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Abstract

The electronic structure of 1,2,3-tridehydrobenzene was investigated using quantum Monte Carlo

(QMC) methods. The radical contains two low-lying electronic states that are nearly degenerate

adiabatically (within 2 kcal/mol separation), according to previous coupled cluster calculations. We

performed Diffusion Monte Carlo (DMC) calculations starting from Multi-Reference Configuration

Interaction (MR-CI) trial wavefunctions, with a complete active space (CAS) containing 9 electrons

in 9 orbitals, CAS(9,9). Our converged DMC results are in close agreement with the best coupled-

cluster results, and further strengthen the assignment of a 2A1 ground state.
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I. INTRODUCTION

Triradicals pose a significant challenge for current electronic structure theories owing to the

complicated interactions of three formally unpaired electrons.[1] This can lead to unusual

bonding patterns between radical centers, including the preferential occupation of antibond-

ing over non-bonding orbitals in the ground electronic state. The 1,2,3-tridehydrobenzene

triradical is a fundamental step in the systematic decomposition of benzene.[2] It is derived

from benzene by the removal of three adjacent hydrogen atoms (Fig. 1). Previous theoretical

studies on all three triradicals (1,2,3-; 1,3,5-; and 1,2,4-tridehydrobenzene)[3] found the for-

mation of partial bonds between radical centers, due to stabilizing interactions which ranged

between 0.5 and 32 kcal/mol. All three isomers contain closed-shell doublet ground states.

The largest doublet-quartet splitting occurs in 1,2,3-tridehydrobenzene, indicating strongest

interaction between adjacent radical centers. Recently, Sander and coworkers reported the

synthesis and partial infrared (IR) spectrum of 1,2,3-tridehydrobenzene isolated in 3 K Ne

matrices.[4] Electronic structure calculations indicated the presence of two low-lying states,

which are well separated vertically but nearly degenerate adiabatically.[4–6] The inclusion of

triple excitations in coupled-cluster methods (CCSD(T) and EOM-SF-CCSD) was required

to achieve a converged energy difference between the two states. This energy difference

was estimated to be between 0.69 and 2.07 kcal/mol in favor of the 2A1 state, based on

CCSD(T) and EOM-SF(2,3)-CCSD calculations.[5] Comparison of calculated frequencies

(corrected for anharmonicity) with the experimental IR spectrum supported the assignment

of the 2A1 ground state.

In this work, we present high-level Diffusion Monte Carlo (DMC) and Variational Monte

Carlo (VMC) calculations[7] using trial wavefunctions computed at the Complete Active

Space Self-Consistent Field (CASSCF) and Multi-Reference Configuration Interaction with

Single and Double excitations (MR-CISD) levels. DMC has the advantage of treating both

dynamical and non-dynamical correlation accurately, assuming proper multiconfigurational

treatment of the trial wavefunction. With the recent introduction of a highly efficient algo-

rithm for the evaluation of multi determinant wavefunctions in QMC[8, 9], it is now possible

to routinely use well converged determinant expansions in QMC calculations, directly cap-

turing static correlation effects at the VMC level. We find that DMC is able to correct

large errors in the trial wavefunctions, which are introduced by the lack of dynamical cor-
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relation and size-extensivity in CASSCF and MR-CISD, respectively. The converged DMC

calculations are in very close agreement with the best coupled-cluster results.

II. COMPUTATIONAL DETAILS

Minimum-energy geometries for the two doublet states were obtained using the B3LYP

density functional[10] and cc-pVTZ basis set.[11] Previous calculations have shown that

B3LYP and CCSD(T) optimized geometries yield almost identical CCSD(T) energy differ-

ences (within 0.11 kcal/mol).[5] At present, geometry optimizations of large systems using

quantum MC methods is prohibitively expensive due to statistical nature of the energy and

derivatives; therefore, the B3LYP/cc-pVTZ optimized geometries were used for all calcula-

tions in this work. The geometries are shown in Fig. 3; Cartesian coordinates are provided

in the Supplementary Information.

