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Applying QMU to Nuclear Weapon Stewardship 

Abstract 
Quantification of Margins and Uncertainty (QMU) is a principle means and metric by which nuclear 
weapons performance is measured [1, 2]. At Lawrence Livermore National Laboratory (LLNL), Nuclear 
weapon QMU is predominately a Physics assessment of the performance margin and associated 
uncertainties of not achieving the designed nuclear performance. To more completely apply QMU to 
Nuclear Weapon Stewardship, a Systems Engineering or systematic approach is being employed to 
identify and define requirements, allowing assessment of performance with QMU. This paper describes 
the basics of QMU and how it is applied below the highest level nuclear performance function down and 
throughout the nuclear weapon design architecture. The intended audience for this paper is a novice 
QMU practitioner at LLNL. 

The application of QMU to the entire set of nuclear weapon functions demands a broad engagement of 
Science and Engineering disciplines. Using a hierarchical flow-down requirements structure, 
performance functions and failure modes are identified for all levels of system requirements. There can 
be multiple failure modes per functional requirement. For each function there is a spectrum of possible 
outputs that can vary from outright failure to excellent performance. The possible consequences and 
impacts on the next higher level functions will also vary. Since performance variations exist in a weapon 
functional hierarchy, the assessment process needs and benefits from a system perspective. 
Incorporating QMU into assessments using a Systems Engineering approach to stockpile management 
provides a means to quantify weapon performance risks against a multitude of possible failure modes 
and from the highest level functions down to the lowest level component functionality.  

Performance risk management is a core practice of nuclear weapon management. Assessing the 
likelihood and consequences of the many possible failure modes is done yearly as part of Annual 
Assessment Reviews (AAR). When annual surveillance discovers an anomaly defect as part of weapon 
surveillance, investigations are launched and QMU is a key tool for quantifying performance impacts. 
QMU assessments are separated into two pieces, failure mode assessments and QMU analysis  

Background 
While the preponderance of QMU assessment work is classified, the basics of QMU are unclassified. This 
paper describes QMU, explains why it is important and how it fits into the larger scope of stockpile 
stewardship activities. Appendix A gives a wide range of analytic approaches for estimating confidence 
levels through statistical analysis, explains Sandia K factors used to select sample sizes appropriate for 
reliability and confidence level requirements and finally it surveys first and second order reliability 
analyses and a variety of computational methods. Appendix B covers the statistics used as the basis for 
nuclear weapon surveillance sampling quantities. The reference papers are available in the LLNL, NWE 
share folder . \\wci-cl2\wci\NWE\QMU

Nuclear Weapon Stewardship before QMU 
The original nuclear weapon stockpile stewards benefitted from two key experiences lacking in modern 
stockpile stewardship: original design development and full scale production. The original physicists, 
chemists and engineers gained an understanding of the numerous design parameters that affect 
weapon performance through the experience of building a large nuclear weapon stockpile, and they 
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learned to utilize design margins for assured functional performance. This is not to say that they had 
quantitatively determined the minimum set of performance parameters, but they did gain knowledge of 
the necessary set of performance parameters. From testing failures, they learned how their designs 
performed and how to avoid failures with better performance margins. 

From the experience of full scale production, the original developers were informed by the validation of 
production build data to confirm that weapons were built to design specifications. From their direct 
experience, they also knew when as-built performance parameter variations were large. This production 
knowledge provided the original stewards with insights into understanding weapon performance risks 
and the qualitative likelihood of potential failure modes. Weapon designers strove to build the stockpile 
to the same specifications as was tested in Under Ground (nuclear) Testing (UGT). They quantified the 
acceptable design specifications. Rarely could they quantify performance parameter specifications that 
defined the failure cliffs. Performance uncertainty quantification was typically limited to the 
experimental uncertainties associated with UGT. 

There were numerous reasons that QMU was added to nuclear weapon assessments. The first 
occurrence was for the W87 LEP Certification (around 2000), when QMU provided a quantitative basis 
to judge LEP changes and improvements. This experience proved that assessments with QMU 
demanded a higher level of rigor and weapon knowledge than previous certifications. It was also 
realized that QMU could be the means to train the next generation of nuclear weapon stewards. 
Through the exercises of quantifying performance margins and uncertainties, physicists, engineers and 
chemists gain job experiences similar to design development and full scale production. Specifically, 
current weapon stewards need to learn, through study and quantification, about the numerous design 
margins built into nuclear weapons. They need to consider the numerous possible failure modes and to 
quantify the design margins, i.e., how close is the nominal performance to a failure cliff. Just as the 
original stewards knew how well the weapons had been built, so too should modern stewards examine 
the quality of the original build data, and to quantify the variation in performance parameters to 
improve the likelihood assessment of a failure mode risk. To successfully execute a QMU process, the 
modern designer rediscovers the original designers’ intent and explores production records in order to 
quantify the nominal weapon performance and its variation.  

