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Abstract. Tools are essential for application developers and system sup-
port personnel during tasks such as performance optimization and de-
bugging of massively parallel applications. An important class are event-
based tools that analyze relevant events during the runtime of an ap-
plication, e.g., function invocations or communication operations. We
develop a parallel tools infrastructure that supports both the observa-
tion and analysis of application events at runtime. Some analyses—e.g.,
deadlock detection algorithms—require complex processing and apply
to many types of frequently occurring events. For situations where the
rate at which an application generates new events exceeds the processing
rate of the analysis, we experience tool instability or even failures, e.g.,
memory exhaustion. Tool infrastructures must provide means to avoid or
mitigate such situations. This paper explores two such techniques: first, a
heuristic that selects events to receive and process next; second, a pause
mechanism that temporarily suspends the execution of an application.
An application study with applications from the SPEC MPI2007 bench-
mark suite and the NAS parallel benchmarks evaluates these techniques
at up to 16,384 processes and illustrates how they avoid memory exhaus-
tion problems that limited the applicability of a runtime correctness tool
in the past.

1 Introduction

High Performance Computing (HPC) architectures feature increasing compute
core counts, such as the Sequoia system at the Lawrence Livermore National
Laboratory with more than 1.5 million cores. This trend challenges both de-
velopers of HPC applications as well as the maintainers of tools that aid these
developers. Especially tools that operate at application runtime must provide
su�cient scalability to be applicable for application runs with large core counts.

We develop the Generic Tools Infrastructure (GTI) [8] to simplify the de-
velopment of such scalable runtime tools, in particular tools that analyze large
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Fig. 1: Illustration of a runtime tool with a TBON layout.

numbers of events (function invocations or communication events) in Message
Passing Interface (MPI) [15] applications. Those tools analyze events for use
cases such as performance optimization or debugging. Performance analysis tools
like Vampir [17] and Scalasca [5] use traces to store events during the runtime of
an application and then apply a post-mortem analysis. However, tool exclusive
computing resources and a Tree-Based Overlay Network (TBON) abstraction al-
low tools built upon GTI to analyze such event data already during the runtime
of an application; in other words online.

GTI uses extra processes as additional compute resources for the tool itself.
These tool processes—called places in GTI—can analyze events outside of the
critical path of the application. Additionally, GTI organizes places in hierarchy
layers that can apply stepwise event analysis (TBON layout), e.g., all application
processes provide an event with an integer value and the hierarchy layers sum
these events up until the root of the layout retrieves a global sum. This combina-
tion of event o✏oading, analysis outside the critical path, and hierarchic event
analysis enables wide ranges of scalable tools. Figure 1(a) illustrates the layout
of a GTI tool for four application processes—represented as circles with labels
T0,0–T0,3—and three tool places T1,0, T1,1, and T2,0. The lines between the circles
indicate the communication channels for events, e.g., the application process T0,0

would usually forward events to tool place T1,0 for analysis. The tool places can
analyze events from the application processes, but also use the communication
capabilities of the layout to exchange information with each other.

The GTI-based tool MUST [7] analyzes all communication operations of
an application to reveal MPI usage errors. The tool applies a comparatively
expensive event analysis as part of its deadlock detection scheme. Thus, the
event handling and analysis cost of MUST may exceed the original cost of the
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communication operations on the application. Under such a scenario an online
event analysis tool like MUST can consume increasing amounts of memory and
may fail due to memory exhaustion. Even on a compute system with 24GB of
main memory per compute node—shared between 12 cores—MUST repeatedly
exhausted memory for one benchmark application in a study of its deadlock
detection capabilities [7]. This paper describes and studies two techniques for
TBON-based event analysis tools to avoid memory exhaustion problems. Specif-
ically, these techniques avoid storing data into files since the use of the I/O
subsystem imposes further challenges at scale [11, 22]. This research may partic-
ularly enable new tool workflows for exascale level compute systems that increase
challenges around massively parallel I/O system use. An increasing use of online
tools could circumvent the challenges that these systems impose onto traditional
post-mortem tools.