CASSCF and MR-CISD calculations were performed with GAMESS[12], using a ROHF

reference. The active space for CAS consisted of the three radical center molecular orbitals

(10a1, 7b2, 11a1, Fig. 2) and the six π orbitals; e.g., CAS(9,9). MR-CISD calculations were

performed from the CASSCF(9,9) wavefunction, with all single and double excitations to

the 30 lowest-energy orbitals outside the CAS. Energy-consistent scalar-relativistic Hartree

Fock pseudopotentials[13], along with accompanying basis sets, were used in all CASSCF,

MR-CISD, VMC and DMC calculations reported in this work.

QMC calculations were performed with the Quantum Monte Carlo Package (QMCPACK)[14].

The trial wavefunctions were of standard Slater-Jastrow form, containing the product of a

Jastrow factor and a linear combination of configuration state functions (CSFs). The Jas-

trow factor contained electron-ion and electron-electron terms, expanded using a B-spline

representation. The linear combination contained all CSFs with CI coefficient greater than

a given threshold, these were obtained from either CASSCF or MR-CISD wavefunctions.

We studied the convergence of the DMC energies with CI thresholds to verify convergence

with respect to the number of CSFs, as discussed below. We optimize all variational param-

eters, including the linear CSF coefficients, using the linear method of Toulouse, et al.[15].

All DMC calculations were performed with Casula’s T-moves[16] and a timestep of 0.0025

(Ha)−1.

Our criteria for convergence of QMC was made in three ways: 1) reduction of statistical
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errors in energy differences; 2) convergence of energies with respect to increasing number

of determinants in the wavefunction expansion; and 3) convergence of energies with respect

to the size of the atomic basis (DZ, TZ, QZ). The reported DMC energies are converged to

within 1 millihartree (0.62 kcal/mol) for all three criteria.

CCSD(T) calculations were performed using the NWChem[17] Tensor Contraction En-

gine (TCE). Global Arrays was built using ARMCI-MPI, which used the MVAPICH2 and

CrayMPI implementations of MPI-3 for one-sided communication.[17] The calculations em-

ployed a ROHF reference and a cc-pVXZ basis, for X=2-5. Extrapolation to the Complete

Basis Set (CBS) limit was performed with the pVTZ through pV5Z energies using a standard

three-point formula.[18]

III. RESULTS AND DISCUSSION

1,2,3-tridehydrobenzene can be derived from benzene by removing three adjacent hydro-

gen atoms, leading to three sp2 hybridized unpaired orbitals. The combination of these

atomic orbitals forms three radical center molecular orbitals (MOs), as shown in Fig. 2.

The (leading) electronic configuration for the low-lying 2A1 and 2B2 states is (10a1)2(11a1)1

and (10a1)2(7b2)1, respectively (Fig. 2). Both states are closed-shell doublets with the fully

bonding 10a1 orbital doubly occupied.

The 7b2 and 11a1 orbitals are of nonbonding and antibonding character, respectively.

Thus a reasonable candidate for the ground state is the 2B2 state. However, 11a1 has bonding

character between meta radical centers (C1-C3), and deformation of the ring framework can

maximize this overlap (Fig. 3, left), whereas no such overlap is possible in 7b2. Although

well separated vertically (about 4.8 and 1.4 eV at 2A1 and 2B2 geometry), the states are

nearly degenerate adiabatically, due to interactions between the three radical centers. In the

2A1 state, this can be viewed as competing stabilizing and destabilizing interactions between

meta and ortho radical centers.

