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Executive Summary

For day-ahead scheduling of electric grid operations, system operators forecast 
the system condition for the following day, and determine which power generators will 
be used through a process called unit commitment (UC). New England’s policymakers 
are seeking to increase the amount of renewable resources available to meet 
consumers’ energy needs. These resources offer low-emission energy, but their 
variability poses a unique challenge for the reliable scheduling and operation of the 
region’s power system. The existing deterministic UC model is not equipped with any 
effective uncertainty management strategy. As a result, the cost of the real-time system 
operation can be increased, and the reliability of the system can be jeopardized when 
the amount of stochastic elements (variability) associated with renewable resources is 
significant. For example, if the amount of wind energy is heavily over-forecasted, the 
uncommitted units with long lead time many not be able to start up quickly enough to 
make up for the difference between forecast and actual wind energy production. ISO 
New England (NE) enlisted Lawrence Livermore National Laboratory (LLNL)’s help in 
determining whether a new methodology, known as robust UC (Bertsimas et.al. (2013)), 
would improve system reliability while keeping the operation cost relatively low in the 
presence of renewable variability. The robust approach can produce commitment 
schedules that accommodate a forecasted generation range of variable resources as 
shown in Figure 1, rather than only the forecasted level as in the deterministic 
approach. 

Figure 1: The black line shows expected wind generation level over a 24-hour 
period. The blue line represents the range of uncertain wind generation the UC model 
must accommodate between projected and actual wind output.

Over the course of one and half year, ISO NE used LLNL’s high performance 
computing capabilities to run a large number of simulation to analyze and optimize 
robust UC solutions that would mitigate the impact of variability and uncertainty on the 
power system. During the first phase of the collaboration, because of the number of 
inputs, including wind penetration levels, weather conditions, and conservatism levels 
(or the forecast range), up to 2,500 robust UC and 1,250 deterministic UC 
configurations were analyzed – with each configuration taking an average of 30 minutes 
to compute. By parallelizing the software used to solve the problems, the team reduced 
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the computation time from 1800 hours to 90 minutes. During the second phase of the 
collaboration, the team ran simulations and identified the impact of various factors –
such as the conservatism levels on the economic and operational benefits of robust UC 
over deterministic UC. The simulations used Monte Carlo sampling based on historical 
load and wind generation data combined with a Livermore-developed statistical model. 
One thousand dispatch problems, each taking 15 seconds, must be answered for every 
UC configuration. By efficiently parallelizing the dispatch simulation in batches, the total 
simulation time was reduced from 1.8 years to 4.8 hours. 

Based on the simulation results, the optimal conservatism level that led to the 
best trade-off between the system cost and reliability under the robust approach was 
identified. The robust approach demonstrated the economic and operational 
advantages over the deterministic approach in terms of lowering the total costs and 
increasing the system reliability. From the generators’ perspective, compared to the 
deterministic approach, the robust approach reduced the profit largely due to the 
depressed energy prices under the latter. The robust approach also exhibited stable 
performance when large forecast error occurred. The advantages of the robust
approach are magnified when there are more renewable resources integrated into the 
system.    

Processing thousands of simulations simultaneously increased the productivity, 
provided ISO NE with a more comprehensive evaluation of the robust commitment 
schedule, and allowed ISO NE to assess the effectiveness of the robust unit 
commitment approach under a broad range of energy use, wind and power generation 
scenarios.
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Abstract

This report summarizes the procedure to compare the robust UC approach with 
the deterministic counterpart. The procedure involves solving the robust and 
deterministic UC problems under various scenario configurations, and then performing 
system dispatch simulations under each UC solution to generate economic and 
operational performance measures. The report describes the parallelization process for 
solving UC problems as well as for running system dispatch simulations. The report also 
summarizes the statistical model used for generating Monte Carlo simulation samples 
and forming forecast ranges used in the robust UC approach.     

Some key findings are discussed as well. In particular, the economic and 
operational performance of the robust and deterministic approaches is compared under 
different 1) conservatism levels or the sizes of forecast range, 2) the wind penetration 
levels, and 3) the mixture of load and wind behaviors. 

Introduction

To accommodate the operating characteristics of a large number of variable 
resources, the ISO will require an effective UC methodology that can provide the 
system operator with a wider operating range. ISO NE has been investigating robust 
optimization techniques, which take into account the uncertainty and variability of 
renewable resources as a forecast range, to develop a reliable UC process. A 
preliminary experiment conducted by the ISO’s Business Architecture and Technology 
team in 2010 showed sizable savings on dispatch costs using robust UC techniques 
compared to the existing deterministic approach.

A concern with the robust approach is that it might be too conservative. When the 
forecast range is large, the cost associated with excessive commitment is high. On the 
other hand, a smaller range will lead to a lower cost due to less committed resources, 
but may possibly harm its operational performance. Therefore, some trade-offs need to 
be made when we choose the appropriate level of conservatism or the size of the 
forecast range for the robust UC. 

Besides using the robust approach, another alternative to handle the forecast 
uncertainty in the UC process is to solve a deterministic UC with incremental reserve. A 
critical principle in the operation of a bulk power system is that a balance between 
generation and demand must generally be maintained. Power system operators carry 
operating reserves as a matter of standard practice to accommodate potential loss of 
generation. The introduction of significant variable resources causes the variability and 
uncertainty on the generation side of the balance to increase, requiring power system 
operators to plan for carrying incremental amounts of operating reserves, in this case 
necessary to accommodate potential changes in renewable generation. The term 
incremental reserve is used to denote the operating reserve that the system carries to 
respond to variability and uncertainty in renewable generation and demand. The 
deterministic approach with incremental reserve has computational advantage over the 
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robust approach, but the former cannot capture the uncertainty explicitly due to its 
modeling limitation.    The mathematical models for the deterministic and robust 
approaches are presented in Appendix A.  

Thus, the objective of this study is to answer the following two main questions:

 What is the optimal conservatism level of the robust UC that can balance cost 
and reliability?

 Would the robust UC be a more reliable and economic approach to scheduling 
resources to generate electricity for the grid than the deterministic UC approach? 

To this end, a large number of simulations are required to evaluate the economic 
and operational performance of the robust and deterministic UC under various 
configurations. Two key components were necessary to perform the analysis. First, a 
statistical model that characterizes the load, wind and interchange uncertainty was 
developed. This model serves as a random events generator to simulate wind 
generation, load and interchange realizations in the system dispatch simulation. 
Moreover, it also provided stochastic information to construct forecast ranges for the 
robust UC.    

Second, the large number of commitment and simulation problems demands 
parallelization. Solving thousands of UC problems and millions of dispatch simulation 
problem would take more than 3.5 years on one desktop computer. The ability to run a
large number of simulations simultaneously at LLNL’s supercomputers significantly 
improves productivity, enabling us to conduct comprehensive evaluations in a 
reasonable time span. 

Thus, three essential goals of this report are to describe the analysis performed by 
ISO NE and LLNL to evaluate the robust UC, describe the statistical model developed 
to characterize the uncertainty, and present the key findings of the analysis.   

Methods

We considered the following three sources of uncertainty in the New England 
power system: the consumption levels of eight load zones, the wind outputs of 13 (25) 
wind sites in the low (high) wind penetration case, and the import and export at 5 
interconnections with neighboring areas. The high-level analysis procedure is illustrated 
in Figure 2.   

More specifically, to determine the optimal conservatism level of the robust UC
involved the following steps:

(A. 1) generating day-ahead forecast ranges for uncertain load, wind generation, 
and export/import interchange under various configurations, namely low and high wind 
penetration levels, and twelve load, wind and interchange behavior clusters, which are 
discussed in Appendix B.

(A. 2) varying the forecast ranges used in the robust unit commitment calculation 
to reflect different conservatism levels. This allowed us to determine what the optimal 
conservatism level is to achieve the balance between robustness and performance.
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(A. 3) testing the system dispatch over the day for 1000 random realizations of 
load, wind generation and interchange under each robust UC solution, and

(A. 4) obtaining economic and operational performance measures.

