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A new in–flight radiography platform has been established at the National Ignition Facility (NIF) to measure
Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) instability growth in inertial confinement fusion (ICF)
capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway
to measure the growth of pre–imposed sinusoidal modulations of the capsule surface, as a function of wave-
length for a pair of ignition–relevant laser drives: a “low–foot” drive representative of what was fielded during
the National Ignition Campaign (NIC) [1] and the new high–foot [2, 3] pulse shape, for which the predicted in-
stability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC–type,
low–foot, drive and modes 60 and 90 for the high–foot drive. The measured growth is consistent with model
predictions, including much less growth for the high–foot drive, demonstrating the instability mitigation aspect
of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data
it generates for the on–going ignition effort at NIF.

I. INTRODUCTION

We present a new experimental platform for measur-
ing Rayleigh–Taylor (RT) [4–6] and Richtmyer–Meshkov
(RM) [7–9] instability growth in inertial confinement fu-
sion (ICF) [10–12] capsules at the National Ignition Facility
(NIF) [13]. These hydrodynamic instabilities can significantly
lower ICF capsule performance by degrading the ablator’s
ability to compress the fusion fuel and/or by mixing ablator
material into the fusion fuel [10–12]. Our work was moti-
vated by observations of high levels of fuel–ablator mixing in
many of the implosions studied during the National Ignition
Campaign (NIC) [14–16]. One purpose of our experiments
is to compare direct measurements of ICF capsule RT/RM
growth with the simulations used to predict the growth be-
fore NIC [17], as part of the effort to understand why the NIC
capsules failed to approach ignition conditions as ignition–
relevant implosion velocities were reached [1].

The source of the discrepancy between expectations and re-
ality is not fully understood. 2D simulations can be tuned to
match much of the NIC performance data by artificially mul-
tiplying the measured capsule surface roughness by factors of
3–5 and/or by artificially pre–mixing ablator material into the
fusion fuel [18]. Taken literally, this implies a level of insta-
bility growth much larger than simulated, or an initial condi-
tion seeding the growth much larger than currently understood
from the capsule surfaces, or some other internal structure.
However, 3D simulations [19], and recent measurements in-
dicating the importance of low–mode asymmetries [20], the
capsule support tent [21], and hot electron preheat [22], sug-
gest the poor performance of the NIC implosions could be a
combined effect of mix and several other non–ideal features.
Therefore, both the refinement of instability models and the
mitigation of instability effects are expected to be important
aspects of ignition design moving forward. The NIC insta-

bility models have been validated at lower energy densities
through Nova laser experiments involving x–ray driven pla-
nar foils with pre-imposed single and multimode perturba-
tions [23–28] and similar experiments in converging geome-
tries [29, 30]. Our experiment was developed both to extend
this validation status into the high energy density regime rel-
evant for ignition and to provide a platform for evaluating the
effectiveness of mitigation strategies.

The experimental geometry (Fig. 1) involves a plastic
capsule, with a sinusoidal ripple machined on its outer sur-
face, mounted on the tip of a cone in a gold, keyhole–type
hohlraum [31]. 184 of the 192 NIF laser beams are focused
on the hohlraum walls generating soft x–rays which drive the
capsule, with peak drive corresponding to radiation tempera-
tures around 300 eV . The remaining 8 beams are focused on
a 12.5 µm thick vanadium foil outside the hohlraum to gener-
ate 5.4 keV backlighter x–rays which radiograph the capsule
in–flight. The backlighter x–rays enter the hohlraum through
the cone; pass through the rippled capsule surface; and exit
the hohlraum through a window towards a gated x–ray cam-
era [32].

As the capsule implodes on the cone, the perturbation de-
velops from a sinusoidal ripple into a spike–bubble pattern
(Fig. 2ab). Simulations predict the ripple increases in
amplitude while the density also changes due to compres-
sion/decompression and convergence [33, 34], and becomes
more modulated due to mass moving from bubbles to spikes.
These effects determine the optical depth experienced by a
backlighter x–ray:

OD ≡
∫
κρdl (1)

where κ is the opacity, ρ the density, and the integral is along
the path of the x–ray. An x–ray passing through a spike
will experience a larger OD, hence greater absorption, than
a neighboring x–ray passing through a bubble, resulting in a
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FIG. 1: Experiment geometry, side (not–to–scale) and top views.

striped radiographic image for the 2D perturbations consid-
ered here (Fig. 2). The modulation in optical depth is the key
quantity measured by this face–on radiography technique and
relates directly to the perturbation growth. The x–ray camera
is gated to capture four images per experiment, and Fig. 3 is
an example of the data obtained in a typical shot.

Our platform is designed to use the same laser drives, cap-
sules, and hohlraums as ignition experiments on NIF [35],
modulo the absence of a cryogenic deuterium–tritium (DT)
ice layer, in order to study instability growth under nominally
identical conditions. Measurements are taken at convergence
ratios (CR) of 1.2 to 4, corresponding to the acceleration phase
of the implosion, where we define the convergence ratio as the
ratio of the initial capsule outer radius (∼ 1 mm) to the abla-
tion front radius at measurement time. The CR ∼ 1.2 limit
corresponds to the beginning of peak laser power (see Fig. 4)
and is about when the seeded perturbations first reach a di-
agnosable size. The CR ∼ 4 limit is approaching the time
when peak capsule velocity is reached in a typical implosion;
beyond this point, an ignition capsule will decelerate due to
the back pressure from the fuel vapor inside. Our capsules
(and cone) are vacuum–filled, so the deceleration phase is not

FIG. 2: (a) In a face–on radiograph, the contrast relates directly to
perturbation growth. The figure shows a synthetic radiograph at 750
µm capsule radius, the dashed lines depicting x–rays. The simula-
tion frame at 300 µm capsule radius suggests the technique remains
viable even when the capsule is smaller than the ∼ 800 µm cone
opening. (b) During an implosion, in addition to amplitude growth,
the density also changes and becomes modulated.

accessible to this platform, as currently designed. However,
if surrogacy with ignition experiments is not required, sim-
ulations indicate the platform remains viable at convergence
ratios higher than this [36].

A different type of surrogacy is with regard to the instabil-
ity growth itself. In order for the growth to be observable,
we require the machined ripples to have much higher initial
amplitudes than what is present in an ignition capsule surface
finish [17] at the same wavelengths. However, the initial am-
plitudes are designed to be small enough that the (predicted)
growth remains close to linear during the measurement win-
dow, in the sense of the final amplitude being proportional to
the initial amplitude. Therefore, we expect the growth factors,
i. e. the ratios of final to initial amplitudes, measured in this
platform to be reasonably close to the growth factors (of the
much smaller perturbations) in actual ICF targets.

Our main result is that this new in–flight radiography capa-
bility is now established [37] and is being used to investigate
a variety of topics that directly impact ICF capsule perfor-
mance. An experimental campaign is underway to measure
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FIG. 3: Data for shot N130702: mode 60, 1.7 µm initial amplitude,
high–foot drive. Slit images are obtained at four times during the
implosion: (a) t=12.8 ns, CR = 1.3, (b) t=13.3 ns, CR = 1.4, (c)
t=13.7 ns, CR = 1.5, (d) t=14.4 ns, CR = 1.75. The line spacing
in the images becomes narrower with time due to convergence. In
frame (d), the effect of the radiograph being a planar projection of a
curved capsule surface is seen in the line spacing becoming narrower
towards the edge of the field–of–view. The lineouts are of the optical
depth, averaged over the slit dimension, of a central section of the
images, where the zero point is referenced to the average transmis-
sion, and the backlighter profile has been subtracted. The lineouts
show the evolution of the perturbation from a sinusoidal modulation
to a weakly nonlinear spike–bubble pattern.

the instability growth versus Legendre mode number for a pair
of ignition–relevant laser drives (Fig. 4): a high–gain igni-

tion design [17, 38] representative of what was fielded dur-
ing NIC, which we refer to as the “low–foot” pulse, and the
more recent “high–foot” pulse [2, 3, 39], which trades one–
dimensional ignition margin for additional margin in a num-
ber of respects, including much lower instability growth. In
addition to discussing the platform design in detail, we com-
pare post–shot simulations with data up to CR ∼ 2 for modes
30, 60, and 90 for the low–foot pulse [40], and modes 60 and
90 for the high–foot pulse [41]. For both drives, the measure-
ments agree fairly well with post–shot models, providing the
first validation of the NIC instability models, and in particular
the capsule–only modeling framework presented in Ref. 18, in
the ignition–relevant regime. Much lower instability growth is
measured for the high–foot drive, demonstrating the instabil-
ity mitigation aspect of the new pulse shape. The platform
itself has been successfully tested at CR = 4 and measure-
ments at higher mode numbers (120 and 160) are underway;
these will be discussed in a separate publication. Future ex-
periments are being planned to investigate 3D surface rough-
ness [42], features such as the support tent [21, 43, 44], the
sensitivity of RT/RM growth to alternate ablators and pulse
shape variations [45], and more.