Section 2 first presents related work and Section 3 then details our assump-
tions for the communication channels of a TBON and refines our problem state-
ment. Section 4 contains our first technique, a heuristic that provides tool places
a communication channel selection that o↵ers a tune-able selection between per-
formance and memory consumption. Section 5 then describes our second tech-
nique that temporarily pauses the execution of an application to let a tool “catch
up” with its event analysis. We implement these techniques in our tool infras-
tructure GTI and evaluate it with the runtime MPI correctness tool MUST that
previously failed for some SPEC MPI2007 benchmarks. An application study
with MPI2007 and the NAS Parallel Benchmarks (NPB) evaluates our tech-
niques at up to 16,384 processes and avoids memory exhaustion in practice
(Section 6).

2 Related Work

We describe techniques that overcome deficiencies [7] in the GTI-based tool
MUST. These deficiencies result from online event analysis on large event counts
where the analysis requires increasing amounts of memory for some series of
events. The techniques that we describe apply to tools that handle events in
TBONs. Besides MUST, various existing tools and tool infrastructures for high
performance computing use TBONs, but often operate on very few events per
MPI process. Examples for performance optimization include Periscope [6] that
applies an analysis on profiling data for application phases; and TAUoverMR-
Net [18] that analyses profiling data at user specified execution points or for
periodic time intervals. Debugging tools like STAT [1] retrieve call stack infor-
mation from all processes to represent a global execution state, this data could
hardly exhaust memory on any node of the TBON layout. Implementations of
our techniques are not bound to GTI, but can also be used to improve the reli-
ability of infrastructures such as MRNet [20], CBTF [13], STCI [4] or SCI [12].

MALP [3] also targets the analysis of large event counts at scale. However,
its analyses provide profiling-based performance reports for which a constant
amount of memory su�ces to handle any event series. Event sizes that increase
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with application scale [14] are a related problem that can limit the applicability
of an online tool.

File system traces represent an alternative to our techniques that target
reduced memory needs during event analysis. Our analyses could store tempo-
rary event information into traces to avoid memory exhaustion. Tools such as
Vampir [17] and Scalasca [5] successfully employ traces for their performance
analysis. However, file systems can impose scalability challenges [11, 22] as well.
Various approaches exist to mitigate the e↵ect of this bottleneck, e.g., trace
reduction [21], trace compression [19], and I/O forwarding [11].

3 Channels and Memory

Figure 1(a) illustrates a TBON layout. For GTI, application processes and tool
places use up to three di↵erent communication directions as Figure 1(b) illus-
trates. The application direction allows a place to receive events that travel from
the application processes towards the root, the root direction allows a place to re-
ceive events that travel from the root towards the application processes (usually
control and steering), and the intralayer direction provides GTI tools a point-to-
point communication means within a hierarchy layer. The latter communication
direction facilitates tool analyses such as point-to-point message matching for
which pure TBON layouts could limit scalability [10]. The arrows in Figure 1(b)
illustrate that tool places can probe any communication channel from any of
these three communication directions to receive a new event. Each communi-
cation channel is bidirectional and has a certain event capacity. That is, if an
application process or a tool place sends an event over a channel it can continue
its execution before the receiver side handled the event, as long as the capacity of
the channel su�ces to store the new event. If a communication channel reaches
its capacity it will block any subsequent send operations until the receiver side
drains some events from the channel. In GTI, this capacity depends on the selec-
tion of the communication system, which can either be optimized for bandwidth,
o↵ering high capacities, or latency, o↵ering only low capacities.

Analysis algorithms such as point-to-point message matching [10] or deadlock
analysis [7], as well as tool infrastructure services such as order preserving event
aggregation [9] can consume increasing amounts of memory if newly received
events do not satisfy certain conditions. In such scenarios, the channel selection of
a tool place can heavily impact the memory consumption of a tool. We illustrate
this with MPI point-to-point message matching as an example analysis that
searches for pairs of send and receive events with matching message envelopes. If
a new send/receive event arrives and no matching receive/send is available, then
the analysis stores information on the new event in a matching table, i.e., memory
consumption increases. Otherwise, if a new send/receive event completes a pair—
a matching receive/send event was present in the matching table—the analysis
can remove the latter event from the table. Thus, the memory consumption
of the analysis decreases. This analysis enables correctness tools like MUST to
implement MPI type matching checks that can reveal incorrect data transfers.



