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Abstract 
     Nucleation is a critically important process as the rate of nucleation determines the number density of 
new phase particles and thus microstructures of a material during phase transformations. Predicting and 
controlling nucleation rates in solids is one of grand challenges in materials science due to the fact that the 
spatial scale involved in nucleation is at the atomic/nanoscale, the rate of nucleation process is extremely 
temperature sensitive, and the morphology of a critical nucleus can be highly non-spherical and complex. 
In this article, we briefly review the recent advances in modeling and predicting nucleation during solid 
phase transformations based on the diffuse-interface or non-classical description of critical nucleus 
profiles. The focus is on predicting the critical nucleus morphology and nucleation free energy barrier 
under the influence of anisotropic interfacial energy and elastic interactions. Incorporation of nucleation 
events in phase-field modeling of solid-to-solid phase transformations and microstructure evolution is 
also discussed.  
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1. Introduction 
     Nucleation is a fundamental process that takes place when a material becomes metastable 

with respect to its phase transformation to one or more thermodynamically more stable states 

(Fig. 1(a)). Transformation of a metastable state to a stable one is a thermally activated process, 

and thus nucleation of a new phase in a metastable parent matrix requires overcoming an energy 

barrier. The rate of nucleation, I, is determined by two contributions, the thermodynamics, i.e., 

the critical nucleation free energy barrier, 'G*, that controls the number density of critical nuclei, 

N*, and the kinetics that controls the rate of growth, R, of a critical nucleus to become a stable 

one (Fig. 1(b)).  According to the classical nucleation theory, 
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where N0 is the number of atoms per unit volume, kB is the Boltzmann constant, and T is the 

temperature. Nucleation rate is extremely temperature-sensitive with no nucleation at the 

transformation temperature (infinite 'G*) and at zero Kelvin where R is zero and a maximum in-

between (Fig. 1(c)). Excellent reviews on the advances in the theoretical research of nucleation 

already exist [1-5]. This article will be focused on the thermodynamics of nucleation in solids, i.e. 

the nucleation barrier and the morphology of critical nuclei, as well as on how nucleation can be 

introduced within the context of phase-field simulations [6-11] of solid state phase 

transformations and microstructure evolution. 

     Cahn and Hilliard [12] are the first to apply the diffuse-interface model [13] to determine the 

critical nucleus, i.e., the critical composition profile which corresponds to the minimum free 

energy increase or saddle point. They showed that nucleation properties become close to those 

predicted by the classical theory when supersaturation of a solution, i.e., driving force for 

nucleation, is low. However, the interface between a nucleus and a parent phase becomes 

increasingly diffuse, and the composition of the nucleus interior becomes lower than the 

equilibrium composition of a new phase with increasing supersaturation. Poduri and Chen [14] 

extended the non-classical theory of Cahn and Hilliard [12] to describe the phase transformations 

involving both compositional and structural changes associated with ordering. Granasy and co-

workers [8, 15-17] extensively modeled the nucleation process during solidification employing 

the diffuse-interface approach. Roy et al. [18] examined the effect of spatially nonlocal 

interactions on the critical nucleus profile and nucleation rate employing the phase-field 



approach. Chu et al. [19] developed a model to study the non-classical nucleation behavior 

during structural transformations by introducing driving force dependencies into the interfacial 

energy, misfit strain energy, and nucleus chemical free energy change. 

     One of the challenges in phase-field method of phase transformations and microstructure 

evolution is to simulate the nucleation processes since the density and spatial distribution of 

nuclei are critical to determining the phase transformation kinetics and resultant microstructures 

that dictate the properties of materials. There exist two approaches to introduce nuclei within a 

metastable system: the Langevin noise method [20, 21] and the explicit nucleation method [22-

24]. 

     In this article, we briefly review the recent advances in theoretical and computational 

approach based on the diffuse-interface description to predict the critical nucleus morphology in 

solid-state phase transformations that involve both interfacial energy anisotropy and long-range 

elastic interactions as well as in simulation of nucleation in phase-field simulations of phase 

transformations.   