What is novel about our experiments is that these are the
first measurements of acceleration phase instability growth in
a physical regime and experimental geometry directly appli-
cable to the indirect–drive ignition effort at NIF. Face–on ra-
diography instability measurements in spherical ICF implo-
sions at lower energy densities have been done for indirectly–
driven targets on the Nova laser [29, 30] and Z–facility [46],
and for directly–driven targets on the Omega laser [47]. Side–
on radiography has been used in a similar way to quan-
tify instability growth in cylindrical implosions for directly–
driven [48, 49], indirectly–driven [50], and magnetically–
driven [51–55] systems. There has also been ICF–relevant
work done in planar geometries, exploring basic aspects of ab-
lative stabilization [23–28, 56–64] and the laser imprint issue
relevant for direct–drive [59, 65–70]. While our work was mo-
tivated largely by its application to ICF, there is a larger body
of work exploring hydrodynamic instabilities from the stand-
point of astrophysics or basic high energy density science, that
is beyond the scope of this present article, but discussed, for
example, in Refs. 71, 72.

In section II, we discuss the models and simulations. In
section III, we discuss the platform design. In section IV, we
compare the data from the on–going experimental campaign
with post–shot simulations. In section V, we discuss how this
platform can be used to refine models, as well as potential
issues with data interpretation. We conclude with a summary.

II. MODELS

All of the design simulations in this paper are performed
with the HYDRA code [73], except for the simulations of the
capsule on the cone (Fig. 2a), which use the ARES code [74],
both codes developed at Lawrence Livermore National Labo-
ratory. These codes use arbitrary Lagrangian–Eulerian (ALE)
methods for the hydrodynamic mesh motion and advection.
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FIG. 4: The experiments in this paper use (a) the low–foot and high–
foot pulse shapes. (b) We model these pulse shapes as effective radi-
ation temperature sources, calibrated to match measured implosion
data for the two pulse shapes via the procedure outlined in Section
II.

The simulations include multigroup radiation diffusion, elec-
tron heat conduction, tabulated equations of state and opaci-
ties, and a Thomas–Fermi type model for ionization. Model
settings, such as ALE strategies, time step controls, radiation
group bin structure, etc. , closely follow what was used for
capsule–only modeling studies during NIC, as described, for
example, in Ref. 18, since our platform is designed to vali-
date that framework. For simulations of capsules with pre–
imposed sinusoidal ripples, the mesh resolution is 64 angular
zones per wavelength with radial zoning that slowly feathers
from a 100 nm zone thickness at the outer capsule surface,
in order to resolve the early time development of the ablation
front, to a uniform spacing of about 600 nm within the ablator.

Capsule–only models simulate the ICF capsule while treat-
ing the hohlraum environment implicitly as a frequency–
dependent radiation source applied to zones on the problem
boundary. This enables the study of capsule–focused issues,
such as instability growth, which requires much higher resolu-
tion than what is currently feasible for integrated simulations

that explicitly model the hohlraum and laser [75]. An impor-
tant technical step in this approach is constructing a radiation
source that accurately represents the action of the laser pulse
on the capsule. Integrated hohlraum simulations do not pre-
dict measured implosion features, which are highly sensitive
to complex details of laser–plasma interactions [76, 77] and
warm dense material properties [12], accurately enough for
us to use these directly as sources for the hydrodynamic insta-
bility simulations.

Therefore, the current method of constructing capsule radi-
ation sources involves an initial source from a hohlraum sim-
ulation, which is then further tuned to match implosion data
for the specific laser pulse, following the procedure described
in Ref. 18. The standard calibration data include shock ve-
locities from VISAR measurements [31, 78], the ablator tra-
jectory and remaining mass from convergent ablator (conA)
experiments [79]; and the bang time from experiments with a
neutron yield. The tuning is accomplished though multipliers
on the total radiation flux as well as adjustments to the rela-
tive brightness of the “M–band” part of the spectrum, defined
as energies hν > 1.8 keV. In addition to matching the above
data, we adjust the M–band content in our sources to be con-
sistent with data from the new viewfactor platform [80], which
directly measures the radiation field seen by the capsule. As
emphasized in Ref. 18, the tuned radiation source is not in-
tended to be an accurate representation of the radiation field
seen by the capsule, but is interpreted simply as an effective
drive that reproduces the measured implosion features. In this
approach, the source multipliers are a means of accounting for
missing physics, including physics uncertainties unrelated to
the radiation field that could have been accounted for in other
ways, for example by adjusting the equation–of–state or opac-
ity tables.

We select laser pulses previously used in ignition experi-
ments, both to leverage the availability of the data to create
these calibrated sources and so our experiment could be used
to validate the procedure. Fig. 4b shows the radiation temper-
ature versus time of the data–calibrated sources for our two
pulse shapes. While strongly constrained by the data, there
is still uncertainty in our calibrated sources, both due to mea-
surement uncertainties in the calibration data and sensitivity
to modeling inputs such as the equation–of–state and opacity
tables. In the comparisons with experimental data presented
below, we also discuss the uncertainty in our simulated re-
sults, which is dominated by this residual uncertainty in the
frequency–dependent radiation sources.

We compare the data with simulations in two different
ways. The first way, as done in Figures 15 to 19, directly
compares the measurements with simulations of the actual ex-
perimental conditions, given in Table I. We model the as–shot
dimensions of the capsule and perturbations. We account for
the (usually small) differences between the requested and de-
livered laser pulse by adjusting the frequency–dependent ra-
diation source using the following prescription, appropriate
for deviations of order ∼ 10%, based on simulation studies
that investigated this issue: the source radiation flux adjust-
ment is approximately twice the laser power deviation in the
“picket” of the pulse and proportional to the power deviation
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for the rest of the pulse, for both the high–foot and low–foot
pulses [81]. We model the effect of the 8 missing backlighter
beams, in shots where they were not explicitly compensated
for in the experiment by making power adjustments to the re-
maining beams (see Table I), as an additional ∼ 4% (8/192)
laser power reduction applied for the duration of the pulse.
The present models do not include the radiation drive asym-
metry or non–ideal aspects of the capsule, such as the sur-
face roughness or manufacturing defects, as we expect both of
these to be very small effects at the convergence ratios when
we take data, i. e. up to CR = 2. In section V, we will discuss
the validity of these various modeling approximations.

The second type of comparison, done in Figure 20, is in
terms of the linear growth factor dispersion curve. The growth
factor of a mode is the ratio of the final amplitude of the per-
turbation to its initial amplitude. In the linear regime, the
growth factor versus mode number is independent of the am-
plitude and spectrum of the initial condition, which makes it a
useful quantity for characterizing the instability properties of
ICF designs. For amplitudes typical of ICF capsule surfaces,
models predict linear growth up to CR = 2, discussed more
in section III C, and possibly for the entire acceleration [17].
Therefore, if the machined perturbations remain close to lin-
ear, a growth factor curve measured in this experiment will
provide a reasonable estimate of the “real” growth factor curve
of an ICF target. The tradeoff between having large perturba-
tions for diagnosability versus smaller amplitudes to ensure
linearity is discussed more in section III C.

The curves in Fig. 20 are simulations of the linear optical
depth growth factor for different radiation sources, where the
ratio is between the final and initial values of the amplitude
of the optical depth modulation, labeled “amplitude (OD)”,
defined as the first harmonic of the radiograph lineout over
a suitably chosen analysis region. The curves are obtained by
post–processing a series of single mode simulations where the
initial amplitude is small enough (50 nm) that the predicted
growth is linear up to CR = 2. The data are experimentally–
based estimates of the “real” growth factor curve, which in-
volves applying a correction factor to the measurements to
account for our best estimate of the effect of nonlinear sat-
uration [6, 82, 83] on the growth rate; the correction factor is
discussed more below and in Appendix B.