The equilibrium B3LYP/cc-pVTZ geometries are shown in Fig. 3. Due to the bonding

interaction between meta radical centers, the 2A1 equilibrium structure has short C1-C3

separation of 1.691 Å, compared to 2.342 Å in the 2B2 state. This bonding interaction in

2A1 is thus significantly stronger than in the diradical meta-benzyne, where the separation

is approximately 2.05 Å.[19]
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The calculated adiabatic energy differences between 2A1 and 2B2 are ∆E = E(2A1) −

E(2B2). The calculations do not include a zero-point energy correction; this correction to

the electronic energies has been estimated to be only about 0.2 kcal/mol.[5] Below, we

present results on the convergence of the QMC calculations with respect to the number of

configuration state functions (CSFs) and atomic basis sets. The molecular orbitals were not

reoptimized within the VMC calculations.

A. DMC and VMC Convergence with Respect to Number of CSFs

DMC and VMC energy differences were calculated using the MR-CISD wavefunctions

and TZ basis, while varying the number of CSFs in the CI expansion. The number of CSFs

was controlled by a cutoff for the maximum coefficient in the CI expansion included in the

trial wavefunction. QMC calculations were performed with CI expansion thresholds of 1

(single-determinant trial wavefunction), 0.1, 0.01, and 0.001. The results are given in Tables

I and II, and shown in Fig. 4.

The inclusion of multi-determinant wavefunctions, even with a small number of CSFS

(around 10) was required to converge ∆E to within a few kcal/mol. The single-determinant

trial wavefunction for QMC (a single determinant using CASSCF-optimized orbitals) led

to ∆E that strongly overestimated the 2B2 energy, favoring 2A1 by 9.54 kcal/mol. With

a CI cutoff of 0.1 (10 and 13 CSFs for 2A1and 2B2, respectively), ∆E narrowed to -2.58

kcal/mol, due to a larger energy decrease for 2B2. With a CI cutoff of 0.01 (306 and 485

CSFs for 2A1 and 2B2), the DMC ∆E becomes -1.55 kcal/mol. By comparing with the

two stricter cutoffs, the 0.01 ∆E is converged to well within 1 millihartree. For 0.005 cutoff

(1293 and 1560 CSFs) and 0.001 cutoff (13315 and 17220 CSFs), the DMC ∆E are effectively

converged, at -1.52 and -1.79 kcal/mol, respectively. We found ∆E to converge faster than

total energies; between 0.005 and 0.001 CI cutoffs, these decreased decreased by 0.92 and

0.63 kcal/mol for 2A1
2B2. This same behavior has been noted for DMC calculations of

meta-benzyne diradical.[20] The convergence of the ∆E are shown in the insets of Fig. 4.

Thus, converged CSF expansions are necessary to capture static correlation in the QMC

calculations. The use of unoptimized orbitals would require many more CSFs to recover

static correlation.

VMC ∆E also shows a major improvement going from single- to multi-determinant trial
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wavefunction, although the improvement with the addition of CSFs is slower than in DMC.

Overall, VMC does predict 2A1 to be the ground state, although by about 0.75-1 kcal/mol

less than DMC. Our best VMC result is still not fully consistent with the more accurate

DMC result, an improved orbital set and a larger virtual space in the MR-CISD wavefunction

is probably needed for fully converged VMC results.

Our best estimate for ∆E (with 0.001 cutoff) is -1.79 kcal/mol for DMC. The use of

a multideterminant wavefunction was found to be necessary in order to achieve converged

energy differences in DMC. The 2B2 state appears to be more sensitive to multireference

effects than 2A1. However, a CSF cutoff of 0.01 is sufficient for converging ∆E to within 1

millihartree.

B. DMC and VMC Convergence with Respect to Basis Set

DMC and VMC calculations were also performed using CASSCF(9,9) trial wavefunctions

with a CI determinant cutoff of 0.001, while varying the basis set size between DZ and QZ.

Calculations using a QZ basis with MR-CISD trial wavefunctions were found to require

excessively large CI expansions to be computationally feasible. The resulting energies and

∆E are shown in Tables III and IV, and in Fig. 5.