Memory Usage Optimizations for Online Event Analysis 5

MPI Comm size(&p)
MPI Comm rank(&r)
for i 2 {1, 2, . . . , iterations} do

MPI Isend(to:(r + 1)%p, &req)
MPI Recv(from:(r � 1)%p)
MPI Wait(&req)

end

(a) Homogeneous.

MPI Comm size(&p)
MPI Comm rank(&r)
assert (p%3 == 0)
for i 2 {1, 2, . . . , iterations} do

switch r%3 do

case 0
MPI Send(to:(r + 1))

end

case 1
MPI Recv(from:(r � 1))
MPI Recv(from:(r + 1))

end

case 2
MPI Send(to:(r � 1))

end

end

end

(b) Process behavior di↵ers.

Fig. 2: Communication pattern examples (pseudo code).

As an example, a single tool place could receive events from all application
processes in order to match MPI point-to-point operations; in other words, the
tool uses a TBON that consists of the application processes and a root. In that
case, the single tool place exclusively uses the application communication di-
rection and only needs to select which application process to receive an event
from. A round-robin scheme e�ciently handles homogeneous applications where
all MPI processes execute similar events, such as the example pattern in Fig-
ure 2(a). Given that all channels provide an event when probed, the matching
table of the point-to-point matching analysis would store at most p operations for
a round-robin channel selection. The analysis reaches this peak after it handled
an MPI Isend event from each process. At the same time, application processes
can exhibit di↵erent MPI operations such as in the communication pattern of
Figure 2(b). This example5 uses process triples where two processes send to the
third process, which in turn receives the two send operations. A round-robin
scheme would behave poorly for this example since one process in each triple
issues twice as many operations than the other processes. The matching table
could use up to iterations · (p3 ) entries for unmatched send operations for the
round-robin approach. In practices, functional decomposition and border pro-
cesses for domain decompositions can cause di↵erent MPI operation workloads,
such a in the example of Figure 2(b).

In summary, the memory consumption of an analysis depends on the channel
selection scheme of the tool places, the communication pattern of the applica-
tion, the capacity of the communication channels, and the analysis algorithm.

5 Uses numbers of processes that are a multiple of three.



6 Tobias Hilbrich, et al.

The previous example illustrated the impact of the communication pattern. The
capacity of a communication channel together with the number of synchroniza-
tion points in the application also impacts the memory consumption of tool
analyses. Once a channel reaches its capacity, no further events can be pro-
cessed causing the application process to be blocked. This will then indirectly
block other processes in their synchronization operations, leading to a cascad-
ing e↵ect. Blocked processes can continue their execution once higher hierarchy
layers of the tool drain some events from the communication channels.

4 Selection Heuristic

To avoid this kind of impact on application execution, we develop and implement
two techniques in GTI. The first one is a heuristic solution to select a communi-
cation channel when a place tries to receive a new event. The heuristic targets
low-overhead channel selection with a consideration of memory usage. On each
tool place, a penalty score for each communication channel represents how often
events from this channel increased memory consumption as well as how often
the channel failed to provide an event when probed. The score starts at 0 and
GTI adds a penalty of ↵ when an event increases memory consumption and a
penalty of � when a channel failed to provide an event. Places sort all channels
with increasing penalty into a list. When a place probes for a new event it starts
with the first channel in the list. Channels that fail to provide an event receive
the penalty increase of � and the place advances to the next channel in the list.
If a channel provides an event, the place processes the event and any analysis
can return feedback whether the event increased their memory consumption via
an API. If so, the place applies the penalty of ↵ to the channel that provided
the event, otherwise the score remains unchanged. Afterwards, a place reorders
the list and probes the first channel in the list again.

This heuristic targets a flexible selection between low memory consumption
and low overhead where the values of � and ↵ allow an adaption between the two
goals. A selection of ↵ > 0 and � = 0 would only organize channels based on their
memory impact and a selection of ↵ = 0 and � > 0 would prefer channels that
usually provide events as to avoid unsuccessful probes. Additionally, the num-
ber of channels along the application direction is usually low and about constant
across scales (most TBON-based tools use constant fan-ins across scale), while
the number of channels along the intralayer communication direction usually
increases with scale. The organization of increasing numbers of channels in a
priority list would impact the performance of the selection heuristic at scale.
Thus, GTI uses a wildcard receive semantic for the intralayer channel and rep-
resents it as a single entry in its channel lists.