We calculate the initial amplitude reference for both the
simulated curves and experimental data placed on these plots
explicitly. The initial amplitude (OD) is given by (κρ)a0
where a0 is the initial amplitude of the surface perturbation
and 1/(κρ) is the attenuation length at the backlighter energy
in the undoped plastic, which is where the perturbation ini-
tially lies. For a 5.4 keV backlighter energy and undoped glow
discharge polymer (GDP) plastic (C0.423H0.572O0.005), the at-
tenuation length is 1/(κρ) = 690µm [84].

III. PLATFORM DESIGN

Our platform is designed to accommodate a scenario
where the models differ significantly from reality in this new
ignition–relevant regime. Therefore, much of the design is

FIG. 5: The experiments in this paper use standard 2xSi symmetry
capsules.

based on having an optimal measurement and mitigating pos-
sible failure modes, in order to maximize the (probability of)
data return within a very limited shot allocation. These design
aspects are described in this section.

A. Capsule

The experiment uses the same ∼ 2 mm diameter, silicon–
doped GDP plastic capsules (Fig. 5) as ignition targets, except
the plastic shells are thicker (∼ 210 µm vs.∼ 195 µm) with an
extra 15 µm of plastic in place of the cryogenic fuel layer to
obtain the same mass [85]. The dopant is added in a five–layer
profile, matching the configuration used in ignition targets:
the innermost and outer layers are undoped, while the interior
layers have atomic concentrations of 2%, 4%, and 2% silicon
respectively. We use this “2xSi” profile over the more com-
monly used 1xSi profile (where the interior layers have 1%,
2%, and 1% dopant) primarily to enhance the radiographic
contrast while qualifying the platform, though simulations in-
dicate the growth also changes. The 2xSi profile was used in
a number of ignition experiments during NIC, including the
N120321 shot which achieved the highest fuel compression
to date [38] and on which our low–foot pulse shape is based.

Fig. 6 shows how the density and optical depth vary for a
2xSi capsule driven with a low–foot pulse. An optimal back-
lighter has an average optical depth between 1 and 2 so that
optically thinner and thicker regions appear clearly as lighter
and darker parts of the radiograph. Because the capsule den-
sity rapidly increases in the working range of the experiment,
the optimal backlighter also changes. We use vanadium (∼5.4
keV), which is optimal around peak acceleration, CR ∼ 2.
Scandium (4.3 keV) is ideal for the early acceleration stage
while iron (6.7 keV) is needed at CR ∼ 4. The optical depth
which enters the optimization includes not only the optical
depth of the capsule shown in Fig. 6, but also accounts for
absorption in the diagnostic windows and filters [40].

The spectral content of the x–rays used in the imaging sys-
tem is measured using the absorption of a 30 µm thick alu-
minum strip placed in front of the framing camera on each
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FIG. 6: (a) Density and (b) optical depth for various backlighters as a
function of implosion radius for a 2xSi capsule, driven by a low–foot
drive. An optimal backlighter will have optical depth between 1 and
2.

shot. In each shot the measured strip attenuation is consistent
with 5.4 keV x–rays generated by the K–shell of the vanadium
backlighter.

B. Hohlraum

The experiment uses a standard gold hohlraum, 9.43 mm
in length and 5.75 mm inner diameter, with 3.1 mm diameter
entrance holes for the laser beams at both ends. The hohlraum
is filled with helium gas, with density 0.96 mg/cc (low–foot)
or 1.6 mg/cc (high–foot), to tamp the gold plasma blowoff

that interferes with the beam propagation [86]. The capsule
is mounted on the tip of a gold cone extending from just out-
side the hohlraum wall to just inside the capsule interior. The
arrangement resembles the NIF shock timing platform [31],
with a few differences. First, since our experiment studies the
acceleration stage, the cone is truncated to not interfere with
the capsule motion. Second, our capsule is vacuum–filled,
while the shock–timing capsule–cone is typically filled with
liquid deuterium [87]. Third, there is a diamond diagnostic
window opposite the cone, providing a 250 µm by 900 µm
field–of–view for the x–ray imaging camera. This radiog-
raphy line–of–sight is similar to the NIF convergent ablator
(conA) platform [79], except the backlighter x–rays now pass
through the cone and a single capsule surface, instead of en-
tering through an additional window and passing through two
capsule surfaces. This experiment is the first time this single
pass radiography technique, which enables much higher qual-
ity data, has ever been fielded.

A key concern is gold entering the radiography line–of–
sight, as even a small density of gold would absorb the back-
lighter x–rays and effectively end the experiment. The ways
this could happen relate to how our experiment places addi-
tional strain on design elements incorporated from the suc-
cessful VISAR and conA platforms. For instance, we use a
thinner diagnostic window (80 µm vs. 130 µm) than conA ex-
periments to ensure adequate transmission of our softer back-
lighter (5 keV vs. 9 keV). While a thinner window implies
greater transmission, it also increases the chance of the win-
dow closing during the experiment. Simulations shown in
Fig. 7 indicate that an 80 µm thick window is sufficient to
keep the line of sight open.

Two more failure modes, illustrated in Fig. 8, relate to the
cone and our experiment running much later in time than key-
hole shock timing experiments, and without the liquid deu-
terium fill which would effectively tamp away these effects.
First, our cone is thicker than what is normally used in VISAR
experiments (125 µm vs. 100 µm) in order to accommodate
the additional distance traveled by the radiation shock be-
tween the end of a VISAR experiment and peak capsule veloc-
ity (CR ∼ 4), which could eject gold into the line–of–sight,
if the cone were too thin. Second, we place a 2–3 µm thick
coating of parylene plastic on the inner surface of the cone, to
tamp the gold blowoff arising from ablation of the inner cone
surface due to the M–band radiation that passes through the
capsule. Simulations shown in Fig. 9 indicate these modifica-
tions are sufficient to prevent these two failure modes.

C. Perturbations

The sinusoidal ripple machined on the capsule is not visi-
ble in an initial time radiograph. A successful measurement
requires timing the radiographs to be taken after the contrast
has grown to a diagnosable level. The relevant metric is the
modulation of the optical depth, defined as the first harmonic
of the radiograph lineout. The optimal window for diagnos-
ability is an OD modulation approximately between 0.05 and
0.5. For comparison, the initial OD modulations (calculated
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FIG. 7: (a) 1D simulations indicate an 80 µm high–density carbon
(HDC) window thickness is sufficient to keep the diagnostic line–
of–sight open for the duration of the experiment. The dashed line is
the initial position of the inner surface of the hohlraum wall and the
windows are mounted to be flush with this inner surface. The sim-
ulated curves plot the ablation pressure versus distance for different
HDC window thicknesses and a 100 µm thick gold hohlraum wall at
the time corresponding to capsule CR = 2. At 21 ns, the ablation
front in the gold has moved somewhat to the left while the ablation
front of the window is actually outside the hohlraum. What keeps
the line–of–sight is kept open is the pressure of the HDC blowoff be-
ing everywhere higher than that of the gold. By this criterion, an 80
µm thick window is sufficient, while a 30 µm window could possi-
bly fail. (b) The usual 130 µm thick window is thicker than the 100
µm hohlraum thickness on the equatorial “diagnostic band”. Simply
substituting the thin window leaves a possibility of gold entering the
line–of–sight from the back side. Therefore, we thin the diagnostic
band by 20 µm in the vicinity of the window to obtain a flush surface.

as discussed at the end of Section II) for the perturbed cap-
sules in our experiment (see Table I) range from 0.00035 to
0.0025. The lower diagnosability limit is based on being suf-
ficiently higher than the instrument noise, after the instrument
response has been accounted for; we measure the noise to be

FIG. 8: Two cone–related ways by which gold could enter the line–
of–sight. Gold could be ejected into the line–of–sight by the radia-
tion shock burning through (unless the cone were sufficiently thick)
or ablated into the line–of–sight due to M–band radiation passing
through the capsule. Both of these failure modes are related to our
experiment running longer in time than keyhole shock timing experi-
ments and without the liquid deuterium fill, which would tamp away
these effects.

around 0.01 for the low–foot shots and somewhat higher for
the high–foot shots. The upper limit is based on having suf-
ficient transmission through the spike to clearly infer the first
harmonic, and its precise value depends on the overall trans-
mission [88]. The radiograph timings are chosen to span the
optimal window, ensuring at least one image even if the actual
growth is much larger or smaller than prediction.