In contrast with a strong dependence on CI expansion size, the DMC ∆Es had a much

lower dependence on basis set. For all three basis sets tested, the DMC ∆E was already

converged within 1 millihartree, equaling -1.31, -1.81, and -1.46 kcal/mol for DZ, TZ, and QZ

respectively. Using QZ, the DMC ∆E with a CASSCF trial wavefunction (-1.46 kcal/mol)

is also in very close agreement with the MR-CISD/TZ result (-1.79 kcal/mol).

In contrast, VMC was found to show a much stronger basis set dependence. For the DZ

basis, VMC predicts the wrong ground state, with 2B2 being lower by 1.64 kcal/mol. In

VMC, 2A1 appears to be very sensitive to basis set. At the TZ and QZ levels, this problem

is partially alleviated, with 2A1 predicted to be lower, but by over 1 kcal/mol less than the

corresponding DMC results. In order to assess whether adding more determinants could

improve the small-basis VMC, we performed a VMC calculation with an MR-CISD/DZ

trial wavefunction. This gave ∆E of -1.14 kcal/mol, which fixed the qualitatively wrong or-

der predicted using CASSCF, and gave very close agreement with the MR-CISD/TZ VMC

energy difference. This suggests that for VMC, the use of adequately multideterminen-
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tal wavefunctions may be a more important factor than basis set, at least for energies of

hydrocarbon triradicals.

C. Wavefunction based methods

The results of single-point CCSD(T) calculations using cc-pVXZ (X=2-5) basis sets are

shown in Table V. As discussed in Ref. ([5]), the leading coefficients in the CC expansions

at the two equilibrium geometries are close to unity, enabling the use of the single-reference

CCSD(T) method. The calculated CCSD(T)/CBS estimate is -1.52 kcal/mol. This is in

very close agreement with the best DMC calculations, which obtain -1.46 kcal/mol using

CASSCF/QZ, and -1.79 kcal/mol using MR-CISD/TZ wavefunctions.

Table V also shows the energies of the trial wavefunctions used for DMC and VMC

calculations. Particularly, both CASSCF and MR-CISD reverse the ordering of the two

states. CASSCF predicts a 2B2 ground state by 16.1 kcal/mol using TZ basis. MR-CISD

partially improves this description, leading to an energy separation of 12.4 kcal/mol. This

latter result indicates that size-extensivity plays an important role in describing the energy

of hydrocarbon triradicals. Size-extensivity corrections (including Davidson correction and

ACPF) lead to a nearly vanishing energy gap, as discussed in Ref. ([5]). Both DMC and

VMC calculations thus overcome sizable deficiencies in their CASSCF and MR-CISD trial

wavefunctions.

D. Conclusions

High-level DMC and VMC calculations were employed to accurately characterize relative

energies of the two low-lying electronic states of 1,2,3-tridehydrobenzene. Our best estimates

for ∆E are -1.46 and -1.79 kcal/mol, calculated with DMC using CASSCF/QZ and MR-

CISD/TZ trial wavefunctions, respectively. These results are in excellent agreement with

the CCSD(T)/CBS limit of -1.52 kcal/mol. They are also in excellent agreement with the

EOM-SF(2,3)-CCSD/6-311G(2df) extrapolated value of -0.69 kcal/mol. Both wavefunction

methods utilize triple excitations. CCSD(T) is highly accurate for systems with single-

configurational wavefunctions, whereas EOM-SF-CCSD provides a balanced description of

a general triradical wavefunction, including in limits of small and large energy separations
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between frontier MOs. Our QMC calculations thus confirm the assignment of the 2A1 ground

state by a very small energy gap. The close splitting between these two electronic states

suggests that the character of the ground state can likely be manipulated in substituted

tridehydrobenzenes. Furthermore, DMC is likely to be a highly useful method for describing

open-shell interactions in other hydrocarbon triradicals.
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TABLE I. Convergence of DMC energies with respect to the CI determinant threshold, using

MRCI/TZ trial wavefunctions. Absolute energies for the two states are given in hartree; the

energy difference ∆E = E(2A1) − E(2B2) is given in in kcal/mol. Statistical errors are shown in

parentheses.