5 Application Pause

The channel selection heuristic attempts to receive events that will not increase
memory, but bases its selection on past behavior. GTI incorporates a second tech-
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nique to avoid memory exhaustion when the heuristic fails to restrict memory
usage. GTI-based tools can request an application pause such that application
processes will not generate new events. A place should invoke such a request if
its memory usage exceeds a threshold �. Once the application is paused, tool
places can process all existing events to reduce their memory usage. For applica-
tions that synchronize within some regular interval, any intermediate execution
state of the application should have a limited number of open operations (e.g.,
unmatched communications) for which analyses need to store information. As a
result, memory consumption of analyses can decrease towards the memory de-
mand for these open operations, which should be far below the original threshold
that caused a place to request an application pause. Once the memory usage of
a place that requested an application pause decreases below a second threshold
�0 (�0 < �), it will request that the application should be resumed.

GTI handles this technique with events that any place can inject. These tool
specific events travel either along the application or the root communication
direction. Four events implement the technique:

– requestPause:
• A tool place injects this event if an analysis exceeds its memory thresh-
old,

• Tool places forward these events towards the root of the TBON,
– broadcastPause:

• The root of the TBON injects this event when it received one more
requestPause events than requestResume events,

• The root broadcasts the event towards the application processes,
• When an application process receives this event it waits until it receives
a broadcastResume event.

– requestResume:
• Tool places inject this event if they injected a requestPause event and
their memory usage decreases below �0

• Tool places forward these events towards the root of the TBON,
– broadcastResume:

• The root of the TBON injects this event when it received as many
requestResume events as it received requestPause events,

• The root broadcasts the event towards the application processes.

This handling continuously votes for an application pause. The root of the
TBON manages the voting and holds an application pause until all places that
previously requested a pause agree to resuming the application. The implemen-
tation in GTI uses a scalable event aggregation on all levels of the TBON to
combine requestPause and requestResume events.

6 Application Study

We use the Juqueen system at the Forschungszentrum Jülich and the NAS Paral-
lel Benchmarks (NPB) [2] (v3.3-MPI) for our measurements. This BlueGene/Q
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system features 28,672 nodes with 16 cores and 16 GB of main memory each.
We implement our techniques in GTI and use the distributed deadlock detec-
tion in MUST as an expensive tool analysis that keeps a queue of active MPI
operations for deadlock detection. We use the size of this queue to both apply
the ↵ penalty of our heuristic and to request an application pause, where we
use values of � = 106 events and �0 = �

2 events in all runs with our techniques.
As kernel we select sp since it combines high communication frequency with
longer runtime. We use problem size D at up to 4,096 processes and size E at
up to 16,384 processes; hence, the dip at 8,192 in Figure 3(a). Figure 3 shows
the application slowdown (as runtime with MUST divided by the runtime of a
reference run) and the maximum queue size of MUST’s analysis for increasing
scales. We compare five di↵erent channel selections where we use two static ap-
proaches (previous version of GTI) and three selections with our new techniques
that di↵er in their choices for ↵ and �. The static selection intra-root-app se-
lects channels in rounds where it first tries to receive an event from the intralayer
direction, afterwards—irrespective of whether it received an event—it tries to re-
ceive from the root direction, and finally it tries to receive from the application
direction. This scheme is a compromise between a performance impact due to
unnecessary probes and serving all three directions. The second static selection
app||intra-root receives events from the application direction whenever possible
and only investigates the other directions if no application event is available.
This scheme tries to avoid blocked application processes that satisfy their com-
munication channel capacity towards low tool overhead. The selections with our
techniques use ↵ = � = 1 as a compromise between performance and memory
usage, ↵ = 10 with � = 1 to prefer lower memory use, and ↵ = 1 with � = 10
to prefer channels that usually provide events towards low tool overhead.