Figure 10 shows the predicted OD modulation versus time
(for a 5.4 keV vanadium backlighter) of a mode 60 perturba-
tion (∼ 120 µm initial wavelength) for a number of initial am-
plitudes. The initial amplitude determines the largest radius
for which a mode is diagnosable and also the highest conver-
gence for which the growth is close to linear, believed to be
the case relevant for ignition targets [17]. For a given mode
number, the strategy for diagnosability is to pick the largest
initial amplitude for which the predicted growth is still close
to linear at the experiment radius. For example, a 1.5 µm ini-
tial amplitude is suitable for measurements between 18 and
20 ns, but nonlinear saturation is apparent at later times. The
smallest initial amplitude shown here, ∼ 50 nm, only crosses
the noise threshold (0.01) at 20 ns and saturates just before
22 ns, near the end of the acceleration. For a typical target,
the mode 60 component of the surface roughness has an am-
plitude ∼ 3 nm [18]. By extrapolating the curves in Fig. 10
to this amplitude, we see the predicted growth is close to lin-
ear throughout the acceleration but the signal becomes higher
than the noise level only past 21 ns [89]. Some design consid-
erations specific to our use of a layered ablator, as opposed to
one with uniform composition, are discussed below in Section
V.

Table I lists the actual perturbations and capsules used in the
experiments. The shot sequence begins at low convergence
(CR ≤ 1.5) with large initial amplitudes and continues at
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FIG. 9: (a) 1D simulations indicate (a) that a 2–3 µm parylene plas-
tic (CH) coating on the inner cone surface sufficiently tamps the
gold blowoff arising from ablation due to M–band radiation pass-
ing through the capsule and (b) that increasing the cone thickness
from 100 µm to 125 µm accommodates the additional distance trav-
eled by the radiation shock between the end of a keyhole shock
timing experiment and peak capsule velocity (CR ∼ 4). In both
cases, a frequency–dependent radiation source (FDS) is applied in
the hohlraum gas (helium) region, as depicted. In (a), the distance
X is the blowoff density, either due to gold or the plastic coating, at
which the optical depth over the length of the cone is as large as a
single surface of the capsule (which would nullify much of the ad-
vantage of doing single pass radiography). The criterion was for X
to be much less than the 400 µm radius of the cone opening for the ∼
22 ns duration of the experiment. In (b), the distance is the position
of the shock or thermal wave relative to the initial interface.

higher convergence (CR > 2) with smaller initial amplitudes.
The purpose of the low convergence, large radius experiments
is to investigate the end of the RM phase, which sets the initial
condition for the RT stage, as well as to ensure, during plat-
form qualification, that the perturbations are clearly resolv-
able within the 20 µm spatial resolution of the diagnostic, as
the perturbation wavelength decreases with convergence. The
higher convergence experiments involve two different wave-

FIG. 10: Pre–shot simulations for the growth of mode 60, for a low–
foot drive, for various initial amplitudes. (a) Amplitude (OD) versus
time is given with the optimal window for diagnosability shown. (b)
The same curves as (a), but normalized to the 1.5 µm curve (e. g.
each curve in (a) is multiplied by 1.5 µm divided by the initial ampli-
tude), show the larger amplitudes deviating from the linear envelope
at earlier times.

lengths side–by–side, which also permits a determination of
the phase of the growth, as discussed below and in Appendix
A.

Fig. 11a shows an atomic force microscope trace of a cap-
sule surface with modes 60 and 90 side–by–side. Simulations
determined that for the modes studied in the present work, a
modal purity requirement of 10% on the second and third har-
monics is sufficient for the other modes not to influence the
growth of the fundamental. The manufacturing process in-
volves first cutting a 2–4 µm deep recession groove, to define
a spherical fiducial surface prior to machining the ripple on a
lathe. As shown in Fig. 11a, this process often leaves a slight
low mode structure superposed on the rippled region (in this
case, the recession depth is asymmetric as well) which, simu-
lations indicate, will not influence the measurement as long as
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the main ripple grows significantly faster than this low mode
structure (usually the case by design). Simulations shown in
Fig. 11bc indicate the groove, itself a large perturbation, does
not interfere with the central ripples, and that potential edge
effects are further mitigated by having a shallow transition
width.

IV. EXPERIMENTS

The aim of the first experimental campaign is to measure
the instability growth versus Legendre mode number for two
ignition–relevant pulse shapes. The first is a low–foot drive
for high–gain ignition, representative of what was fielded dur-
ing NIC. Our specific low–foot pulse was previously used in
the N120321 shot which achieved the highest fuel compres-
sion of any shot to date [38] and has also been the focus of
extensive modeling work [18, 19]. The second pulse is a high–
foot drive, which trades one–dimensional ignition margin for
additional margin in a number of respects, including much
lower instability growth. Our specific high–foot pulse is based
on the lowest energy member of the high–foot series [2, 3],
and is related to the shots which produced the highest neu-
tron yields to date [39], nearly 10 times higher than what was
achieved during NIC.

The instability mitigation property of the high–foot pulse
is shown in Fig. 12. Figure 12 compares the density fields at
CR ∼ 2 of initially identical capsules perturbed with modes
60 (top) and 90 (bottom), for the low–foot and high–foot
drives. The high–foot drive gives noticeably less growth for
both modes, the increased stability being due, in part, to a
smaller density gradient [12, 90] at the ablation front, also ap-
parent in the figure. Our simulations indicate the density gra-
dient scale length, Lρ ≡ ρ/|∇ρ| , is roughly a factor of three
larger for the high–foot drive (e. g. ∼ 30µm vs. ∼ 10µm).
Fig. 12b compares simulated (linear) optical depth growth fac-
tor curves (calculated as discussed in section II) for the two
pulse shapes at CR ∼ 2. These curves show peak growth oc-
curring around Legendre mode 60 for both pulses and that the
high–foot drive gives increased stability for a broad range of
mode numbers.

The time evolution of the wavelength, which is proportional
to the radius (e. g. λ = 2πR/l, where l is the mode num-
ber and R the capsule radius), is a measure of the capsule
trajectory and provides an independent check on the model
radiation sources. The wavelengths are determined by analyz-
ing a three ripple region (for the side–by–side targets, this is
done for each mode) near the center of the image. The reason
for focusing on only the central part of image is to minimize
the uncertainty due to the radiograph being a planar projec-
tion of a spherical capsule surface (as well as effects from the
additional low mode curvature due to the manufacturing pro-
cess, as shown in Fig. 11a), where the spikes are viewed at
an angle. This is the dominant uncertainty for the wavelength
measurement and is greater for longer wavelengths and larger
amplitudes. Figure 13 shows the model trajectories are usu-
ally within error bars, and always within “2σ”. We can put all
of the low–foot (high–foot) wavelength measurements on the

