how the challenging environment of burning plasmas modify the
trapping properties of such modes.

A detailed study of the kinetic dispersion relation for shear Alfvén waves,
including coupling to the compressional mode, has been made for the relevant
burning plasma conditions. It is identified that the high ion temperatures introduce
a variation of the reflection points of the resonator modes with perpendicular wave
number. A one-dimensional WKB analysis based on the kinetic dispersion relation
has been used to determine the eigenfrequencies of trapped modes. It is found that
ion cyclotron damping limits the possible resonator modes to a narrow bandwidth
(on the order of 500 kHz) above the local ion-ion hybrid frequency on the outboard
side of a given magnetic surface. Within this bandwidth several weakly damped
resonator modes can be found. The modes experience strong poloidal localization
(ranging from 10 to 50 degrees) about the midplane. The spatial amplification of
resonator modes driven by energetic, fusion-born alpha particles has been
considered. The alpha particles are modeled using a ring distribution, which is
relevant to the post-birth phase of the alpha particles before collisional relaxation
occurs. It is determined that such a ring distribution can effectively couple energy
into shear Alfvén modes, resulting in roughly three e-foldings of amplification in one
pass through the resonator.

A preliminary assessment of the effects caused by magnetic shear has been
made. The primary effect is the increase in the value of the perpendicular wave
number as the shear Alfvén wave propagates along the resonator. Under cold



plasma conditions, this effect prevents energy transfer to the compressional mode,
and, in a sense, provides for a more robust resonator. But it is found that such
behavior pertains to ion temperatures below 2.8 keV. For larger ion temperatures
the magnetic shear causes the Alfvén wave to couple to an ion-Bernstein mode. This
in turn lengthens the resonator and reduces the reflection efficiency. The increase
in the value of k, also can increase the damping along the propagation path,
although this effect may be offset somewhat by the decrease of k|| as the wave
approaches the cut-off point. The instability drive by the alpha particles can also be
affected by the variations in k, . This can lead to spatial tuning and detuning of the
wave resonance with the alpha particle population, possibly reducing the
amplification factors reported.

In summary, the presence of an ion-ion hybrid Alfvén resonator has unique
signatures that may be sampled in future burning plasma experiments. The results
of this investigation provide clear guidelines for comprehensive studies of related
phenomena (e.g., plasma rotation, alpha channeling) that should be based on
advanced computational techniques that expand on the present frontier RF codes
such as AORSA [29] and TORIC [30].
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Figure Captions
Figures

Fig. 1. (Color online) Kinetic dispersion relation of the shear Alfvén wave for
burning plasmas expected in ITER. Magnetic field strength is 53 kG, electron density
is 5.9%1013 cm™3, electron temperature is 31.1 keV, with equal concentrations of
deuterium and tritium with temperatures of T, = T = 27.8 keV. Horizontal axes
are the frequency scaled to the tritium gyrofrequency, w/Qy. (a) Contour plot of real
part of scaled parallel wave number, k;v,/Qr, with scaled perpendicular wave
number, k, §,, on the vertical axis. Coupling to compressional wave is seen at small
k, &.. Cutoff frequency approaches ion-ion hybrid frequency, w;;/Q; = 1.22, at
intermediate values of k, 6, and due to FLR effects, bends towards the tritium
cyclotron frequency. (b) Line-cuts of panel (a). The cuts are made at k, §, = 0.045
(solid), 0.145 (dashed), 0.245 (dashed-dotted), and 0.345 (solid with dotted



markers). Downward shift of cutoff frequency with increasing k|, §, is clearly seen.
(c) Arguments of plasma dispersion functions illustrating relative importance of
electron Landau and ion-cyclotron damping. Line-styles correspond to same values
of k, 8, as in panel (b). Black curves, labeled “electrons”, correspond to electron
Landau damping for which { = |a)/\/§k”17€ | Red and blue curves, labeled
“Deuterium” and “Tritium”, correspond to tritium and deuterium cyclotron damping,
respectively, for which { = |(a) — Qi)/\/fk”ﬁe | Cyclotron damping is dominant

over most of the frequency range except near the cutoff.