 

2. Critical nucleus morphology and nucleation energy 

     The classical nucleation theory is based on the assumption that the thermodynamic properties 

of a nucleus are uniform and the same as the equilibrium bulk counterparts within the nucleus 

and the interface between the nucleus and the parent phase is sharp [25, 26]. With the assumption, 

the total free energy change upon the variation of the size of a nucleating particle (or embryo) 

during solid-to-solid phase transformations can be easily determined by the sum of the bulk free 

energy reduction, the interfacial energy increase, and the coherency strain energy increase as the 

following: 
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where vf'  (<0) is the bulk free energy difference between a nucleating particle and the parent 

phase per unit volume, cohf'  (>0) is the coherency strain energy per unit volume arising from the 

lattice mismatch between the particle and the parent phase, and the J  is the interfacial energy 

per unit area between the nucleating particle and the parent phase. In this theory, the morphology 

of the nucleating particle is assumed a priori. Since V is proportional to r3 where r is the size 

dimension of the nucleating particle and A is proportional to r2, the free energy increases as the 



particle grows when r is small and decreases when r is large beyond a critical value, the critical 

size (r*). The energy change at the critical size is the critical nucleation energy. 

     In contrast to the classical theory, the non-classical theory is based on the diffuse-interface 

description of the interfaces (or gradient thermodynamics) [13]. The total energy change arising 

from a fluctuation in a phase-field variable is expressed as: 
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where K  is the phase-field variable that can be either conserved (e.g., composition) or non-

conserved (e.g., long-range order parameter) depending on the types of phase transformations, 

f'  is the variation of the local free energy upon fluctuations of the phase-field (=

0
)/)(()()( 00 KKKKKKK  ww��� fff  when K  is the conserved field variable, and )()( 0KK ff �  

when K  is the non-conserved field variable), N  is the gradient energy coefficient related to the 

interfacial energy, and Ecoh is the coherency strain energy arising from the lattice parameter 

variation upon the perturbation of phase-field variables from the homogeneous initial state. 

     Finding the critical nucleus morphology and the nucleation energy is to locate the saddle 

point on the minimum energy path (MEP) of the free energy functional landscape from the 

metastable state (local minimum) to the stable or equilibrium state (global minimum) [27]. The 

goal is to find the critical profiles of the phase-field variables that lead to the minimum free 

energy increase among all possible fluctuations leading to nucleation. It is a computationally 

expensive process since it requires the exploration of the configuration space of significantly 

high dimensions. However, recent advances in theory, mathematical algorithm, and 

computational power make it possible to explore such a high dimensional configuration space. 

Examples include the minimax method [28, 29], the constrained string method [30-33], the free-

end nudged elastic band method [34-36], and the constrained shrinking dimer dynamics method 

[37-39]. It should be mentioned that the underlying principles are identical regardless of the 

types of methods. 

     Zhang, Chen, and Du [40, 41] predicted the morphology of critical nuclei and critical 

nucleation energy during solid to solid phase transformations employing a cubic crystal as an 

example taking into consideration both the anisotropic interfacial energy and the anisotropic 

long-range elastic interactions in both two-dimensional (2D) and three-dimensional (3D) systems 

by applying the minimax algorithm [28, 29] based on the mountain pass theorem without a priori 



assumption. Mathematical and numerical details are also available in [42]. Surprisingly, it was 

revealed that the formation of critical nuclei with nonconvex shapes or with lower crystalline 

symmetries such as plates and needles than both new and parent phases are possible as shown in 

Fig. 2. It should be emphasized that their finding is the outcome of investigation on the 

unexplored regime that cannot be reached by the classical nucleation theory. 