The formulation for the dispatch problem in step (A.3) can be found in Appendix A. 

We also ran the deterministic UC with incremental reserve and compared it with 
the robust counterpart. The procedure for the deterministic approach was similar to the 
one described above. In particular, it involved:    

(B. 1) generating day-ahead forecast ranges for uncertainty under various 
configurations. This step is the same as the step (A.1). 

(B. 2) adjusting the incremental reserve to calculate the corresponding 
deterministic unit commitment schedules to reflect different conservatism levels, 

(B. 3) testing the system dispatch over the day for 1000 random realizations of 
load, wind generation and interchange under each deterministic UC solution, and

(B. 4) comparing the economic and operational performance measures between 
the robust and deterministic approaches. 

Figure 2: The procedure to calculate UC solutions and perform the simulation. 

A Livermore-developed statistical model of load and wind behavior was used to 
generate the forecast range as well as to sample the possible realizations of load, wind 
and interchange in the simulation. We assumed that forecasts of either wind or load 
could be grouped by similar patterns and magnitudes, and that forecasts within any one 
group (cluster) shared the same statistical characteristics in terms of the forecast error. 
Thus, the knowledge of the day-ahead forecast and, more specifically, the cluster it 
belongs to, could inform the appropriate model of the forecast uncertainty. For example, 
load forecast errors for days with a high total load may come from a distribution with one 
set of parameters (such as the means and covariances), while those for days with a low 
total load may be described by possibly the same type of distribution, but a different set 
of parameters. The features used to categorize wind and load forecasts into clusters are 
discussed in Appendix B.

We used a relative error model to describe the observed wind and load 24-hour 
trajectory (by each wind site or load zone) separately, as a function of the forecast 
trajectory (see Appendix C for more details of the model).  To identify the features used 
to cluster the wind and load forecasts and to estimate the parameters in the 
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aforementioned model for each cluster, we used forecast and observed hourly wind 
production and load data for the New England power system for all days in the period 
from January 1st 2004 through December 31st 2006 (a total of 1096 24-hour trajectories 
of observed and forecast wind and load).  

Once the clusters were identified (see Appendix B) and model parameters of 
each cluster were specified (see Appendix C), given a specific day-ahead wind forecast, 
one could then determine which wind cluster the forecast belongs to and obtain both the 
forecast range and the set of possible actual realizations needed to run the robust UC 
algorithm and economic dispatch simulation. The underlying assumption is that the wind 
generation realizations in the simulation follow the forecasted behavior pattern used in 
the commitment process. The same can be done with a given day-ahead forecast of the 
load.   

We also had historical data for the observed 24-hour interchange trajectories.  
This dataset contained all days from January 1st, 2005 to December 31st, 2006, so we 
had a total of 730 such trajectories.  Because interchange forecast errors have much 
more complex statistical characteristics than wind or load, we did not model these due 
to time constraints of the project.  Instead, to obtain a set of actual realizations for a 
given day, we selected a set of trajectories randomly with replacement from the entire 
set of 730. 

For each cluster, the wind forecast range for each location at each hour was 
chosen to equal a particular confidence level, i.e., the interval that covers the middle p
percent of the distribution of possible wind output values. The forecast ranges for load 
and interchanges were determined in the same fashion. In the analysis, the value of p
was selected to be 99 because it was assumed that a 99 confidence interval is the 
largest amount of uncertainty operators are willing to accommodate under the robust 
approach. Figure 3 illustrates the forecast ranges of the aggregated load, wind, 
interchange and net load, which is load less the sum of interchange and wind, over the 
24-hour period in a representative cluster using the confidence level p set to 99. A 
concern with such a large confidence interval is that it might be too conservative. To 
address this, the operators’ conservatism level is taken into account via the size of the 
forecast range around the expected value of uncertainty. We varied the size of the 
forecast range to explore the tradeoff between robustness and performance of the 
robust approach in the analysis. The details on varying the size of the forecast range or 
the conservatism level are discussed below. Under the deterministic approach, we used 
the difference between the upper bound of the net load forecast range and the net load 
mean as the incremental reserve. This corresponded to the most conservative 
deterministic UC solution. Similarly to the robust approach, we gradually reduced the 
amount of incremental reserve to control the conservatism of the deterministic UC 
solutions.         

To obtain a comprehensive evaluation of the robust approach, we considered 
2448 robust UC configurations of the combinations of the following elements: 

(1) two wind penetration levels: low level (700 MW) and high level (2GW), 

(2) twelve wind and load behavior patterns: 12 clusters produced by the 
clustering procedure (see Appendix B), 
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(3) fifty-one levels of conservatism: 0 to 1 with increment of 0.02, where 0 
corresponds to a forecast point while 1 corresponds to the largest forecast range, i.e. 
the most conservative case, and 

(4) two ways to vary the conservatism level: the uniform method and the non-
uniform method. The uniform method reduces the conservatism level by proportionally 
reducing the variation range of each uncertainty source. The non-uniform forecast 
range, which is also known as budget uncertainty set (Bertsimas and Sim 2004), 
controls the conservatism level by limiting the number of uncertainty sources that can 
reach their maximum variation. Figure 4 illustrates these two methods assuming that 
there are two uncertainty sources. The mathematical description of the uniform and 
non-uniform forecast ranges is presented in Appendix A.  

Figure 3: The forecast means (solid curves) and ranges of aggregated load, 
wind, interchange and net load for a 99 confidence interval.  

Figure 4(a): the uniform method Figure 4(b): the non-uniform method

For the deterministic approach, we considered 1224 deterministic UC 
configurations of the combinations of elements (1) - (4) since there was only one way to 
vary the conservatism level of the deterministic solutions. In the deterministic approach, 
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the level of conservatism was adjusted by changing the incremental reserve, which 
implicitly handled uncertainty by committing additional capacity besides meeting 
forecast value in an ad-hoc fashion.   

The configurations described above led to a total of 2448 robust UC and 1224 
deterministic UC solutions that had to be computed and analyzed.  The first half of the 
collaboration focused on the computation and analysis of the 2448 robust UC and 1224 
deterministic UC solutions that resulted from the configurations described above.   
These solutions took an average of 30 minutes to compute. Solving this set of UC 
problems on one desktop computer would take about 1,836 hours. By parallelizing the 
software used to solve the problems, we reduced the computation time to just 90 
minutes. The experiments were run on the Cab cluster at LLNL. It is a 1,200 node, 16 
cores per node Linux cluster. Each node has 32G RAM. All 3,672 UC problems were 
run in parallel, using one core per one UC problem.  

During the second half of the collaboration, we ran simulations. The simulations 
used Monte Carlo sampling based on the statistical model. One thousand dispatch 
problems, each one taking 15 seconds, must be solved for every UC configuration, for a 
total dispatch-solving time of 15,300 hours, or approximately 1.8 years, on a desktop. 

Two joint efforts were taken to efficiently parallelize the dispatch simulation. First, 
ISO NE and LLNL teamed up with GAMS, a software company whose product is used 
to code UC and dispatch models. GAMS used the GAMS scenario solver, known as 
Gather-Update-Solve-Scatter (GUSS) facility, to solve 1,000 dispatch problems 
sequentially in an efficient fashion. GUSS reduced the computation time of solving 
1,000 dispatch problems from 15,000 seconds to 450 seconds. Next, LLNL parallelized 
the 7.5 million dispatch problems in batches on the Cab cluster. In particular, one single 
core was used to solve every 1,000 dispatch problems with GUSS facility. Because 
running 1,000 dispatch problems took large memory (about 10GB), only three cores 
were used on each node. The total 3.7 million dispatch problems were run in batches 
using around 150 nodes, and 1800 cores, many of which were idle. At the end, the 
calculation time for simulations was reduced to 4.8 hours. 