Fig. 2. (Color online) Imaginary part of parallel wave number for parameters used in
Fig. 1. Horizontal axes are the scaled frequency, w/Qr. (a) Contour plot of imaginary
part of kv, /Qr with scaled perpendicular wave number, k, &, on the vertical axis.

(b) Line-cuts of panel (a). Line-styles correspond to same values of k, §, in Fig. 1(b).

Fig. 3. (Color online) Effective damping experienced in one wavelength, n =
2 Im(k”)/Re(k”), for parameters used in Fig. 1. Horizontal axes are the scaled

frequency, w/Qr. (a) Contour plot of n with scaled perpendicular wave number,
k6., on the vertical axis. The value n = 1, is shown by the white contour. Regions to
the right of this contour are heavily damped, and regions to the left illustrate where
candidate resonator modes exist. (b) Line-cuts of panel (a). Line-styles correspond
to same values of k, §, in Fig. 1(b).

Fig. 4. Radial profiles of plasma parameters used in analysis. Profiles determined
from Fig. 41(c) and (d) of Ref. 24, adapted to a cylindrical approximation for the
tokamak geometry. The horizontal axis corresponds to radius from the magnetic
axis. (a) Radial dependence of electron density and safety factor. The left vertical
axis corresponds to electron density (solid curve). The right vertical axis
corresponds to the safety factor (dashed curve). (b)Radial dependence of electron
and ion temperatures. The left vertical axis corresponds to temperature in keV. The
electron and ion temperatures correspond to the solid and dashed lines,
respectively. The temperatures of deuterium and tritium are assumed to be equal.

Fig. 5. (Color online). Radial dependence of possible resonator parameters.
Horizontal axes correspond to radius from magnetic axis. Electron density, safety
factor, and electron and ion temperatures are given in Fig. 4. Magnetic field strength
is given by Eq. (19) with B, = 53 kG and R = 621 cm; perpendicular wavelength is
A, =10 cm, corresponding to k, §, = 0.043 at the magnetic axis. (a) Radial
dependence of relevant frequencies. Vertical axis corresponds to frequency in MHz.
Bottom black curve corresponds to the fundamental eigenfrequency in the
resonator, wy. Red curve corresponds to frequency of modes having Q = 20, wg=zo.
The slanted green line, labeled w44, corresponds to the cut-off frequency on the
inboard side; waves in the blank region to its left are not trapped. This frequency
terminates when the deuterium cyclotron frequency on the inboard side,
represented by the top orange curve labeled, Qp jnpoarq, because of heavy cyclotron
damping. The blue hatched region, labeled “Damped”, corresponds to strongly



damped modes with Q < 20. (b) Vertical axis corresponds to the number of long-
lived modes with Q > 20.

Fig. 6. Dependence of the Quality factor, @, on resonator mode number. The
horizontal axis corresponds to the mode number, and the vertical axis, to Q. The
plasma parameters used for the solid curve are the same as those given in Fig. 5
evaluated at r = 50 cm; the electron temperature is T, = 31.1 keV, and the scaled
perpendicular wave number, k, §, = 0.0433. The dashed curve uses the same
parameters, except that the electron and ion temperatures are decreased
proportionally, so that T, = 8.39 keV. The dash-dotted curve, similarly, uses the
same parameters as the solid curve, except that k, §, = 0.1433. In reality, modes
with Q>100 are essentially undamped by wave-particle interactions and would be
limited by some other mechanism.

Fig. 7. Number of long-lived modes as a function of scaled perpendicular wave
number. The horizontal axis corresponds to the scaled perpendicular wave number,
k, 6., and the vertical axis, to the number of modes with Q > 20, ny,,. The rapid
decrease is due to increased cyclotron damping as k, increases.