FIG. 11: (a) Atomic force microscope trace of a capsule surface, il-
lustrating that the two modes are connected together at a maximum
(the joint indicated by the dashed line), and also the few micron re-
cession groove that is required by the manufacturing process. (b)
and (c) show the effect of the recession groove for a (b) steep and (c)
shallow transition. The simulations predict the central ripples grow
undisturbed by the groove in both cases, while the edge effects may
be mitigated by having a shallower transition, with 8–10 degrees be-
ing sufficient. If the growth is much larger than simulated, the edge
effects could influence the measurement, either by directly disturbing
the central ripples or indirectly by providing a pathway for radiation
to get inside the capsule. With the current manufacturing process, it
is not possible to make the transitions on both sides of the groove ar-
bitrarily shallow, so the targets have an 8–10 degree transition on one
side (left side of (a)) and a few degree transition on the other (right
side of (a)).
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Nominal N130602 N130702 N130715 N130718 N130722
Capsule parameters
Outer radius (µm) 1137 1123.78 1116.67 1122.10 1122.74 1130.84
Thickness (total) (µm) 209 208.35 209.34 206.27 206.37 209.24
Thickness, layer 1 (µm) 20 20.24 20.05 19.26 19.05 19.75
Thickness, layer 2 (µm) 6 6.12 7.5 6.22 5.82 5.83
Thickness, layer 3 (µm) 35 34.36 33.08 35.25 35.64 34.96
Thickness, layer 4 (µm) 10 10.27 10.76 10.76 10.76 10.57
Si atom fraction, layer 1 (%) 0 0 0 0 0 0
Si atom fraction, layer 2 (%) 2 1.98 1.76 1.76 1.76 1.98
Si atom fraction, layer 3 (%) 4 3.72 3.72 3.72 3.72 3.72
Si atom fraction, layer 4 (%) 2 1.70 1.70 1.70 1.70 1.70
Si atom fraction, layer 5 (%) 0 0 0 0 0 0
Perturbations
Mode 1 (nominal) – 60 60 60 60 30
Mode 1 (actual) – 59.1 59.1 57.1 59.1 29.7
Initial amplitude (µm) – 1.69 1.74 0.24 0.24 0.93
Initial wavelength (µm) – 119 118 123 119 238
Mode 2 (nominal) – – – 90 90 –
Mode 2 (actual) – – – 85.7 89 –
Initial amplitude (µm) – – – 0.30 0.31 –
Initial wavelength (µm) – – – 82 79 –
Recession depth (µm) – 3.5 3.5 3.5 2.5 3.5
Laser
Pulse: Low–foot (LF) or High–foot (HF) – LF HF LF HF LF
Is pulse compensated for missing BL beams? – N Y N Y N
Power deviation in picket (%) 0 -6.5 -2.8 -5.6 0.6 -7.6
Power deviation in trough (%) 0 -6.5 -2.6 -5.9 0. -8.4
Power deviation in 2nd (%) 0 -4.4 – -5.6 – -7
Power deviation in 3rd (%) 0 -1.7 -1.4 -3.1 0.4 -4.7
Power deviation in 4th (%) 0 -2.5 -3.3 -5.6 -3.1 -3.6
Backlighter Energy (keV) 5.4 5.4 5.4 5.4 5.4 5.4

TABLE I: Table of as–shot capsule parameters, laser parameters, and perturbations. Nominal values are given for reference. The different
parts of the laser pulse are explained in a number of references, including Ref. 31.

same plot if we scale by the initial wavelengths. That the data
essentially fall on the same curve on the scaled plot demon-
strates that shot–to–shot variations in the laser and capsule do
not significantly influence the trajectory. On the scaled plot,
the simulations are consistent with the spread in the data.

Fig. 14 shows images and lineouts, at roughly the same ra-
dius around CR ∼ 2, for the two shots having modes 60 and
90 side–by–side. Given the capsules were nominally iden-
tical, the final image comparison is visually striking: both
modes show significant growth with the low–foot pulse while
for the high–foot pulse, there is visibly less contrast for mode
60 and mode 90 hardly rises above the noise. The lineouts in-
dicate that both modes have grown with positive phase as the
two modes, initially connected at a maximum (see Fig. 11a),
are still connected at a maximum, corresponding to a spike in
the radiograph. If both modes would have inverted phase, the
connection joint would also have inverted, becoming a bubble.
If one mode would have inverted, there would be a transition
region, arising from attempting to connect a spike of one mode
with a bubble of the other, that is not seen in the data. An ex-
panded discussion of these aspects and how we determine the
phase in the radiographs is given in Appendix A.

Figures 15–18 compare the measured and simulated ampli-
tude (OD) versus time and versus wavelength for all of the

shots. In these figures, the instrument response has been re-
moved from the data, by dividing the data by the value of the
modulation transfer function (MTF) for a 20 µm slit at the
measured wavelength, and compared with ideal simulations.
The experiment wavelengths are mostly in the regime where
the MTF is well characterized (the uncertainty is no more than
10%) and larger than 0.5, except for the highest convergence
mode 90 data, i. e. the 21.0 ns point of Fig. 16b and the 15.2
ns point in Fig. 17b. The measurement uncertainty on the am-
plitude (OD) is nominally 20%, which is comparable to the
size of the data points in these figures.

Figure 15 plots results from the mode 30 experiment. Ex-
cept for the latest time data point, the model is within the error
bars on the time comparison and within “2σ” (of the wave-
length uncertainty) on the wavelength comparison. For the
21.0 ns data, the model overpredicts the growth by about 30%
on the time comparison and around 50% on the wavelength
comparison. We note that for the mode 30 shot, the laser
power deviation is anomalously large compared to the other
experiments (see N130722 column of Table I) as four beams
needed to be dropped due to facility issues during the shot.
It is possible that our simplified method of adjusting for the
measured power deviations, discussed in section II, may not
fully capture the effect of such a large deviation and, in order
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FIG. 12: (a) Simulated densities for modes 60 (a0 = 0.24µm) and
90 (a0 = 0.3µm) for the high–foot (HF) and low–foot drives (LF) at
550 µm capsule radius (CR ∼ 2). (b) Optical depth growth factors
for the two pulses at the same radius for a 2xSi capsule.

to match the data at later times, a full hohlraum simulation
may be necessary to assess the impact of the missing beams.

Figures 16 and 17 plot the measured growth of modes 60
and 90 versus time for the low–foot and high–foot pulses. For
mode 60, data from the low convergence, single mode exper-
iments (shots N130602, N130702 in Table I) are shown on
the same plot as the mode 60 data from the dual mode experi-
ments (shots N130715, N130718 in Table I), which looked at
higher convergence, by normalizing the measurements (and
models) by the respective initial perturbation amplitudes. If
the growth is linear, the data would fall on the same curve
when plotted this way. In both figures 16a and 17a the latest
time point of the low convergence data falls below the earliest
time point of the higher convergence data, taken at the same
time. This indicates nonlinear saturation of the low conver-
gence perturbation, which has a much larger initial amplitude.
For both pulses, the model agrees well with the mode 60 data.

FIG. 13: Comparisons of measured (symbols) versus simulated
(lines) evolution of the wavelength. (a) Post–shot model compar-
isons; (b) Same as (a) except all wavelengths have been scaled to
mode 60.

The model underpredicts the low–foot mode 90 growth
(Fig. 16b) at the earliest time by close to a factor of two,
though the other data points are within 25%. On one hand,
this could be an actual modeling discrepancy that becomes
hidden at later time by nonlinear saturation of the data. On the
other hand, when the amplitude (OD) is plotted as a function
of wavelength (Fig. 18), which we will discuss momentarily,
the agreement is very good so it is also possible that the early
time discrepancy is simply a consequence of the uncertainty
in the trajectory. A mode 90 experiment optimized for ear-
lier times would be useful in resolving this issue. The model
also overpredicts the growth of high–foot, mode 90 (Fig. 17),
though it is difficult to draw firm conclusions since only one
frame yielded data clearly above the noise.

Figure 18 plots the mode 60 and 90 growth versus wave-
length, which permits us to place the low–foot and high–foot
data on the same plot. The growth reduction for the high–foot



12

FIG. 14: The slit images show the instability growth arising from
nominally identical capsules, with modes 60 and 90 side–by–side,
for the (a) low–foot and (b) high–foot drives. The corresponding
line outs, (c) and (d), indicate that the modes are still connected at a
spike for both drives, implying that for both drives, the modes have
grown with positive phase. The comparisons are done at approxi-
mately CR ∼ 2 or 550 µm radius for both drives, corresponding to
21.0 ns for the low–foot drive and 14.8 ns for the high–foot.

drive, measured in terms of optical depth, is 2–4× less for
mode 60 and at least 10× less for mode 90. The uncertainty
in extracting a definite number for mode 60 is due to the error
bar on the measured wavelength and also nonlinear satura-
tion [6, 82, 83], which happens sooner for the faster growing
low–foot case, giving the high–foot growth time to “catch up”.

FIG. 15: Amplitude (OD) versus (a) time and (b) wavelength for the
low–foot drive. The initial perturbation is mode 30, initial amplitude
0.93µm and initial wavelength 238µm. Complete capsule details are
in the N130722 column of Table I.

We will quantify the influence of the nonlinearity in section V.

V. DISCUSSION AND FUTURE WORK

The previous section shows that, for the most part, the
model agrees well with the measurements. While the agree-
ment is not perfect, there is no evidence of a 3-5× underpre-
diction of the growth [18] that was of serious concern pre–
shot, at least for modes less than 90. We now show that these
discrepancies are consistent with the uncertainty in the simu-
lations which, as discussed in section II, is dominated by the
uncertainty in the frequency–dependent radiation sources. In
particular, the sources are calibrated to match a variety of ex-
perimental data which introduces two types of uncertainty into
the modeling: the uncertainty in the calibration data and the
uncertainty due to the calibration process.
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FIG. 16: Amplitude (OD) versus time for modes (a) 60 and (b) 90
for the low–foot drive. The mode 60 data are results of two shots with
different initial amplitudes: N130602 (a0 = 1.7µm) and N130715
(a0 = 0.24µm). The larger amplitude data and post–shot simulation
(dashed line) have been scaled by its initial amplitude to appear on
the same plot. The mode 90 data is from N130715 (a0 = 0.3µm),
where this perturbation was machined side–by–side with the mode
60, as shown in Fig. 11a. Further capsule details are listed in Table
I.