Many files were written out by GAMS (the largest almost 2GB for combining a 
UC problem and 1,000 dispatch problems). To handle this, LLNL sent all outputs to a 
parallel file system connected to the Cab cluster. More specifically, the outputs were 
sent to Iscratchd, which has a 2PB capacity, and bandwidth of 20 GB/s from the Cab 
cluster. In addition, LLNL used MOAB as the job scheduler to schedule the jobs on 
various nodes and cores. The Moab Workload Manger is the batch scheduling system 
at LLNL. Under the covers, MOAB uses SLURM for reserving nodes, allocating jobs to 
nodes or cores. It allows for fine-grained control, including setting the number of cores 
per nodes, which was needed for both UC and dispatch runs.

Simulation Results 

We compare the performance of the two robust approaches, namely the robust 
approach with non-uniformly reduced forecast range (R-NU) and the robust approach 
with uniformly reduced forecast range (R-U), to the deterministic approach with 
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incremental reserve (Det) in the following six aspects: 1) commitment, dispatch and total 
costs, 2) energy and reserve prices, 3) profit of generators, 4) load shedding events, 5) 
wind spillage and 6) the sensitivity to the accuracy of forecast.  These factors are 
selected to assess the impact of the UC decisions on the economic efficiency and 
operational reliability.  The production cost is an indication of the economic efficiency. 
The prices and the profit of generators reveal the economic impact on generators. The 
frequency of load shedding events measures the reliability of the real-time dispatch 
operation under different UC decisions. Because the ISO wants to use the low cost wind 
as much as possible, the wind spillage implies how efficiently wind generation is utilized.  
The definition of the wind spillage is given at the Appendix A. The sensitivity to the 
forecast accuracy shows the robustness of UC decisions against forecast errors. 

The main findings are the following:

(1) An optimal conservatism level can be identified for each of the R-NU, R-U 
and Det approaches. 

(2) At the optimal conservatism level, the robust UC solutions have a lower total 
cost than the deterministic solutions, indicating better economic efficiency of 
the robust approaches. The robust UC solutions also result in lower cost 
volatility than the deterministic solutions, implying a more stable performance 
of the former. 

(3) The robust approaches depress energy prices, as well as lower generators’ 
profit, relative to the deterministic approach. However, they lower the 
volatility of the profit, thus reducing risk, relative to the deterministic approach.

(4) The robust approaches are more resilient to forecast errors than the 
deterministic approach. 

(5) The advantages of the robust approaches are amplified when the wind 
penetration level is high.

(6) It is more costly to operate the system under the high wind penetration than 
the low wind penetration for all three approaches. 

(7) The performances of the R-NU and R-U approaches are similar, but the latter 
shows slight advantages over the former in terms of improving system 
reliability, saving total cost, and reducing the volatility of dispatch cost and 
energy prices. 

Therefore, we recommend the R-U approach as the most appropriate tool to manage 
the uncertainty in the UC process.

The detailed discussion is presented below. We focus on the high wind penetration 
case in subsections A, B and C. Finally, we analyze the impact of the wind penetration 
level in subsection D. 

A. Cost efficiency and the choice of conservatism level 

By properly adjusting the conservatism level, the robust approaches achieve 
lower total cost and lead to a more reliable system than the deterministic approach. The 
R-NU and R-U approaches are comparable. When the R-NU and R-U approaches are 



Lawrence Livermore National Laboratory 8

tuned to be at their optimal conservatism levels, the latter has a slightly better 
performance than the former in terms of increasing cost efficiency and operational 
reliability. In particular, the R-U approach always results in lower total cost volatility and 
a more stable performance than the Det approach. As for the R-NU approach, its total 
cost can be the most volatile of the three approaches in some uncertainty behavior 
clusters, which is not desirable.    

Figure 5 plots the average commitment cost of all the clusters in the high wind 
penetration case. The penalty cost for loss of load is not considered in the commitment 
cost. As the level of conservatism increases from 0 to 1 on the x-axis, the size of the 
forecast range increases from the point forecast to the most conservative case, 
corresponding to the 99 confidence interval range, under the robust approaches. The 
incremental reserve increases from 0 to the difference between the largest net load of 
the 99 confidence interval and expected net load under the Det approach. It can be 
seen that the commitment cost under both robust approaches increases as the level of 
conservatism increases. The commitment cost of the R-U approach is constantly lower 
than that of the R-NU approach. The commitment cost does not increase monotonically 
under the Det approach as it does under the robust approaches. In particularly, the 
commitment cost under the Det approach reaches its peak at the conservatism level 
0.55, and decreases afterward. This is because the system does not have enough 
reserve capacity to meet the incremental reserve requirement when the conservatism 
level is greater than 0.55. As a result of the reserve shortage, suboptimal UC solutions 
are obtained, leading to a decrease in the commitment cost.     

Figure 5: The commitment cost for the high wind penetration case

Figure 6 shows the load shedding event frequency under three alternative 
approaches for each cluster. The twelve clusters are partitioned into three columns, 
each corresponding to low, mid and high net load, respectively, and each row 
corresponds to different wind clusters in Figure 6. Load shedding frequency is used as 
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an indicator of system reliability. The smaller the frequency, the more reliable the 
system is. As illustrated in Figure 6, the load shedding events are reduced to almost 
none as the conservatism level increases under all three approaches when the net load 
is either low or medium. This means that the system can operate reliably under all 
approaches, as long as the forecast range of the robust approaches and the 
incremental reserve of the deterministic approach are chosen to be large enough. 
However, when the net load is high, the system is stressed to a sufficiently high degree 
that even the most conservative UC solution leads to a high load shedding frequency. 
The deterministic approach results in much more load shedding frequency than the 
robust counterparts. This means that more expensive emergency actions, such as 
dispatching fast-start units or load-shedding, have to be taken to maintain system 
reliability under the Det approach than the other approaches. In addition, the suboptimal 
deterministic UC solutions associated with the conservatism level greater than 0.55 
leads to an increase in the corresponding load shedding frequency under the Det 
approach when the net load is high. 

Figure 6: The load shedding frequency for the high wind penetration case.

In Figure 7, the average real-time dispatch costs are plotted as solid curves. The 
load shedding penalty cost is not included in the dispatch cost. The legend of Figure 7 is 
the same as Figure 6. All the average dispatch cost curves display U-shape, and the 
squares on the solid curves specify the minimal dispatch cost points. The dashed 
vertical lines in Figure 7 represent the conservatism level corresponding to the minimal 
load shedding frequency or the most reliable UC solutions1. It can be seen that the UC 
solution associated with the least dispatch cost does not always coincide with the most 
reliable performance.  

                                           
1 The red dashed vertical line overlaps with the green dashed vertical line in row 3 and column 2 of Figure 7.  
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Figure 7: The average dispatch cost for the high wind penetration case.

Next, we want to find the optimal conservatism level that balances between the 
average total cost, i.e. the sum of commitment and dispatch costs, and the operational 
reliability. We multiply the load shedding frequency by 105 to scale it up to the same 
order of magnitude as the average total cost2. Then, we use the sum of the scaled load 
shedding frequency and the average total cost to measure the overall cost and reliability 
performance. The conservatism level that returns the smallest sum is considered to be 
the optimal conservatism level. Table 1 reports the optimal conservatism level for each 
cluster. We observe that the R-NU attains its optimal performance when the 
conservatism level is relatively small, e.g. around 0.08 when the net load is low. This 
optimal conservatism level is consistent with the findings in [Bertsimas et al. 2013]. The 
optimal conservatism levels of the Det and R-U approaches are close, and their optimal 
conservatism levels are usually above 0.2. 