Fig. 8. Poloidal extent of the trapped modes. Horizontal axis corresponds to the
radius, 7, and the vertical axis, to the size of the well measured in poloidal angle, A8.
The reflection points occur at 8, = + 46 /2. The solid curve corresponds to the
fundamental mode, and the dashed curve, to a mode for which Q = 20. The poloidal
extent of long-lived modes falls between the two curves. The increase towards the
magnetic axis is a geometrical effect, while the increase in the dashed curve towards
the edge is due to rapid decreases in plasma density and temperature.

Fig. 9. Imaginary part of k| due to a ring-distribution of alpha particles for different
values of k| . Calculation performed for a homogeneous plasma with parameters
corresponding to Fig. 4 at position, r = 50 cm on the outboard side. This
corresponds to magnetic field, B, = 49.1 kG, electron density, n, = 5.9x103 cm~3,
electron temperature, T, = 31.1 keV, and ion temperatures, T, = T; = 27.8 keV.
Equal concentrations of deuterium and tritium are assumed. The alpha-particle
distribution is described by Eq. (39), with temperatures, T, , = 2 MeV and

T} = 1.5 MeV, and density, n, = 0.01n,. On the horizontal axis is the scaled
frequency, and on the vertical axis, the imaginary part of the parallel wave number,
Im k. The solid and dashed curves correspond to A, = 9 and 5 cm, respectively.
Instability drive is present when Im k| is negative, for the solid curve, and is caused
by a negative value of P; in Eq. (40).

Fig. 10. Imaginary part of k|, for different resonator modes within one well. The
background plasma parameters are the same as in Fig. 5 evaluated atr = 50 cm,

and the alpha distribution parameters are those used in Fig. 11. The horizontal axis
corresponds to distance along a field line, and the vertical axis, to the imaginary part
of k”. The dashed, solid, and dashed-dotted curves correspond to the mode numbers,



n = 7,17,and 27 with amplification factors, A = 2.6, 3.1, and 2.6, respectively. The
mode with largest amplification is n = 17. For higher mode numbers, damping
towards the center limits the growth, and at lower mode numbers, the well
decreases in length, limiting total amplification.

Fig. 11. Amplification factors at different radii. The background plasma parameters
are the same as in Fig. 5 evaluated at r = 50 cm, and the alpha distribution
parameters are those used in Fig. 11. On the horizontal axis is the frequency range of
the amplified modes in MHz, and on the vertical axis, the amplification factor. The
individual curves correspond to r = 25,50,100,and 150 cm, and are labeled
accordingly. The continuous decrease in the frequency band results in a spread of
several MHz over which the resonator can be amplified across the plasma. The
increase in A towards the magnetic axis is a geometrical effect, which lengthens the
well. The increase towards the edge is due to the colder background plasma. In
reality, this increase will be offset by a decrease in alpha particle density towards
the edge.

Fig. 12. Effects of magnetic shear on resonator modes in a cold plasma. The
background plasma parameters are as in Fig. 5 evaluated at r = 50 cm, except that
the plasma temperature is artificially set to zero. The frequency of the wave is

w = 1.01w;;, where w;; is given by Eq. (1), with the cyclotron frequencies evaluated
at the outboard side. The horizontal axes correspond to distance along a field line, s.
The solid, dashed, and dash-dotted lines correspond to m = 4, 8,and 12. (a)
Dependence ofkﬁ. (b) Dependence of k, §,. Both panels show that the reflection
point is largely independent of k. As m increases, the magnetic shear more
effectively changes the value of k|, resulting in a distorted profile for kﬁ.

Fig. 13. Effects of magnetic shear on resonator modes in a hot plasma. The
background plasma parameters are as given in Fig. 5, evaluated at r = 50 cm, with
m = 4 and the ion temperatures set to 27.8 keV and 7.0 keV for the solid and dashed
lines, respectively. The frequency of the wave is w = 1.005w;;. (a) Dependence of k|2|.
(b) Dependence of k, §,.. The difference in cut-off points between the solid and
dashed lines is attributed to the reduction in the Larmor radius. If the temperature
is further decreased, the result approaches the cold plasma behavior shown in Fig.
12.
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