     Shen, Li, and Wang [43] employed the free-end nudged elastic band method [36] to search for 

the critical nucleus during a cubic to tetragonal transformation. The nudged elastic band method 

[34, 35] is also a popular method to compute the MEPs. In contrast to the original nudged elastic 

band method, the free-end nudged elastic band method can take a partially transformed state 

rather than a product phase at equilibrium as one of end configurations, other being the initial 

metastable homogeneous phase, for better accuracy as well as computational efficiency. Using 

the Langevin fluctuations, they produced the partially transformed state as shown in Fig. 3(a) and 

investigated both 2D (Fig. 3(b)) and 3D (Figs. 3(c) and (d)) critical nuclei. They found that a 

critical nucleus consists of a single variant which has an ellipsoidal shape when the elastic 

contribution is low as shown in Fig. 3(c). The broad face normal is aligned with <100> 

crystallographic directions due to the elastic energy contribution. On the other hand, twin-related 

two-variant nucleus appears when the elastic contribution is high as shown in Fig. 3(d). 

     Zhang, Chen, and Du [33] applied the constrained string method [32] to predicting both 

critical nucleus and equilibrium morphologies simultaneously within the same physical model 

and mathematical formulation with a conservation constraint when the phase-field is a conserved 

variable, e.g., solute composition. The constrained string method is a novel mathematical 

framework which is the synthesis of the original string method [30, 31] and the method of 

Lagrange multipliers. The constraint is enforced by the energy penalty term during the calculus 

of MEPs. A main difference between the nudged elastic band method and the string method is a 

particular term which prevents defined nodes from collapsing onto the local minima. The string 

method employs a particular parameterization, while the nudged elastic band method employs an 

artificial spring force [44]. They observed that the maximum composition in a critical nucleus 

can be higher or lower than that of the equilibrium state depending on the initial composition. 

Using the method, they investigated the elastic strain energy contribution to the nucleation 

energy barrier and to the shapes of the critical nucleus as well as to the equilibrium precipitate 

for a cubic to cubic transformation as shown in Fig. 4. The same mathematical algorithm is also 



applied to exploring the critical nucleus during phase transformations involving a cubic to 

tetragonal crystal symmetry change for both conserved and non-conserved field variables [44]. 

In the case of the conserved field variable, they found that the critical nucleus and equilibrium 

shape depend on the stress-free transformation strain as well as on the contribution of elastic 

energy with respect to the chemical driving force. In the case of the non-conserved field variable, 

they observed that the characteristic of the critical nucleus varies from single-variant to two-

variant twin structures depending on the elastic energy contribution while the equilibrium shapes 

are similar regardless of the elastic contribution as shown in Fig. 5. 

     In addition to the explained algorithms above, Zhang and Du [38, 39] developed and applied 

the constrained shrinking dimer dynamics method to searching for the critical nucleus profiles. 

 

3. Nucleation in phase-field simulations 
     Governing equations in phase-field simulations are deterministic with the evolution of the 

phase-field variables towards the direction that decreases the free energy of an entire system. 

However, a nucleation event is stochastic and may lead to a free energy increase. Currently, two 

types of approaches have been employed to treat nucleation within a phase-field framework, one 

being the Langevin noise method [20, 21] and the other the explicit nucleation method [22-24]. 

The Langevin noise method incorporates the Langevin random fluctuations into the phase-field 

equations. The stochastic Cahn-Hilliard [45] (Eq.(4)) and Allen-Cahn [46] (Eq.(5)) equations 

become:  
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where ),( tr&]  and ),( tr&[  are the random noise terms which satisfy the fluctuation-dissipation 

theorem [21]. The method reproduces the nucleation process well when the metastability of the 

initial state is small. In other words, the random noise can generate the nuclei with reasonable 

spatial distribution and the time scale when the metastable parent phase is close to the instability 

temperature or composition with respect to its transformation. There are many examples of 

phase-field simulations that employ the Langevin noise method. We exemplify some of 

representative cases in Fig. 6 [47, 48]. It is, however, difficult to generate nuclei using the 



Langevin force when a system is highly metastable unless unrealistically large amplitude of 

noise is introduced. Since the number of nucleated particles depends on the amplitude and spatial 

correlation of the noise, the unrealistic large amplitude of noise may lead to overestimated or 

underestimated nucleation density in a system.  