To quantify the comparison, we use the average total cost of the Det approach at 
its optimal conservatism level as the benchmark, and define the relative total cost 
reduction of the robust approaches at their optimal conservatism levels as (Det average 
total cost - robust average total cost) / Det average total cost. In other words, we 
compare the measurement of the best-tuned Det UC solution with the best-tuned robust 
UC solutions. The larger the total cost reduction, the more cost-effective the 
corresponding robust approach. Table 1 shows that the optimal R-U solution always 
leads to a greater total cost reduction and lower load shedding frequency than the 
optimal Det solution. The advantages of the R-U approach are especially great under 
the high net load clusters, where the R-U approach can save up to 2.73%, or $467 K, 
total cost relative to the Det approach while shedding less load. The performance of the 

                                           
2 The scaling factor of the load shedding frequency affects the optimal conservatism level. The larger the scaling 
factor, the more weight decision makers put on operational reliability relative to total cost. We want to weigh total cost 
and reliability equally by choosing 105 as the scaling factor in the analysis. If decision makers consider reliability more 
important than cost, a greater scaling factor can be used.  
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R-NU approach is similar to that of the R-U approach at the optimal conservatism level, 
but the former is slightly worse than the latter in terms of the total cost reduction and 
load shedding frequency, as shown in Table 1. 

Cluster

The optimal 
conservatism level

The average total 
cost under the Det 
approach and the 
relative total cost 

reduction under the 
R-NU and R-U 

approaches at the 
optimal 

conservatism level3

The load 
shedding 

frequency at the 
optimal 

conservatism 
level

The standard 
deviation of the total 
cost under the Det 
approach and the 
relative standard 

deviation reduction 
under the R-NU and 
R-U approaches at 

the optimal 
conservatism level

Det
R-
NU

R-U

Det

(×
107

$)

R-
NU 
(%)

R-U 
(%)

Det
R-
NU

R-U

Det

(×
106

$)

R-NU 
( %)

R-U 
(%)

Low 
net 
load

L1 0.33 0.08 0.35 -4.32 0.12 0.25 1 2 2 3.07 -1.30 11.40

L2 0.35 0.08 0.35 -4.31 0.12 0.22 2 2 2 2.73 -6.96 8.06

L3 0.27 0.08 0.25 -4.35 0.00 0.19 2 2 2 2.62 20.61 3.05

L4 0.33 0.10 0.41 -4.32 0.46 0.53 1 0 0 3.39 26.25 20.65

Mid 
net 
load

M1 0.35 0.08 0.35 -3.68 1.68 1.70 4 1 1 4.44 3.38 14.19

M2 0.22 0.06 0.20 -3.69 0.35 0.67 1 3 1 4.80 -1.25 7.92

M3 0.29 0.08 0.27 -3.68 1.03 1.39 2 1 2 4.24 17.92 9.67

M4 0.25 0.08 0.24 -3.69 -0.28 0.57 4 0 2 4.77 24.74 6.08

High 
net 
load

H1 0.27 0.08 0.29 -1.71 2.22 2.73 219 209 208 1.24 2.42 3.23

H2 0.20 0.06 0.22 -1.77 0.02 0.29 218 211 201 1.23 -2.44 2.44

H3 0.18 0.06 0.25 -1.92 1.44 1.56 172 171 150 1.22 0.00 7.38

H4 0.20 0.06 0.16 -1.86 0.64 0.81 173 172 172 1.20 -0.83 0.00

Table 1: The optimal conservatism level, average total cost, load shedding 
frequency and standard deviation of the total cost for the Det, R-NU and R-U 
approaches for the high wind penetration case.

We also compare three approaches in terms of the standard deviation of the total 
cost. Everything else being equal, an approach with a lower standard deviation is 
preferable since a high standard deviation implies a greater uncertainty in the cost.  We 
still use the optimal deterministic UC solution as the benchmark, and obtain the relative 
standard deviation reduction of the robust solutions at the optimal conservatism levels, 
which is defined as (Det standard deviation of total cost – robust standard deviation of 
total cost)/ Det standard deviation of total cost. As shown in Table 1, the R-U approach 

                                           
3 Because demand bids are considered, it results in negative total cost.
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can drastically lower the total cost standard deviation, up to 20.65%, relative to the Det 
approach. The relative standard deviation reduction of the R-U approach is greater for 
low and medium net load values than for high values. On the other hand, the R-NU 
approach does not always lead to a smaller standard deviation than the Det approach, 
which is reflected by several negative relative standard deviation reduction values in 
Table 1. 

We also compare three approaches with the load shedding scaling factor equal 
to 104 and 106, respectively, in addition to 105. The comparison result using the scaling 
factor 104 is similar to the one using 105 scaling factor. The R-U approach still 
outperforms the other two approaches in terms of reducing the average and standard 
deviation of total cost as well as decreasing the load shedding frequency. This suggests 
that if the importance of load shedding is valued less, the R-U approach can remain its 
economic efficiency, beneficial effect on dispatch cost volatility, as well as keeping 
system reliable. On the other hand, when the scaling factor is 106, the advantage of the 
robust approaches over the Det approach is weakened in the sense that the Det 
approach can lead to lower average and standard deviation of dispatch cost in some 
clusters. However, the robust solutions are much more resilient than the Det approach 
in that load shedding frequency under the robust approaches is much lower than that 
under the Det approach. This is because when more weight is put on the load shedding, 
the optimal robust UC solutions are more robust, but less economic than the 
deterministic solutions.         

B. Impact on prices and generators’ revenue

In this subsection, we show that the robust approaches depress energy prices in 
most of the clusters. However, the robust approaches do not necessarily result in a 
lower reserve price than the deterministic approach. Because the generators’ profit 
mainly comes from the energy revenue, the robust approaches lead to a lower average 
generators’ profit, but reduce the volatility of the profit, or the risk, compared to the Det 
approach. 

Figure 8 shows the trend of the energy, average spinning and non-spinning reserve 
prices under various levels of conservatism. The spinning reserve is procured from the 
committed generators while the non-spinning reserve is procured from the uncommitted 
generators. Instead of displaying all twelve clusters, we select one representative 
cluster from each net load level in Figure 8. Both energy and spinning reserve price 
curves show a decreasing pattern, as illustrated in the first two rows of Figure 8. This is 
because as more generators are committed with the increasing conservatism level, the 
increasing amount of available capacity and spinning reserve depress the energy and 
spinning reserve prices. Similarly, because more units are committed under the robust 
approaches than the Det approach in most of the cases, it leads to lower spinning 
reserve prices under the former approaches than the latter. As a result, there is less 
offline units providing non-spinning reserve under the robust approaches than the Det
approaches. Due to the supply and demand relationship, the non-spinning reserve 
prices are higher under the robust approaches than their deterministic counterpart. In 
addition, as the net load increases from low to high, energy and reserve prices tend to 
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increase, as expected.  In particular, when the net load is high, energy and reserve 
prices spike more often due to more frequent scarcity conditions, causing the average 
prices to go up.  

Figure 8: The average of spinning and non-spinning reserve prices for the high 
wind penetration case. 

Figure 9: The average and standard deviation of energy prices at the optimal 
conservatism level for the high wind penetration case.

Next, we compare three approaches at their optimal conservatism levels 
identified in Table 1. Figure 9 plots the average and standard deviation of energy prices 
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under the optimal robust and deterministic UC solutions for all twelve clusters. The 
columns correspond to three load clusters while the rows correspond to four wind 
clusters. Compared to the Det approach, the robust approaches depress the average 
energy price in most of the clusters, as shown in the bar plots in Figure 9. One of the 
contributing factors for the low average energy price is that there are fewer energy price 
spikes under the robust approaches than the Det approach. This is because of the fact 
that energy price spikes occur when load is shed. The low load shedding frequency 
under the robust approaches demonstrated in Figure 6 implies less energy spikes. In 
terms of the energy price standard deviation, which is plotted in red curves in Figure 9, 
none of the approaches consistently outperforms the others, but the R-U approach is 
never the one with the largest standard deviation. Overall, the energy price is relatively 
low and stable under the R-U approach.