Of the data entering the calibration, one of the most uncer-
tain is the brightness of the M–band (i. e. hν > 1.8keV) part
of the drive spectrum, which is only known to 30%–50% accu-
racy [91]. A larger M–band component increases the density
gradient scale length, which stabilizes the RT growth [12, 90].
Figure 19 replots Fig. 18 with additional simulation curves
where the source M–band fraction has been varied by ±33%.
All of the experimental data, within error bars, fall inside the
uncertainty band defined by these curves. The curves suggest
the growth factor modeling uncertainty due to the M–band

FIG. 17: Amplitude (OD) versus time for modes (a) 60 and (b) 90 for
the high–foot drive. The mode 60 data are results of two shots with
different initial amplitudes: N130702 (a0 = 1.7µm) and N130718
(a0 = 0.24µm). The larger amplitude data and post–shot simulation
(dashed line) have been scaled by its initial amplitude to appear on
the same plot. The mode 90 data is from N130718 (a0 = 0.31µm),
where this perturbation was machined side–by–side with the mode
60, as shown in Fig. 11a. Further capsule details are listed in Table
I.

fraction is no more than 50%. It is possible that the overall
uncertainty in the instability growth due to calibration inputs
is not much higher than 50%, as previous studies [17] have
identified the M–band uncertainty as a dominant contributor.
However, further studies are needed to assess this more care-
fully.

Regarding the calibration process, Fig. 20 plots our results
in terms of linear growth factor versus mode number at differ-
ent capsule radii. In these plots, the data have been multiplied
by a factor discussed in Appendix B (in addition to removing
the instrument response, as discussed in the previous section),



14

FIG. 18: Amplitude (OD) versus wavelength for modes (a) 60 and
(b) 90, comparing results for the low–foot and high–foot drives.

in order to account for the growth slowing down due to non-
linear saturation and to adjust for differences between as–shot
and nominal parameters; the error bars on the data include the
uncertainty in this correction factor. Due to the agreement in
Fig. 13, the data and simulation are compared at the time that
the simulation indicates the capsule is at the given radius.

The simulated curves correspond to different radiation
source representations of the drive. The curves labeled “base-
line” are the models used for comparisons in the previous sec-
tion. The baseline radiation sources, and the sources used to
generate the curves labeled “Low (High) Foot Drive 1” and
“Low (High) Foot Drive 2”, are fully consistent with the drive
calibration framework discussed in section II and in Ref. 18.
For comparison, we have also plotted a low–foot drive labeled
“Coarse Tune”, which is also calibrated to match the implo-
sion features, though less stringently, in a sense we will now
describe.

The most constraining step of the drive calibration frame-
work is tuning the source to match the shock velocity trace,
within error bars, from the most accurate channel of the rele-

FIG. 19: Amplitude (OD) versus wavelength for modes 60 and 90.
The solid lines are the baseline simulations drawn previously. The
dashed (dotted) have M–band fractions which are 33% lower (higher)
relative to the nominal source.

vant VISAR experiment, as shown in Fig. 21 for the low–foot
drive. In this figure, the fine–tuned curve is our low–foot base-
line source. The coarse–tuned drive is tuned to a match the
trace from a less accurate VISAR channel (not shown), where
the error bars are more than twice as large, but, as the fig-
ure shows, is often outside the error bars of the most accurate
channel. Figure 20 shows the three fine–tuned sources being
closer to the data, and also to each other, than the coarse–tuned
source. This suggests that having a drive that reproduces the
shock dynamics very accurately as prescribed in Ref. 18, as
opposed to approximately, is essential for modeling this ex-
periment.

The curves based on the different fine–tuned low–foot
drives differ from one another at the ∼ 20–40% level. “Drive
1” is tuned for a different ablator equation–of–state table,
LEOS 5370, than the baseline model, which uses LEOS 5400,
but is otherwise constructed in the same way. Both tables
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FIG. 20: Optical depth growth factor versus mode number at (a) 750
µm radius (t =19.8 ns, low–foot; t = 13.7 ns, high–foot), (b) 650
µm radius (t =20.6 ns, low–foot; t = 14.4 ns, high–foot), (c) 550
µm radius (t =21.0 ns, low–foot; t = 14.8 ns, high–foot).

are empirical EOS models for GDP constructed as per the
paradigm of Ref. 92 with dissociation models similar to that
described in Ref. 93, and fit to experimental data. LEOS 5370
has a softer Hugoniot, based on a different assumption for the
appropriate quartz EOS used in analyzing the GDP Hugoniot
data of Ref. 94, but the two models are equally valid interpre-
tations given this uncertainty [95]. The tables differ from one
another primarily in the density–temperature regime which

FIG. 21: The most constraining step of the drive calibration process
is tuning the source to match the shock timing data within the error
bars. The fine–tuned drive is our low–foot baseline model while the
coarse-tuned drive is tuned to match a less accurate VISAR channel.

corresponds to the RM phase of the implosion and the greater
instability growth with LEOS 5370 is consistent with its be-
ing a less stiff equation–of–state. “Drive 2” also uses LEOS
5370 but, in addition, is calibrated to the most accurate chan-
nel of a different VISAR shot, involving a slightly different
laser pulse. The different high–foot curves are similar around
peak growth factor, but give different predictions for the zero
crossing and whether some of the higher modes invert phase.
High–foot “Drive 1” uses a different prescription for the M–
band part of the drive spectrum. The M–band content of the
baseline model is normalized to match recent viewfactor mea-
surements of the high–foot drive, which will be discussed in a
separate publication. “Drive 1” uses a different prescription in
which the simulations are degraded primarily through multi-
pliers on the thermal part of the spectrum, leaving the M–band
part alone, based on results from the low–foot viewfactor [80].
“Drive 2”, in addition to using this different M–band prescrip-
tion, uses a different approach to matching the shock timing
data.

The different curves suggest the growth factor modeling
uncertainty due to the uncertainties in the equation–of–state
model, and the prescriptions for matching shock timing and
M–band is no more than 50%. Combined with our estimated
uncertainty regarding the calibration data itself, our overall
modeling uncertainty is no more than a factor of two, as con-
jectured in Ref. 17, and possibly much better, at least for the
comparatively low mode numbers and small convergence ra-
tios considered so far. There is no evidence of any fundamen-
tal problem in computing the instability growth which could
result in a 5× discrepancy or a problem in computing the
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phase of the growth, for modes less than 90. An important
point is that the models are tuned to match measured implo-
sion features, but not any of the quantities measured in our
experiment. Therefore, our results may be viewed as a val-
idation of the overall modeling approach of Ref. 18. Fig. 20
indicates the value of higher mode studies, as all of the models
indicate the growth factor sharply decreases at higher modes
but give different predictions for the magnitude and phase.

While our experiment was mainly motivated by the pos-
sibility of large modeling errors, one may ask if this exper-
iment may be used to probe finer aspects of the modeling,
such as distinguishing between the various fine–tuned curves
in Fig. 20. While the quality of the data suggests optimism in
this regard, a number of issues need to be resolved before em-
barking on such a program. First, because the tuned source
procedure is intended to account for the effects of missing
physics, the consequences of using, for example, a less accu-
rate EOS model, might not be apparent if the metric is simply
how well a simulation matches our data.

Second, our models involve a number of approximations
which need to be improved if we are concerned with resolv-
ing differences much finer than a factor of 2. For example,
the simulations currently model the radiation transport with
multigroup diffusion, but a more accurate transport model,
such as implicit Monte Carlo, may be necessary if we are
interested in resolving ∼ 20% level differences. Similarly,
we model the impact of the as–shot laser pulse and miss-
ing backlighter beams in a simplified manner (see section II)
and ignore the presence of the diagnostic window. Model-
ing studies [96] have shown that the missing beams and win-
dows could reduce the radiation flux seen by the capsule by
as much as 7%, which could influence our results at the 20%
level. Also, we have not fully explored the consequences of
numerical effects, such as resolution, convergence in radiation
binning, impacts of mesh motion and advection, etc.