     The explicit nucleation method is based on the classical nucleation theory [25, 26] and the 

Poisson seeding [22-24]. The critical nucleus size and the nucleation energy are determined by 

either the classical nucleation approach or the non-classical approach in section 2. The 

determined nuclei are explicitly incorporated into a system by assuming that the time to nucleate 

a new phase particle is much shorter than the computational time interval ('t) [24]. The 

algorithm of the method involves the following steps [22-24, 49]: (i) Randomly choose a 

location for a nucleation site, (ii) Calculate a nucleation probability P ( )exp(1 tI '��� ) with 

the given nucleation rate I (= )/*exp(0 TkGI B'� ) where I0 is the prefactor, 'G* is the critical 

nucleation energy, kB is the Boltzmann constant, and T is the temperature, (iii) Generate a 

uniform random number (R) between 0 and 1, (iv) Add a nucleus to the chosen location if P is 

greater than R.  

     Fig. 7(a) [22] shows an example of phase-field simulations with this algorithm. Shen, 

Simmons, and Wang [50, 51] derived the analytic form of elastic strain energy that can be 

directly applied to the explicit nucleation algorithm and applied them to a cubic to tetragonal 

structural transformation as shown in Fig. 7(b) [51]. In phase-field simulations presented in Fig. 

7, the classical nuclei based on the sharp-interface description and the assumption that 

thermodynamic properties within a nucleus are uniform are incorporated.  

     Incorporating classical nuclei has two main drawbacks. First, artificial reduction of solute 

composition around an incorporated nucleus is required to conserve the overall composition in 

the case of phase transformations involving composition changes. Second, additional relaxation 

from the highly non-equilibrium sharp-interface to the diffuse-interface between a critical 

nucleus and a parent phase is required due to the diffuse-interface nature of the gradient 

thermodynamics within the context of the phase-field method. In order to circumvent the 

drawbacks, there have been efforts to incorporate non-classical nuclei in phase-field simulations. 

Heo et al. [49] discussed the explicit nucleation method for incorporating diffuse-interface 

critical nuclei for structural transformations predicted by the minimax algorithm [28, 29]. The 

order parameter profiles and nucleation energy of critical nuclei were computed, and they were 



introduced to a metastable system employing the explicit nucleation algorithm in phase-field 

simulations. They analyzed the growth kinetics of a single non-classical nucleus as well as the 

overall kinetics of an entire nucleation-and-growth process. Fig. 8(a) shows the nucleation-and-

growth process simulated by this method. Using the same method, the phase transformation 

involving compositional changes was also modeled as shown in Fig. 8(b) [52]. 

     Recently, Li et al. [53] applied the non-classical nucleation method to a realistic system. They 

generated non-classical nuclei of a Cr precipitate in a FeCr alloy for different overall 

compositions and temperatures employing the constrained shrinking dimer dynamic method [38, 

39] and the realistic thermodynamic database of the alloy system as shown in Figs. 9(a) and (b). 

They analyzed the growth kinetics of a non-classical nucleus (Fig. 9(c)) and compared it with the 

classical nucleus counterpart. They found several non-classical features of the growth kinetics 

and differences in kinetic behaviors between classical and non-classical nuclei. In addition, they 

confirmed that the classical nucleus requires the interface relaxation from the sharp-interface 

profile to the non-classical profile before its growth. 

 

4. Conclusions 

     We briefly reviewed recent advances in the phase-field method for modeling nucleation in 

solid-state phase transformations. It includes the applications of sophisticated mathematical 

algorithms to locating the saddle point on the free energy functional landscape corresponding to 

the critical microstructural configuration of the nucleus in the presence of anisotropic interfacial 

energy and long-range elastic interactions. The advanced modeling techniques permit the 

observations of various non-classical features of nucleation. Examples include finding the critical 

nuclei with nonconvex shapes or with lower crystalline symmetries than both new and parent 

phases. In addition, it was found that the transition of critical nucleus features from single-variant 

to twin-related two-variant occurs with the increasing elastic interactions during the phase 

transformations from a high-symmetry phase to a low-symmetry phase. It was also revealed that, 

depending on the initial composition, the maximum composition in a critical nucleus can be 

either higher or lower than the equilibrium composition of a new phase when compositional 

evolution involves. The existing two types of methods for the dynamic nucleation in phase-field 

simulations were also discussed. The recent development of theoretical models and mathematical 

algorithms based on the diffuse-interface description has extended our understanding of the 



critical nucleus in solid-to-solid phase transformations and has allowed us to find new features 

that could not be possible by the classical nucleation theory.   
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Figure captions 
Figure 1. Schematic diagrams and illustration of (a) an energy landscape during a nucleation 

process, (b) conversion of a critical nucleus to a stable particle through atom attachment, and (c) 

nucleation rate as a function of temperature where T0 is the transformation temperature.   