Generators’ energy revenue, which is the product of energy price and quantity, is 
highly correlated with energy prices. As a result, the impact of the three alternative 
approaches on energy revenue at their optimal conservatism levels is similar to the 
impact on the energy prices, as shown in Figure 9. Generators receive 13.83% and 
12.55% less energy revenue under the R-U and R-NU approaches, respectively, than 
the Det approach, and face less energy revenue volatility under the R-U approach, 
compared to the Det approach.

Figure 10: The average and standard deviation of spinning reserve prices at the 
optimal conservatism level for the high wind penetration case.

Figure 10 plots the average and standard deviation of spinning reserve prices under 
the optimal robust and deterministic UC solutions. Similar to Figure 9, the columns 
correspond to three load clusters while the rows correspond to four wind clusters. In 
contrast to energy prices, the spinning reserve prices do not behave consistently: for 
some clusters, they are higher for the robust approaches than the Det approach. The 
same is true for the reserve revenues. In addition, none of the approaches 
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demonstrates a consistent advantage over the rest in terms of the standard deviation of 
the spinning reserve price. 

Because the energy revenue contributes to the majority of the generators’ profit, the 
generators’ total profit is 16.82% and 15.42% lower under the R-U and R-NU 
approaches, respectively, than the Det approach. The R-U approach results in a lower 
standard deviation than the Det approach.

C. Robustness against forecast errors

The forecast ranges used in the robust approaches are generated based on the 
prediction of the behavior pattern of wind, load and interchange, which are categorized
into 12 clusters in this study, as described in Appendix B. In practice, the predicted 
behavior pattern can be very different from the actual realization. For example, it might 
be forecasted that the wind is high and trending up in the following day, but the actual 
wind generation turns out to be very low and trending down. It is therefore important for 
a UC solution to have stable economic and operational performance even in the 
presence of large forecast errors. The simulation results show that the robust 
approaches exhibit this desirable property. In comparison, the performance of the Det 
approach is more affected by forecast errors. 

We consider two scenarios, namely wind over-forecast and load under-forecast. We 
use the UC solutions derived from a cluster with a high wind and low load pattern, as 
illustrated at the first row of Figure 11. Then, we run system dispatch simulations using 
wind samples generated from the same forecasted wind pattern, but with the load 
samples from a high load cluster under the load over-forecast scenario, as shown in the 
lower left plot of Figure 11. Under the wind over-forecast scenario, we use load samples 
generated from the same forecasted load pattern, but with the wind samples from a low 
wind cluster, as shown in the lower right plot of Figure 11. 

Figure 11: The forecasted load and wind patterns. The realized load and wind patterns
for the load under-forecast and wind over-forecast scenarios.  
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Figure 12 plots the difference of the average and the standard deviation of dispatch 
cost between a poor and an accurate forecast of the uncertainty behavior under the 
three approaches. A poor forecast means either the wind over-forecast or the load 
under-forecast scenario. An accurate forecast means that the forecasted and realized 
wind and load are from the same cluster, or that the prediction and realizations are 
consistent in terms of load and wind behavior pattern. The difference of the average 
dispatch cost is defined as the dispatch cost of the poor forecast less that of the 
accurate forecast. Similarly, the difference of the standard deviation dispatch cost is 
equal to the standard deviation dispatch cost of the poor forecast less that of the 
accurate forecast. A smaller magnitude of either of these differences implies a more 
robust corresponding UC solution. 

Figure 12: Impact of forecast errors on average and standard deviation dispatch 
cost for the high wind penetration case. 

The left column in Figure 12 shows the results for the wind over-forecast 
scenario while the right column shows the results under the load under-forecast 
scenario. The dashed lines indicate the results at the optimal UC solutions. Under the 
wind over-forecast scenario, the differences of the average and standard deviation 
dispatch cost are negative at the optimal UC solutions. In other words, the dispatch cost 
and its volatility are reduced when less low-cost wind power is produced than 
forecasted. This is counterintuitive. The reason for the decrease in volatility is that when 
wind is over-forecasted, there is less wind power volatility in the dispatch simulation. As 
a result, it leads to a smaller standard deviation in dispatch cost. In addition, since less 
wind power is produced than forecasted, the system has sufficient flexibility provided by 
the over committed units to resolve congestion problems. Consequently, the fewer 
congestion problems  result in a lower average dispatch cost. In the load under-forecast 
scenario, we observe that the average and standard deviation of dispatch cost both 
increase at the optimal UC solutions compared to the accurate forecast results. This is 
expected because the UC solutions under low load forecast do not commit enough 
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generators. In turn, it causes tight system operating conditions when the actual load 
realizations are high. Comparing three approaches, we observe that the behaviors of 
two robust approaches are similar. The impact on the average dispatch cost is smaller 
under the robust approaches than the deterministic counterpart. However, the Det 
approach leads to lower volatility in the dispatch cost than the robust approaches.     

Figure 13: Impact of forecast errors on load shedding frequency and generators’ 
profit for the high wind penetration case.

Figure 13 plots the impact of forecast errors on the load shedding frequency and 
the generators’ average profit. The differences of load shedding frequency and profit are 
defined as the load shedding frequency and generators’ profit of the poor forecast 
minus the counterparts of the accurate forecast, respectively. They are plotted in solid 
curves.  The smaller this difference, the better the approach, everything else being 
equal. As in Figure 12, the corresponding differences at the optimal UC solutions are 
illustrated in dashed lines. It can be seen that the performance of two robust 
approaches are comparable. The system reliability under the optimal robust approaches 
is more immune to the forecast errors than the Det approach. This benefit is even 
greater when the load is under-forecasted, reflected by the fact that the load shedding 
frequency is approximately 25% lower under the former than the latter. The economic 
impact on the generators, which is measured by the profit difference, is also lower under 
the optimal robust approaches relative to the deterministic counterpart. Since the 
amount of load in the system is one magnitude larger than the wind capacity, the effect 
of wind over-forecast is much smaller than the effect of load under-forecast as shown in 
Figures 12 and 13. 
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D. Impact of wind penetration

In this section, we study the impact of wind penetration on the performance of three 
approaches. We find that it costs more to operate the system in the high wind 
penetration case than the low wind penetration case we investigated. This is because 
there is more uncertainty associated with high wind case, which requires the system to 
commit additional resources to hedge against the larger magnitude of wind variability. In 
the low wind penetration case, the robust approaches still outperform the Det approach 
in improving system reliability, saving operating cost, and resilience to forecast errors.
However, the beneficial effect of the robust approaches in the low wind penetration case 
is not as considerable as it is in the high wind penetration case. 

Table 2 shows the same information as Table 1, but for the low, rather than high, 
wind penetration case. It shows that the optimal conservatism levels of each approach 
are smaller than their counterparts in the high wind penetration case in Table 1. 
Compared to the deterministic approach, the advantages of the robust approaches in 
reducing the average and standard deviation of the total cost in the low wind penetration 
case are not as significant as it is under the high penetration case. This is because 
there is less uncertainty associated with low wind installment, which in turn diminishes 
the benefit of the robust approaches. However, the R-U approach still appears to have 
the best overall performance among the three approaches.     

The comparison of the total cost standard deviation under the Det approach in 
Tables 1 and 2 reveals that the standard deviation is smaller for the low wind than for 
the high wind penetration case. The same is true for the standard deviations of the 
robust approaches. This is expected because the volatility of wind output is lower for the 
low wind penetration case, which in turn leads to a less volatile total cost. 