Finally, nonlinear saturation of the data could make an ac-
tual modeling discrepancy appear smaller than it actually is.
The procedure in Appendix B, our best estimate of the mag-
nitude of this effect, which involves using the simulation, in-
dicates the perturbations are in the weakly nonlinear regime.
Moreover, previous studies of nonlinear saturation in ICF tar-
gets [17] have noted that ICF growth factors are fairly in-
dependent of the initial amplitude, even when the final am-
plitudes are comparable to the wavelength. The explanation
given in Ref. 17 is that much of the growth is due to Bell–
Plesset effects [33, 34], i.e. the perturbations are stretched ra-
dially as the wavelength is reduced by convergence, which in-
volves less of the shear–induced rollup phenomena that slows
down the growth than in a planar situation with the same am-
plitude to wavelength ratio. However, a purely experimental
assessment of nonlinear saturation is desirable, and perhaps
can be achieved in future experiments using targets with two
amplitudes of the same wavelength.

Alternately, now that the platform is qualified, the nonlin-
ear effects can be minimized in future experiments by using
smaller initial amplitudes. This would also enable studies at
higher convergence, which would more stringently test the
models and probe conditions closer to when an ICF capsule

would ignite. In such a limit, it may be necessary to explic-
itly model capsule surface non–uniformities [17, 18], which
are below the noise at CR = 2 (see section III C), but could
grow comparable to the seeded perturbation byCR = 4, if the
growth of the latter slows down due to nonlinear saturation.
Also, it may be necessary to carefully account for the asym-
metry in the radiation field, which appears to consist mainly
of low mode components that become detectable somewhat
past CR = 2, but produce a clear effect on the capsule shape
by CR = 4 [20].

We now discuss some potentially confusing aspects of in-
terpreting data from this type of experiment. The experiment
measures the amplitude of the OD modulation, which is usu-
ally correlated with the amplitude of the modulation in ablator
areal density (i. e.

∫
ρdr ). The areal density modulation is the

important quantity for instability growth, as the mass redistri-
bution from bubbles to spikes is what leads to the in–flight
degradation or break up of the ablator shell. For an ablator
with uniform composition, the amplitude (OD) and the areal
density modulation are just proportional quantities related by
the ablator opacity, while for a layered ablator, the interpreta-
tion is less simple.

For a 2xSi capsule, the opacity of the highly doped layer (i.
e. the 4% Si layer; see Fig. 22) is roughly 3× the opacity of the
undoped layer. A modulation that is entirely in the undoped
layer, a modulation with 1/3 this amplitude that is entirely in
the highly doped layer, and intermediate cases, would corre-
spond to different areal density modulations that give the same
amplitude (OD) measurement. Figure 22 shows the contribu-
tions of the highly doped layer (i. e. the 4% Si layer for a 2xSi
capsule; see Fig. 5) and the outer undoped layer to the total
amplitude (OD) for a mode 60, a0 = 1.5µm perturbation on
a 2xSi capsule driven with the low–foot pulse. The model
predicts that the problem of an ambiguous data interpretation
is confined to the interval between 18.5 ns and 19.5 ns, corre-
sponding to the beginning of the acceleration stage, when both
the undoped and doped layers contribute to the OD modula-
tion. Outside of this interval, the modulation is almost entirely
in either the undoped or doped layers, making the amplitude
(OD) measurement effectively an areal density measurement,
with the proportionality constant being either the undoped or
doped opacity.

A different potential problem with a layered ablator is il-
lustrated in Fig. 23. In this example, three synthetic radio-
graphs are given for the large perturbation, for the cases of (a)
uniform ablator, (b) a 2xSi doping profile, and (c) an extreme
profile where the inner layer has∼40× the opacity of the outer
layer [97]. For the uniform ablator, the position of maximum
optical depth, or spike in the radiograph, corresponds to the
position of maximal areal density. However, in (b), these are
offset from one another and in (c), the density maximum at the
origin actually lines up with a “bubble” in the radiograph be-
cause the x–rays traverse a comparatively smaller path length
of the high opacity region.

A different metric of instability growth is the conventional
growth factor, as discussed, for example, in Ref. 98, defined as
the ratio of the final to initial amplitude of an interface defin-
ing the perturbation, such as the ablation front. Fig. 24 shows
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FIG. 22: Growth of a mode 60, a0 = 1.5µm perturbation on a 2xSi
capsule with the low–foot drive. The curves show the total amplitude
(OD), as well as the contributions of the highly doped 4% Si layer
and the outer undoped layer as a function of time.

density profiles obtained by applying low–foot drives, differ-
ing in the steepness of the rise to peak radiation temperature,
to the same perturbed capsule. While (1) has the largest per-
turbation amplitude, and therefore would appear “least stable”
according to the ablation front growth factor metric, (3) has
the highest areal density modulation and an amplitude (OD)
nearly twice as large as (1). While having a lower areal den-
sity modulation is what is important for instability growth, (1)
is also less compressed overall, i. e. has lower average areal
density, so more analysis is needed to determine whether, as
in the high–foot pulse [2], the increased stability results in
higher overall performance. The purpose of this example is to
illustrate the confusion that might arise from interpreting this
experiment, which measures an areal density growth factor, in
terms of a conventional interfacial amplitude growth factor.

VI. SUMMARY

A new in–flight radiography capability has been established
at the National Ignition Facility (NIF). We have measured the
instability growth of 2D sinusoidal ripples, up to a conver-
gence ratio of 4. The growth factors of modes 30, 60, and
90 for a point–design type pulse are close to model predic-
tions, up to convergence ratios around 2. Much lower growth
has been observed for modes 60 and 90 with the high–foot
pulse, verifying the predicted instability mitigation aspect of
the new pulse shape. The results (so far) have largely validated
the tuned drive approach to modeling instability growth used
at NIF. Experiments in the near term will subject the models
to increasingly stringent tests at both higher convergence and
higher mode numbers (120 and 160). Future experiments are
being designed in this newly qualified platform to investigate
a variety of issues that will directly impact ICF capsule perfor-
mance, including 3D surface roughness, features such as the

FIG. 23: Three synthetic radiographs of the large perturbation, as-
suming (a) uniform opacity, (b) a 2xSi doping profile, where the in-
ner layer has ∼ 3× the opacity of the outer layers, and (c) an extreme
doping profile where the inner layer has 40× the opacity of the outer
layers. Observe how while in (a), the position of maximum areal
density lines up with a spike in the radiograph, in (c), it actually lines
up with a “bubble”.

support tent, instability aspects of alternate ablators and pulse
shapes, and more.
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Appendix A: Measuring the phase of the growth

A mode is said to have grown positively if maxima (min-
ima) in the initial condition correlate with maxima (minima)
in the final pattern. Negative growth, or phase inversion,

means maxima in the initial condition line up with minima
in the final pattern. Whether or not a mode inverts phase is
sensitive to details of the ablator and drive [17, 98–100]. The
issue is important for ignition designs because the phase de-
termines whether an isolated bump on the capsule surface will
grow outwards as a bump or inwards as a divot (believed to be
a worse scenario as this could directly quench the hotspot)
depending on whether the modal content of the bump is dom-
inated by positively growing or inverting modes [98].

We determine the phase in our experiment by analyzing
the pattern of distances in the radiograph for targets having
two different wavelengths side–by–side, which are modes 60
and 90 in the present case. As shown in Fig. 11a, the cap-
sule is machined so that the two modes are initially connected
at a maximum, corresponding to a spike in an initial radio-
graph. Figure 25 shows synthetic radiographs, taken at ap-
proximately CR = 2, from an idealized simulation, including
the recession groove required by the manufacturing process,
of the two–mode target driven with the low–foot pulse.

The three scenarios shown are (a) both modes growing pos-
itively (which is what the simulations predict), (b) both modes
inverting, and (c) just mode 90 inverting (the image shown
here is earlier in time than the other two, hence the differ-
ent spacings). Scenarios (b) and (c) are created by inverting
the initial amplitude of one or both modes at the beginning
of the simulation. While the latter procedure is motivated
by the known sensitivity of the inversion to the early time
drive [17, 98–100], we emphasize this is not meant to be a
physical mechanism for how inversion actually occurs. The
purpose is to demonstrate how the analysis procedure distin-
guishes between different inversion scenarios, regardless of
how the inversion actually happens. [101].