 

Figure 2. Critical nuclei profiles in (a) 2D systems [40] (Reprinted figure with permission from 

[40]. Copyright 2007 by the American Physical Society.) and (b) 3D systems [41] predicted by 

the minimax algorithm (Reprinted with permission from [41]. Copyright 2008 by the Elsevier.).   

 

Figure 3. (a) A partially transformed state at an earlier stage of a cubic to tetragonal 

transformation in a 2D system produced by the Langevin dynamics, (b) a critical nucleus 

configuration in a 2D system, (c) a 3D critical nucleus with the low elastic energy contribution, 

and (d) a 3D critical nucleus with the high elastic energy contribution predicted by the free-end 

nudged elastic band method [43]. Reprinted figure with permission from [43]. Copyright 2008 

by the Springer.  

 

Figure 4. Minimum energy paths with a conservation constraint showing critical nuclei and 

equilibrium states for different elastic energy contributions predicted by the constrained string 



method [33]. Reprinted figure with permission from [33]. Copyright 2010 by the Global Science 

Press.  

 

Figure 5. Application of the constrained string method to a cubic to tetragonal transformation 

with non-conserved phase-field variables: (a) critical nucleus and (b) equilibrium state profiles 

with the low elastic contribution, (c) critical nucleus and (d) equilibrium state profiles with the 

high elastic contribution [44]. Reprinted figure with permission from [44]. Copyright 2010 by 

the Elsevier. 

 

Figure 6. Examples of nucleation driven by the Langevin noise in phase-field simulations: (a) 

nucleation during a fcc to L12 ordering process [47] (Reprinted figure with permission from [47]. 

Copyright 2002 by the Elsevier.) and (b) precipitate nucleation during a generic diffusional 

process in a polycrystalline binary solid solution [48] (Reprinted figure with permission from 

[48]. Copyright 2013 by the Taylor & Francis). 

 

Figure 7. Examples of phase-field simulations of nucleation and growth with the explicit 

nucleation method and classical nuclei: (a) a generic nucleation and growth process [22] 

(Reprinted figure with permission from [22]. Copyright 2000 by the Elsevier.) and (b) a cubic to 

tetragonal transformation [51] (Reprinted figure with permission from [51]. Copyright 2007 by 

the Elsevier.).    

 

Figure 8. Examples of phase-field simulations of nucleation and growth with the explicit 

nucleation method and non-classical nuclei: (a) a generic structural transformation [49] 

(Reprinted figure with permission from [49]. Copyright 2010 by the Elsevier.) and (b) a generic 

phase transformation involving composition changes [52] (Reprinted figure with permission 

from [52].). 

 

Figure 9. Critical nucleus profiles computed by the constrained shrinking dimer dynamic method 

for (a) different overall compositions of Cr and (b) different temperatures, and (c) the growth of 

the nucleus at 500 K when Cr overall composition is 0.16 [53]. Reprinted figure with permission 

from [53]. Copyright 2014 by the IOP Publishing.  
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Figure 1. Schematic diagrams and illustration of (a) an energy landscape during a nucleation process,
(b) conversion of a critical nucleus to a stable particle through atom attachment, and (c) nucleation rate
as a function of temperature where T0 is the transformation temperature.
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(b)

Figure 2. Critical nuclei profiles in (a) 2D systems [Zhang et al., PRL, 98, 265703 (2007)]
(Reprinted fig re ith permission from [40] Cop right 2007 b the American Ph sical Societ )

( )

(Reprinted figure with permission from [40]. Copyright 2007 by the American Physical Society.)
and (b) 3D systems [Zhang et al., Acta Mater., 56, 3568 (2008)] predicted by the minimax
algorithm (Reprinted with permission from [41]. Copyright 2008 by the Elsevier.).