The average total cost decreases as the wind penetration changes from high to low. 
In particular, the average total cost decreases by 1.71%, 1.25% and 1.27% for the 
deterministic, R-NU and R-U approaches, respectively. This means it costs more to 
operate the system for the high wind than for the low wind penetration case. This is 
because the system needs to commit additional units to hedge against additional 
uncertainty associated with wind generation in the high wind penetration scenario. 
Furthermore, the change of wind penetration form high to low also leads to a decrease 
in the average dispatch cost by 1.61%, 1.13%, and 1.17% for the deterministic, R-NU 
and R-U approaches, respectively. Because more units are committed to handle 
possible loss of large amount of wind in the high wind penetration case, some 
expensive units may be idle at their minimal generation level during the real-time 
dispatch. Especially, when the actual wind output turns out to be very large, the system 
has to curtail wind generation in order to balance the minimum generation levels of the 
committed units. Due to the excessive high cost units being committed, the average 
dispatch cost is higher when there is more wind in the system. This implies that 
additional cheap wind power can be detrimental unless the variability in the wind 
generation can be controlled.  
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Cluster

The optimal 
conservatism level

The average total 
cost under the Det 
approach and the 
relative total cost 

reduction under the
R-NU and R-U 

approaches at the 
optimal 

conservatism level

The load 
shedding 

frequency at the 
optimal 

conservatism 
level

The standard 
deviation of the total 
cost under the Det 
approach and the 
relative standard 

deviation reduction 
under the R-NU and 
R-U approaches at 

the optimal 
conservatism level

Det
R-
NU

R-U

Det

(×
107

$)

R-
NU 
(%)

R-U 
(%)

Det
R-
NU

R-U

Det

(×
106

$)

R-NU 
( %)

R-U 
(%)

Low 
net 
load

L1 0.29 0.06 0.29 -4.37 -0.23 0.00 2 5 1 2.67 -25.1 3.00

L2 0.27 0.06 0.25 -4.36 0.00 0.23 0 0 0 2.31 -24.7 0.00

L3 0.29 0.06 0.24 -4.36 0.00 0.23 1 2 1 2.33 -30.0 -14.2

L4 0.27 0.06 0.27 -4.32 -0.23 0.23 1 1 1 2.86 -20.6 4.55

Mid 
net 
load

M1 0.20 0.06 0.20 -3.74 0.27 0.27 0 0 0 4.14 6.76 6.52

M2 0.22 0.06 0.20 -3.78 0.53 0.53 4 4 4 4.12 2.43 2.18

M3 0.20 0.06 0.20 -3.72 0.27 0.27 4 3 4 4.13 4.12 4.36

M4 0.20 0.06 0.18 -3.76 0.27 0.27 2 2 2 4.25 7.29 2.35

High 
net 
load

H1 0.18 0.06 0.16 -1.96 0.51 1.02 190 181 189 1.16 0.86 -0.86

H2 0.12 0.06 0.14 -1.91 0.00 0.52 183 171 177 1.16 3.45 1.72

H3 0.14 0.06 0.12 -1.85 0.00 1.08 198 186 196 1.25 2.40 8.80

H4 0.14 0.06 0.14 -1.82 0.00 1.10 197 194 195 1.22 1.64 -0.82

Table 2: Optimal conservatism level, average total cost, load shedding frequency 
and standard deviation of the total cost for the Det, R-NU and R-U approaches in the 
low wind penetration case.

Figure 14 shows the wind spillage as a function of the level of conservatism for 
both the high and the low wind penetration cases. It shows that the amount of wind 
spillage is similar in both cases when the net load is high. When the net load is medium, 
there is less wind spillage in the low wind penetration case than in the high wind 
penetration case. However, when the net load is low, the opposite is true. Additionally, it 
can be observed from Figure 14 that wind spillage increases with the amount of 
conservatism. This is because the additional units committed in the higher conservatism 
levels have to run at their minimum generation levels once they are online. As a result, 
the system is more likely to incur the supply surplus condition where cheap wind power 
has to be spilled to maintain system balance.   
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Figure 14: Wind spillage for the high and low wind penetration cases.

Figure 15: Difference in average and standard deviation of energy price between the 
high and low wind penetration cases. 

Figure 15 shows the impact of wind penetration level on the average and the 
standard deviation of the energy price. The difference in the average (standard 
deviation) of energy price is defined as the average (standard deviation) of energy price 
under high wind penetration – the average (standard deviation) of energy price under 
low wind penetration. The variation of the difference with respect to the conservatism 
level is plotted as the solid curve in Figure 15. It shows that the R-NU approach leads to 
the lowest difference in average and standard deviation of energy price. This implies 
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that the energy price is least sensitive to the level of wind penetration under the R-NU 
approach among three approaches. When the net load is low or medium, all the curves 
are above zero. It suggests that the average and standard deviation of energy price are 
higher in the high wind penetration case than the low wind penetration case. On the 
other hand, when the net load is high, the curves can be below zero. This means that 
the energy price decreases due to more wind installment. The reason is that wind is 
needed to relieve the tight system condition under the high net load condition. In turn, it 
lowers the energy price.    

The impact of forecast errors on dispatch cost and the impact on load shedding 
frequency and generators’ profits in the low wind penetration case are shown in Figures 
16 and 17, respectively. The dashed lines indicate the results at the optimal 
conservatism level. We can see that all the measurements are affected less under the 
optimal robust solutions than the optimal deterministic solutions. In addition, the robust 
approaches exhibit an advantage over the Det approach in terms of reducing the 
volatility of dispatch cost in the low wind penetration case. However, the resilience 
against forecast errors of the robust approaches is lower in the low wind penetration 
case than in the high wind penetration case shown in Figures 12 and 13. 

In Figure 16, under the wind over-forecast scenario, the differences of the 
average and standard deviation dispatch cost are positive at the optimal UC solutions. 
This means that the dispatch cost and its volatility go up when actual wind power is less 
than the forecasted in the low wind penetration case, in contrast to the decrease in cost 
and volatility as shown in Figure 12. The reason is that the congestion is less an issue 
in the low wind case than it is in the high wind case. In turn, when there is less wind 
power is actually generated than the forecast value, more expensive units have to be 
used to meet the load, increasing the dispatch cost.

Figure 16: Impact of forecast errors on average and standard deviation dispatch cost for 
the low wind penetration case. 
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Figure 17: Impact of forecast errors on load shedding frequency and generators’ 
profit for the low wind penetration case.

Benefits to Company and LLNL 

The robust model is a powerful tool to handle uncertainties, but the immense 
simulation effort required limits ISO NE’s ability to assess the benefit of applying robust 
solutions.  The parallel computing capability of HPC significantly expedited the research 
efforts on evaluating the robust approach. This study is the first comprehensive study of 
robust UC using a large-scale power system. The findings can greatly facilitate the UC 
improvement process, and help the ISO to identify an appropriate risk management tool 
that can mitigate the impact of variability and uncertainty on system reliability and 
economics.

In turn, LLNL participants were exposed to the important problems faced by the energy 
industry, as well as new algorithms and methods required to solve them This project, as 
a part of the hpc4energy incubator (Smith 2012), joins a growing number of DOE-
sponsored partnerships that are helping to connect energy businesses with HPC 
resources, while aiding the nation in meeting its carbon emission and energy security 
goals.

Conclusions

In this study, a comprehensive evaluation of robust unit commitment was 
conducted. The objectives of this study were to identify the optimal conservatism level 
that balances the economic efficiency and operational reliability of robust UC solutions, 
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as well as compare the robust and deterministic approaches. A statistical model 
characterizing the wind, load and interchange uncertainty was created to construct 
forecast ranges for robust UC and to generate random samples for the simulation. 
Parallelization techniques were employed to solve UC problems and perform dispatch 
simulation efficiently on supercomputers.  

By simulating the performance of robust solutions under various levels of 
conservatism, we obtained a set of well-tuned robust UC solutions that result in low cost 
and load shedding. We also found that the robust approaches exhibit sizable reductions 
in total cost, significantly reduce the volatility of dispatch cost and improve the reliability 
of the power system operation relative to the deterministic approach. The robust UC 
solutions also showed resilient performance in the presence of large forecast errors. 
The advantages of robust approaches were more significant when more wind resources 
were integrated into the system. From the perspective of generators, the profit was 
lower for the robust approaches than the deterministic approach due to the fact that the 
former depresses energy prices. However, generators faced less risk under the robust 
approaches than the deterministic one.