The static selection app||intra-root already uses exhaustive amounts of mem-
ory at 2,116 processes and causes an out-of-memory crash for this scale. This
selection fails to probe communication channels that o↵er events that would de-
crease memory usage in practice. A selection with intra-root-app provides low
queue sizes for the homogeneous communication pattern of sp, but issues many
irrelevant probes on communication channels. Thus, it causes higher overheads
than the heuristic selection with ↵ = � = 1, especially at 4,096 and 16,384
processes. The latter heuristic selection provides the best results for sp overall.
It causes marginally higher queue lengths than intra-root-app or ↵ = 1 with
� = 10, but has the lowest overall slowdown. A selection of ↵ = 10 with � = 1
can provide good performance, e.g., at 1,024 processes, but quickly causes ex-
cessive queue lengths that trigger the application pause technique at 2,116 and
4,096 application processes with 3 and 4 pauses respectively. The application
pauses along with the increased memory usage increase tool overheads for scales
above 1,024 processes.

A second set of experiments uses the Sierra system at the Lawrence Liv-
ermore National Laboratory, a Linux cluster with 1,944 nodes of two 6 core
Xeon 5660 processors each (24 GB of main memory per node, and a QDR In-
finiBand interconnect). We run the lref data set of the SPEC MPI2007 [16]
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(v2.0) benchmark suite on up to 2,048 cores6 on this system to study less ho-
mogeneous applications. Particularly, these applications are derived from real
world applications and provide a challenging test case. We select the applica-
tions 121.pop2, 128.GAPgeofem, 137.lu, and 143.dleslie for our runs since they
particularly stress MUST or even caused memory exhaustion previously. Fig-
ures 4(a) and 4(c) present application slowdown and maximum queue length
for our previous version of GTI and MUST that uses the static selection intra-

root-app. The irregular communications in both 121.pop2 and 128.GAPgeofem

cause MUST to exhaust memory even at 256 processes. Figures 4(b) and 4(d)
present application slowdowns and maximum queue sizes for our techniques with
↵ = � = 1. The heuristic su�ces to handle 121.pop2 at 256 processes without
the application pause technique, i.e., it adapts better than intra-root-app to
the communication pattern of this application. The application pause technique
avoids memory exhaustion for the remaining runs of 121.pop2 and 128.GAPge-

ofem. The numbers above/below the bars in Figure 4(d) indicate the number of
pauses that each run uses. The figure also highlights that processing all remain-
ing non-application events during an application pause does not cause excessive
increases in the maximum queue size for the MPI2007 applications. The highest
queue size for these runs was about 5% above �.

7 Conclusions

We present two techniques to avoid memory exhaustion in online analysis tools
for high performance computing. These techniques facilitate use cases where
complex tool analysis algorithms are used to process a large numbers of events.
Our first technique provides a heuristic that selects a communication channel by
using feedback from the tool infrastructure as well as the analysis itself to rank
channels in a priority list. A performance study with up to 16,384 application
processes shows that this heuristic provides an event selection that causes no
memory exhaustion for homogeneous applications and that it reduces tool over-
head compared to static selection approaches. Notably, this technique allows the
tool to analyze applications such as 121.pop2 at 256 processes where the static
selection already exhausts memory.

Our second technique uses the management capabilities of a TBON to pause
the execution of all application processes if a tool analysis uses large amounts
of memory. Once the application pauses its execution a tool can analyze all
events in the system in order to reduce the memory consumption of the analy-
ses. This mechanism handles cases where the heuristic channel selection would
exhaust memory otherwise and application studies on two di↵erent compute sys-
tems show its practicability. Particularly, this technique allows MUST to handle
applications for which it previously failed, e.g., 121.pop2 and 128.GAPgeofem.
Thus, our approach increases the applicability of runtime correctness tools such
as MUST.
6 The lref data set operates with up to 2,048 processes
(http://www.spec.org/mpi/docs/faq.html#DataSetL)
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We implement both techniques in the open source tool infrastructure GTI
that targets e�cient development of online tools. Increased scalability and avail-
ability of online tools for tasks such as performance analysis and debugging are
an essential step to provide an alternative for trace-based tool workflows, which
are increasingly impacted by I/O limitations.
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