(a) (b)

(c) (d)
Figure 3. (a) A partially transformed state at an earlier stage of a cubic to tetragonal
transformation in a 2D system produced by the Langevin dynamics, (b) a critical nucleus
configuration in a 2D system, (c) a 3D critical nucleus with the low elastic energy contribution,
and (d) a 3D critical nucleus with the high elastic energy contribution predicted by the free-end
nudged elastic band method [Shen et al., MMTA, 39A, 976 (2008)]. Reprinted figure with
permission from [43]. Copyright 2008 by the Springer.



Figure 4 Minimum energy paths with a conservation constraint showing critical nuclei andFigure 4. Minimum energy paths with a conservation constraint showing critical nuclei and
equilibrium states for different elastic energy contributions predicted by the constrained string
method [Zhang et al., CICP, 7, 674 (2010)]. Reprinted figure with permission from [33].
Copyright 2010 by the Global Science PressCopyright 2010 by the Global Science Press.



(a) (b)(a) (b)

(c) (d)
Figure 5. Application of the constrained string method to a cubic to tetragonal transformation
with non-conserved phase-field variables: (a) critical nucleus and (b) equilibrium state profiles
with the low elastic contribution (c) critical nucleus and (d) equilibrium state profiles with thewith the low elastic contribution, (c) critical nucleus and (d) equilibrium state profiles with the
high elastic contribution [Zhang et al., J. Comp. Phys., 229, 6574 (2010)]. Reprinted figure with
permission from [44]. Copyright 2010 by the Elsevier.



(a) (b)
Figure 6. Examples of nucleation driven by the Langevin noise in phase-field simulations: (a)
nucleation during a fcc to L12 ordering process [Vaithyanathan et al., Acta Mater., 50, 4061
(2002)] (Reprinted figure with permission from [47]. Copyright 2002 by the Elsevier.) and (b)(2002)] (Reprinted figure with permission from [47]. Copyright 2002 by the Elsevier.) and (b)
precipitate nucleation during a generic diffusional process in a polycrystalline binary solid
solution [Heo et al., Phil. Mag., 93, 1468 (2013)] (Reprinted figure with permission from [48].
Copyright 2013 by the Taylor & Francis).py g y y )



Increasing�time

(a)

(b)
Figure 7. Examples of phase-field simulations of nucleation and growth with the explicit
nucleation method and classical nuclei: (a) a generic nucleation and growth process [Simmons et
l S M 43 935 (2000)] (R i d fi i h i i f [22] C i h 2000

(b)

al., Scripta Mater., 43, 935 (2000)] (Reprinted figure with permission from [22]. Copyright 2000
by the Elsevier.) and (b) a cubic to tetragonal transformation [Shen et al., Acta Mater., 55, 1457
(2007)] (Reprinted figure with permission from [51]. Copyright 2007 by the Elsevier.).



Increasing�time

( )(a)

(b)
Figure 8. Examples of phase-field simulations of nucleation and growth with the explicit
nucleation method and non-classical nuclei: (a) a generic structural transformation [Heo et al.,
Scripta Mater., 63, 8 (2010)] (Reprinted figure with permission from [49]. Copyright 2010 by
the Elsevier.) and (b) a generic phase transformation involving composition changes [Zhang,
Ph.D. Thesis, The Pennsylvania State University (2009)] (Reprinted figure with permission from
[52].).



( ) (b) (c)(a) (b) (c)

Figure 9. Critical nucleus profiles computed by the constrained shrinking dimer dynamic method
for (a) different overall compositions of Cr and (b) different temperatures, and (c) the growth offor (a) different overall compositions of Cr and (b) different temperatures, and (c) the growth of
the nucleus at 500 K when Cr overall composition is 0.16 [Li et al., MSMSE, 22, 025002
(2014)]. Reprinted figure with permission from [53]. Copyright 2014 by the IOP Publishing.
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