Besides the robust approach, stochastic optimization is another popular method 
to manage uncertainty for the UC problem. The stochastic approach explicitly 
incorporates probability distributions of possible wind generation, interchange and load 
values, instead of assuming a fixed uncertainty range as is done in the robust approach, 
to compute UC solutions that guarantee system reliability. It would be interesting to 
compare the performance of robust and stochastic UC solutions in the future.
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Appendix A
Mathematical Formulations

Nomenclature

Parameters:

gN , dN , wN , aN ,T : The number of generators, loads, wind generators, interchanges, 

and time periods (in hours)

t
iS , t

iG , t
iF : Start-up, shut-down, and no-load costs of generator i at time t .

( )t
iC � : Production cost of generator i at time t .

max
ip , min

ip : Maximum and minimum production levels of generator i . 

t
iRU , t

iRD : Ramp-up and ramp-down rates of generator i at time t .

t
iMinUp , t

iMinDw : Minimum-up and minimum-down times of generator i .

max
lf : Flow limit on transmission line l in base case.

max
,l if : Flow limit on transmission line l in contingency i (i.e., line l is tripped.)

pB , dB , : Network incidence matrices for generators and load.

la : Network shift factor vector for line l for the base case.

,l ia : Network shift factor vector for line l in contingency i

t
jd : Expected demand at node j at time t .

t
iw : Expected output of wind generator i at time t .

t
ia : Expected interchange i at time t .

t
iq : Reserve capacity of generator i at time t .

tq : System reserve requirement at time t .

M : Penalty factor for load shedding

Variables:

{0,1}t
ix  : If generator i is on at time t , 1t

ix  ; otherwise 0t
ix  .

{0,1}t
iu  : If generator i is turned on at time t , 1t

iu  ; otherwise 0t
iu  .

{0,1}t
iv  : If generator i is turned down at time t , 1t

iv  ; otherwise 0t
iv  .
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[0, )t
ip   : Production of generator i at time t .

[0, )t
iq   : Reserve of generator i at time t .

[0, )t
jd   : Uncertain demand at node at time .

[0, )t
iw   : Uncertain output of wind generator at time .

t
ia : Uncertain interchange at time t .

ts , [0, )ts   : Slack variables at the balance constraint at time . 

tLS : The amount of load shedding at time . 

WS : The amount of wind spillage at time . 

First, we present the deterministic UC model below, which also serves as the 
base model to its robust counterpart.

1 1,LS,WS

min ( ) ( )
gNT

t t t t t t t t t t
i i i i i i i i

t i

x F u S v G C p M s s 
 

     
x,u,v,
p,q

(1.1)

s.t. 1 0t t t
i i ix x u    , i , t (1.2)

1 0t t t
i i ix x v   , i , t (1.3)

1t t
i i ix x x  , i , [ 1, min{ 1, }]it t MinUp T     , [2, ]t T (1.4)

1 1t t
i i ix x x    , i , [ 1,min{ 1, }]it t MinDw T     , 

[2, ]t T

(1.5)

1 1 1 1

g w a d
N N N N

t t t t t t
i i i j

i i i j

p w a s s d 
   

        , t
(1.6)

1t t t t
i i i iRD p p RU    , i , t (1.7)

max ' max( )t t t t
l l p w a d lf f     a B p B w B a B d , t , l (1.8)

max ' max
, , ,( )t t t t

l i l i p w a d l if f     a B p B w B a B d , t , l CT  , (1.9)

min maxt t
i i i ip p q p   , i , t (1.10)

min maxt t t
i i i i ip x p p x  , i , t (1.11)

t t
i iq q , i , t (1.12)

1

gN
t t
i

i

q q


 , t
(1.23)

j t

i t

i

t

t

t
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The objective function (1.1) of the above deterministic UC model is to minimize the total 
cost consisting of the start-up cost, shut-down cost, no-load cost, production cost and 
penalty cost. Constraints (1.2) and (1.3) are the logic constraints between on and off 
status and the turn-on and turn-off actions. Equations (1.4) and (1.5) are the constraints 
of minimum up and minimum down times for each generator. Constraints (1.6) and (1.7) 

are energy balance and ramping constraints, respectively. The slack variables ts , ts in 

the balance constraint (1.6) ensure a feasible solution to the optimization problem (1) 
when the system cannot be balanced physically. Equation (1.8) is the transmission flow 
constraint for the base case, where all transmission lines are functioning. Equation (1.9) 
is the transmission constraint for the i th contingency where transmission line i is 
tripped. Equation (1.11) is the resource capacity constraint. Equation (1.12) is the 
generator reserve capacity constraint. Equation (1.13) is the system reserve constraint. 

Next, we present the robust UC model. The first step to build a robust model is to 
construct an uncertainty set. We consider the following two uncertainty sets, which 
correspond to the R-NU and R-U approaches, respectively. We denote  ( , , a)Y d w as 

the triple of uncertain energy level of load, wind and interchange. 

Under the R-NU approach, the non-uniform uncertainty set, or the non-uniform 
forecast range, of wind generation, load, and inter change at each time period t is 
defined as follows: 

1 1 1

| | | | | |
: ,

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ( )                                    [ , ], [ , ],

                                

d w a

d w a

t tN N Nt t t t
j jN N N ti i i i

t tt
j i ii ij

NU t t t t t t t t t t
j j j j j i i i i i

d d w w a a

w ad

d d d d d w w w w w

  

  
      

      

  Y

Y

� � �

U  

ˆ ˆ   [ , ]t t t t t
i i i i ia a a a a

 
 
 
 
 
 

   
 
 

The parameter t is the “budget of uncertainty” (Bertsimas and Sim 2004), taking 

values between 0 and d w aN N N  . When 0t  , NUU   is reduced to a singleton 

{ , , }NU  d w aU , the expected load, wind and interchange levels. As t increases, the 

size of the uncertainty set NUU enlarges. This means that larger total deviation from the 
expected values is considered, so that the resulting robust UC solutions are more 
conservative and the system is protected against a higher degree of uncertainty. When 

t
d w aN N N    , NUU equals to the hypercube defined by the intervals for d , w , and 

a . 

Under the R-U approach, the uniform uncertainty set at each time period t is 
defined as followed: 

ˆ ˆ ˆ ˆ: [ , ], [ , ],
( )

ˆ ˆ                                    [ , ]

d w aN N N t t t t t t t t t t t t t t
j j j j j i i i i iU

t t t t t t t
i i i i i

d d d d d w w w w w

a a a a a

   

 

          
  

    

Y
Y

� � �
U  
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The parameter t varies between 0 and 1. Similar to NUU , when 0t  and 1t  ,  the 

uncertainty set UU becomes a singleton and hypercube, respectively. As t increases, 

the size of the uncertainty set UU also enlarges. However, how the shape of  UU

changes is different from the way NUU does. Figure 4 illustrates the difference for a 
simple case with only two uncertain sources.    

The robust counterpart of the deterministic UC model (1) is the following:

,
1 1( ) ( ),LS( ),WS( )

min max ( ( )) ( ( ) ( ))
gNT

t t t t t t t t t t
i i i i i i i i

t i

x F u S v G C p M s s 


 

 
       

 


x,u,v Y
p ,q

Y Y Y
� � � �

U

(2.1)

s.t. ( )x,u, v satisfies (1.2) – (1.5)

1 1 1 1

( ) ( ) ( )
g w a d

N N N N
t t t t t t
i i i j

i i i j

p w a s s d 
   

       Y Y Y , t ,  Y U
(2.2)

1( ) ( )t t t t
i i i iRD p p RU   Y Y , i , t ,  Y U (2.3)

max ' max( ( ) )t t t t
l l p w a d lf f     a B p Y B w B a B d , t , l , Y U (2.4)

max ' max
, , ,( ( ) )t t t t

l i l i p w a d l if f     a B p Y B w B a B d , t , l CT  ,  Y U (2.5)

min max( ) ( )t t
i i i ip p q p  Y Y , i , t ,  Y U (2.6)

min max( )t t t
i i i i ip x p p x Y , i , t ,  Y U (2.7)

( )t t
i iq qY , i , t ,  Y U (2.8)

1

( )
gN

t t
i

i

q q


 Y , t ,  Y U
(2.9)

The objective function (2.1) has two parts. The first part is the commitment cost. The 
second part is the worst case dispatch and penalty costs. In the robust model, the 
commitment decision takes into account all possible future load, wind and interchange 
characterized in the uncertainty set. Such a UC solution remains feasible, thus robust, 

for any realization of uncertainty. The uncertainty set U is equal to NUU under the R-

NU approach, while it is UU under the R-U approach. 