CI threshold 2A1
2B2 ∆E

1(CASSCF) -35.687299(0.00014) -35.672098(0.00013) -9.54(0.17)

0.1 -35.692322(0.00008) -35.688215(0.00008) -2.58(0.10)

0.01 -35.699333(0.00014) -35.696865(0.00016) -1.55(0.19)

0.005 -35.700330(0.00017) -35.697900(0.00012) -1.52(0.18)

0.001 -35.701800(0.00018) -35.698951(0.00020) -1.79(0.24)
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TABLE II. Convergence of VMC energies with respect to the CI determinant threshold, using

MRCI/TZ trial wavefunctions. Absolute energies for the two states are given in hartree; the

energy difference ∆E = E(2A1) − E(2B2) is given in in kcal/mol. Statistical errors are shown in

parentheses.

CI threshold 2A1
2B2 ∆E

1(CASSCF) -35.593571(0.00040) -35.574297(0.00038) -12.09(0.49)

0.1 -35.605056(0.00019) -35.604258(0.00016) -0.50(0.22)

0.01 -35.621506(0.00024) -35.621478(0.00031) -0.02(0.35)

0.005 -35.625741(0.00030) -35.624679(0.00014) -0.67(0.28)

0.001 -35.629068(0.00015) -35.627400(0.00014) -1.05(0.18)
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TABLE III. Convergence of DMC energies with respect to basis set, using CASSCF trial wave-

functins and a 0.001 CI determinant threshold. Absolute energies for the two states are given in

hartree; the energy difference ∆E = E(2A1)−E(2B2) is given in in kcal/mol. Statistical errors are

shown in parentheses.

Basis 2A1
2B2 ∆E

DZ -35.684242(0.00011) -35.682152(0.00011) -1.31(0.13)

TZ -35.698602(0.00012) -35.695721(0.00014) -1.81(0.16)

QZ -35.700628(0.00007) -35.698309(0.00008) -1.46(0.09)
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TABLE IV. Convergence of VMC energies with respect to basis set, using CASSCF trial wave-

functins and a 0.001 CI determinant threshold. Absolute energies for the two states are given in

hartree; the energy difference ∆E = E(2A1)−E(2B2) is given in in kcal/mol. Statistical errors are

shown in parentheses.

Basis 2A1
2B2 ∆E

DZ -35.589151(0.00016) -35.591759(0.00018) 1.64(0.21)

TZ -35.621161(0.00020) -35.620638(0.00017) -0.33(0.23)

QZ -35.626671(0.00007) -35.626218(0.00009) -0.28(0.10)
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TABLE V. ∆E
ad calculated from electronic structure methods (kcal/mol).

2A1
2B2 ∆E

CCSD(T)/cc-pVDZ -229.584230 -229.581631 -1.63

CCSD(T)/cc-pVTZ -229.796724 -229.794128 -1.63

CCSD(T)/cc-pVQZ -229.860297 -229.857800 -1.57

CCSD(T)/cc-pV5Z -229.879545 -229.877100 -1.53

CCSD(T)/CBS extrap. -229.890702 -229.888287 -1.52

CASSCF(9,9)/TZ -34.779128 -34.804840 16.13

CASSCF(9,9)/QZ -34.784944 -34.810396 15.97

MR-CISD/TZ -34.814470 -34.834212 12.39

EOM-SF(2,3)/6-311G(2df), extrap. -0.69
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FIG. 1. 1,2,3-tridehydrobenzene.
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FIG. 2. a) Frontier molecular orbitals, and b) leading electronic configurations of the low-lying

2A1 and 2B2 states of 1,2,3-tridehydrobenzene.
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FIG. 4. DMC and VMC energies for different CI determinant cutoffs. The convergence of ∆E is

shown in the inset.
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