To analyze these radiographs, the first step is to identify the
rightmost (leftmost) spike that clearly belongs to the mode 60
(90) pattern, based on the distance between it and the adjacent
spike to its left (right), which we mark by the dashed lines
in these figures. The second step is to analyze the distances
between spikes in the region in between these markers. In
Fig. 25a, the marker lines fall on the same spike, indicating the
modes are connected at a spike as they were initially, which
means that both modes have grown positively. In Fig. 25b, the
distance between the markers is the average of the mode 60
and 90 wavelengths, indicating both modes have shifted by a
half wavelength. This means both modes have inverted and
are now connected at a bubble, the connection joint having
also inverted. In Fig. 25c, the pattern between the markers is
consistent with a half wavelength of mode 90 and a full wave-
length of mode 60, indicating just mode 90 has inverted [102].
As the “joint” is now attempting to connect a spike of mode
60 with a bubble of mode 90, we obtain the transition region
shown in the figure.

The connection joint in Fig. 25a is readily identified be-
cause the two modes are roughly the same size, which is ac-
complished by giving the slower growing mode (mode 90) a
larger initial amplitude (0.3 µm instead of 0.24 µm). In this
case, the edge effect due to the proximity of the other mode is
essentially confined to the connection joint. If the same cap-
sule is driven with the high–foot drive, we obtain the synthetic
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FIG. 25: Synthetic radiographs for the low–foot mode 60–90 shot,
showing three scenarios for the phase of the growth, as discussed in
the text.

radiograph shown in Fig. 26, which predicts the mode 90 side
grows much less. Fig. 26 shows the same analysis as above
may be used to infer positive growth for both modes. Because
the distance between the markers is exactly the sum of the two
wavelengths, the spike in between may be naturally identified

FIG. 26: Synthetic radiograph for the high–foot mode 60–90 shot,
which uses the identical capsule as the low–foot experiment. Com-
pare this radiograph with Fig. 25a.

as the connection joint, which has slightly moved. There is
a large bubble to the immediate right of the joint, which by
definition makes it part of the mode 90 pattern, that resem-
bles the bubbles on the mode 60 side (in size); this could be
misidentified as a mode 60 feature, if the analysis is not ap-
plied carefully.

As shown in Figs. 11bc and Figs. 25–26, the recession
groove creates a large bubble, which is a prominent feature
in the radiograph that could, in principle, be used as a spa-
tial fiducial for assessing inversion. However, the uncertainty
in how to precisely reference this feature to the ripple pat-
tern, along with the uncertainty in the wavelength measure-
ment away from the central region (at least for modes less than
90) discussed in the main text, leads us to prefer the method
discussed above. We note that fabrication and alignment dif-
ficulties eliminated an external fiducial, such as a thin wire
placed on the diagnostic window, as a possible option. Also,
our simulations (as well as other studies, such as Ref. 100)
predict phase inversion, if it occurs, typically happens early in
the RM phase, before the perturbations have reached a diag-
nosable level. This prevents us from verifying an inversion by
simply correlating images taken at different times.

For the large perturbations and fast–growing modes dis-
cussed in this paper, the determination of the phase will not be
affected by non–ideal capsule features, such as surface rough-
ness or the low mode structure within the recession groove
(see Fig. 11a). The surface roughness remains below the
noise during the measurement time (see the discussion in sec-
tion III C) so will not affect our measurement, including the
determination of the phase. Similarly, the low mode struc-
ture within the recession groove due to the machining pro-
cess (see Fig. 11a) is predicted to grow much more slowly
than the mode numbers studied here. However, accounting
for such aspects could be important for higher convergence
experiments involving much smaller seeded perturbations. In
particular, the interference between a small seeded “cosine”
perturbation and a “sine” perturbation at the same wavelength,
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that is present in the non–ideal initial condition or generated
through nonlinear processes, could lead to arbitrary phase
shifts, which would complicate the analysis.

Appendix B: Nonlinearity corrections

The instability growth in an ICF capsule is expected, based
on our present understanding of the initial condition and
growth rates, to remain in the linear regime throughout the im-
plosion. This is reason why linear growth factor curves, calcu-
lated from infinitesimal amplitude simulations as discussed in
section II, are commonly used metrics of the instability prop-
erties of ignition designs. Therefore, in order to compare our
measurements with linear growth factor predictions, we need
to correct for nonlinear saturation in the data and to account
for shot–to–shot variations in the capsule and drive parame-
ters.

In order to do this, we multiply the data by the following
correction factor C before placing the experimental points on
the plots in Fig. 20:

C =
GFlinear

GFas-shot
(B1)

where GFlinear is the linear optical depth growth factor and
GFas-shot is the (not necessarily linear) growth factor calcu-
lated from a post–shot simulation of the actual perturbation,
both calculations using the baseline drive. If the growth is
actually linear, and if differences between the nominal and
actual capsule/drive are unimportant, then C would be unity.
Nonlinear saturation would slow down the growth [6, 82, 83]
resulting in C being greater than unity. The main justification
for using the simulation to estimate nonlinear saturation in the
data is the general agreement between the models and data
presented in Section IV. We nominally use ±0.5 ∗ (C − 1)
as an estimate of the uncertainty in this “unfold” procedure;

the quadrature sum of this and the measurement error deter-
mine the error bars on the data shown in Fig. 20. For all of
our shots, this factor C is a few percent correction for the first
data point, growing to 20–50% by the fourth data point.

As an example, consider the 650 µm radius mode 60 and
mode 90 data for the low–foot drive. We can describe the
nonlinearity by using a 1D simulation to relate the amplitude
(OD) growth to the growth of the amplitude of the ablation
front. At 650 µm radius (t=20.6 ns), the measured optical
depth growth factors for modes 60 and 90, low–foot, are both
around 1000. Of this, a factor of∼3 is simply due to the opac-
ity change from the ablation front being initially in the un-
doped layer to being entirely in the doped layers. According
to Fig. 6a, the density increase is about a factor of 7. There-
fore, an amplitude (OD) growth factor of 1000 corresponds to
an ablation front amplitude growth factor of 1000/∆(κρ) ≈
50. For mode 60, the initial amplitude is a0 = 0.24µm while
the wavelength at 650 µm radius is about 70 µm, so that
a/λ ∼ 0.17. For mode 90, the initial amplitude is a0 = 0.3µm
while the wavelength is around 47 µm, for an experiment time
a/λ ∼ 0.3. These estimates suggest mode 60 perturbation is
only starting to enter the weakly nonlinear regime [6, 82, 83]
while mode 90 is clearly in the weakly nonlinear stage.

To calculate the correction factors, we take the values of
GFlinear from the low–foot baseline curve of Fig. 20b, which
are ∼900 for mode 60 and ∼800 for mode 90. For GFas-shot,
we divide the t = 20.6ns values of the simulated amplitude
(OD) from Fig. 16 (about 0.3 for both modes) by the respec-
tive initial amplitude (OD) values, calculated as discussed in
section III C. Therefore GFas-shot is about 850 for mode 60
and about 700 for mode 90. Hence, the respective correction
factors are C = 1.06 for mode 60 and C = 1.15 for mode 90.
That these values are not too far from unity, and the fact that
C is less for mode 60, are consistent with the modes being in
the stages of growth inferred in the previous paragraph.
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D. R. Farley, K. B. Fournier, S. Glenn, S. H. Glenzer, I. E.
Golovkin, S. W. Haan, A. Hamza, D. G. Hicks, N. Izumi, O. S.
Jones, J. D. Kilkenny, J. L. Kline, G. A. Kyrala, O. L. Landen,
T. Ma, J. J. MacFarlane, A. J. MacKinnon, R. C. Mancini,
R. L. McCrory, N. B. Meezan, D. D. Meyerhofer, A. Nikroo,
H.-S. Park, J. Ralph, B. A. Remington, T. C. Sangster, V. A.
Smalyuk, P. T. Springer, and R. P. J. Town, Phys. Rev. Lett.
111, 045001 (2013).

[15] T. Ma, P. K. Patel, N. Izumi, P. T. Springer, M. H. Key, L. J.
Atherton, L. R. Benedetti, D. K. Bradley, D. A. Callahan, P. M.
Celliers, C. J. Cerjan, D. S. Clark, E. L. Dewald, S. N. Dixit,
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