Under the Det approach, the system reserve requirement  tq is increased by 
tq , which is the incremental reserve. The incremental reserve tq is used to 

accommodate potential changes in renewable generation. The resulting UC formulation 
under the Det approach is very similar the base UC model (1), except that the reserve 
requirement in the last constraint (1.23) is replaced by the sum of the reserve 
requirement and the incremental reserve. More specifically, the UC model under the Det 
approach is the following:   
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1 1

min ( ) ( )
gNT

t t t t t t t t t t
i i i i i i i i

t i

x F u S v G C p M s s 
 

     
x,u,v,p,q

(3.1)

s.t. ( )x,u, v,p,q satisifies (1.2) – (1.12)

1

gN
t t t
i

i

q q q


   , t
(3.2)

In particular, tq is chosen in the following way:

 ˆ ˆ ˆt t t t t
j i iq d w a    ,

where the parameter t varies between 0 and 1 to control the conservatism of the 

deterministic UC solution. When 0t  , model (3) is equivalent to the original 

deterministic model (1). As t increases, the system procures more incremental 

reserve. The Det approach assumes that the worst-case scenario occur when 1t  , 

i.e. load reaches its upper bound while wind and interchange reach their lower bounds 
in their intervals. Such a worst-case scenario does not take into account the 
transmission constraints, so the resulting UC solution is not necessarily robust. 

For a given unit commitment solution *x , an economic dispatch problem is solve 

for realized load, wind and interchange ( )d, w,a  in the simulation. The dispatch problem 

is formulated as follows:

1 1

min ( )
gNT

t t t
i i

t i

C p M LS
 

 
x,u,v,p,q

(4.1)

1 1 1 1

( )
g w a d

N N N N
t t t t t t
i i i i j

i i i j

p w ws a LS d
   

          ,
(4.2)

, , (4.3)

max ' max( ( ) )t t t t t
l l p w a d lf f      a B p B w ws B a B d , , (4.4)

max ' max
, , ,( ( ) )t t t t t

l i l i p w a d l if f      a B p B w ws B a B d , , 

, 

(4.5)

min maxt t
i i i ip p q p   , , (4.6)

min *, max *,t t t
i i i i ip x p p x  , , (4.7)

, , (4.8)

1

gN
t t
i

i

q q


 , t
(4.9)

t tws w , (4.10)

t

1t t t t
i i i iRD p p RU    i t

t l

t

l CT 

i t

i t

t t
i iq q i t

t
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In the dispatch problem (4), the incremental reserve tq is not included in the 

reserve requirement constraint (4.9). This is because the incremental reserve is used to 
hedge against load, wind and interchange uncertainty in problem (3) under the Det 

approach, while the original reserve requirement tq is designed for loss of largest 

generation contingency. In the simulation, we only sample the uncertain load, wind and 
interchange to test the robustness of the UC solutions, so the incremental reserve is not 
needed in problem (4). 

Additionally, we also model wind spillage in the dispatch problem. Because the 
cost wind power is very small, when there is a supply surplus in the system, the 
dispatch model also to curtail wind at no cost to maintain energy balanced. In the 

balance constraint (4.2), we include the variable t
iws to allow wind spillage. In addition, 

the constraint (4.10) restricts that the amount spillage should not exceed the realized 
wind.

Appendix B
Features Used in Clustering Forecast Data

Using the historical forecast data described in the Methods section, we identified 
three key wind features used to cluster days into groups: 1) the day’s total level of wind 
across all hours and locations, 2) the trend over the day, defined as the difference 
between the late day (hours 21-24 ET) and the early morning (hours 3-6 ET) averages 
(across all locations), and 3) the mid-day deviation from the trend (average of 10-16 ET 
wind average across all locations minus the average of the late day and early morning 
averages, as defined earlier).   Figure 1 below shows a schematic of the different levels 
of two of these features.

These three features were extracted for each of the 1096 day-long wind 
trajectories and used to cluster the days with the k-means clustering algorithm (Hartigan 
and Wong 1979).  The algorithm requires specifying the number of clusters.  The 
degree of cluster separation (as measured by the ratio of between-cluster sum of 
squares to total sum of squares) and practical considerations (using too many clusters 
can result in too few observations in any given cluster to estimate the parameters of the 
error distribution in the cluster) suggested using 4 clusters. 

The load forecast data, on the other hand, suggested the use of only one feature, 
the day’s total load, and using 3 clusters in the k-means algorithm.    Note that this 
clustering was performed independently of the wind feature clustering as the 
examination of the two quantities indicated a lack of a significant correlation.

Thus, a given day can be assigned to one of 4 wind groups and one of 3 load 
groups.  Since there are 4x3 = 12 possible combinations of these groups, to cover an 
entire range of wind and load patterns, one needs to run the robust UC algorithm and 
economic dispatch for each of these 12 combinations.
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Figure 1.  Schematic of wind patterns corresponding to combinations of various levels of 
the trend and midday deviation from the trend features.

Appendix C

Model for the Observed Wind and Load and Parameter Estimation

The examination of the forecast error data described in the Methods section 
motivated the use of the following relative error model for the observed 24-hour 
trajectory of each of these quantities:

Y = (F + b) x exp(ε) – a, (1)

where  

Y is an observed vector of wind generation or load for a given day, by time and location 
combination  

F is the day’s day-ahead forecast wind generation or load, by time and location 
combination,

ε is the vector of forecast errors associated with wind generation or load, by time and 
location combination, and is modeled as a multivariate normal random variable with 
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mean vector με and covariance matrix Σε, and a and b are scalar constants, determined 
from the data, as described below. As alluded to earlier, the parameters of the forecast 
error distribution, με and Σε, are cluster-specific and are determined from the observed 
data, as described below.  

The values of the constants a and b were determined empirically by examining 
the data and finding the values that would yield an approximately multivariate normal 
distribution for the error vector ε.  In the case of wind, the best values for this purpose 
proved to be the mean value of the observed and forecast values, respectively.  In the 
case of load, 0 was found to be the best value for both constants. 

The values of the error mean vector με and covariance matrix Σε in each cluster 
were determined by matching the cluster’s mean and covariance of the observed values 
Y, so as to ensure that the generated 24-hour trajectories (scenarios) of wind or load 
have the statistical characteristics of the wind and load trajectories observed in the data. 

Specifically, it is straightforward to show that if the vectors Y in a particular 
cluster have a mean vector μY and covariance matrix ΣY, then if model in (1) is 
assumed, the error mean vector με and the (i,j) entry of the error covariance matrix Σε

are given by

με  =  log((μY + a)/(F + b)) – 0.5*log(σY / (μY + a)2 + 1)            (2)

  σε
ij  = log(σY

ij / ((μY
i + a)*(μY

j + a)) + 1)            (3)     

where

σY is the variance vector of Y (diagonal of the covariance matrix ΣY),

σY
ij is the (i,j) entry of the covariance matrix ΣY, and

μY
i is the i-th entry of the mean vector μY

Note that the model in (1) can produce values of Y that are outside the physically 
feasible range for either wind (0 to capacity) and load (a range of positive values, with 
minimum and maximum known from historical data).  This happened for a very small 
fraction of the values (3% for wind and 1% for load), and in these cases the values 
outside the range were truncated to either the lower or the upper bound, whichever was 
closer.