QMU Origins, Motivations and Reporting 
The academic bases of QMU are rooted in statistics and engineering reliability or design reliability 
methods. The following list of textbook references provides instruction on margin over variance ratios 
and how they relate to the probability of failure [3-11]. The earliest mention [12] of a probabilistic 
failure approach based on overlapping statistical distributions of loadings and strengths come from a 
publication by Sir Alfred Pugsley in 1939 [13]. He recognized that statistical variations in the strengths of 
aircraft when subjected to probabilistic variations in aircraft loadings could result in airframe failures.  

Descriptively, the QMU Confidence Factor (CF) is a metric defined as the performance margin divided by 
the performance uncertainties. The margin basis is dependent on a selected failure mode. The CF has 
similarities to other metrics with names, such as Safety Index, Safety Margin and Reliability Index. QMU 
can be related to other design metrics such as the engineering safety factor, the Sandia K-factor and first 
and second order reliability methods (see Appendix A). 

Aviation [14, 15], space vehicles [7, 16, 17], and probabilistic mechanical design employ a variety of 
statistical methods, safety factors, and reliability/safety indexes to improve and optimize their designs. 
In particular, air and spacecraft designs use a reliability requirement and confidence limit specification. 
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They grade this approach based on the consequence of a component failure. Per a Federal Aviation 
Administration (FAA) regulation (FAR 25.613), if the failure consequence is critical (single point failure) 
to safety, then the reliability must be 99 percent with a 95 percent confidence level. For redundant 
components (where failure does not cause a system failure) the requirement is 90 percent reliability 
with a 95 percent confidence level. The requirements are based on the reliability percentage of material 
property distribution (failure measure) being greater than the design value with the 95% confidence 
level. This drives their certification work into regimes with test sampling plans in order to statistically 
prove reliability at a confidence level. These reliability requirements utilize a reliability index calculation 
that is quite similar to the QMU CF. FAA regulations (FAR 25.303) also require a 1.5 safety factor on limit 
loads so multiple approaches are used in complex system designs.  

The motivations for devising design reliability criteria and methods that can predict failure probabilities 
and confidence are 1) to avoid high consequence failures, 2) to overcome design complexities and 3) to 
facilitate design optimizations that satisfy important constraints such as reliability, economy and small 
sample size. Large civil structures (bridges, buildings, etc.) are a good example of the first motivation 
(high consequence to failure). Very complex electronics systems (with 10K plus component counts) are 
the best example of the second motivation. In complex systems, the failure of a single inexpensive part 
(electrical resistor) can cause an expensive system wide failure. The Weapon Electrical Systems (WES) of 
nuclear weapons falls into this category. In these designs, components have specified reliability 
requirements in order to meet a requirement for overall system reliability. The nuclear weapon system 
reliability reported to the Department of Defense (DoD) every year is based on statistical data gathered 
during original production and annual stockpile surveillance activities. 

The third motivation, which is to optimize constrained designs, deals with the issues that arise with 
nuclear weapon certification. The significant constraints facing nuclear weapons design is both the small 
quantity of test data and a requirement for high confidence level in the reliability. Within the discipline 
of statistics, reliability is reported with an associated confidence level. For the non-nuclear WES, there is 
sufficient test data to report reliability at a specified confidence level. There is simply insufficient test 
data to report a measured reliability at a specified confidence level for the Nuclear Explosive Package 
(NEP). This shortcoming in measured reliability existed before the ban on UGT. As a practical matter for 
reporting system reliability to the DoD, the reliability of the NEP is asserted to be 1.0 (sometimes called 
O-N-E).  

In short summary, NEP QMU confidence factors are reported yearly by the nuclear Design Agencies 
(DAs) Los Alamos National Laboratory (LANL) and LLNL. Sandia National Laboratory (SNL) regularly 
reports weapon reliability numbers (without confidence level) in Weapon Reliability Report. At the 
beginning of nuclear stockpile assessments both reliability and a statistical confidence level were 
reported annually to the DoD [18]. That changed in the mid-sixties, and confidence level reporting was 
dropped. An excellent quote from the Love report [19] states: “No sound statistical approach exists for 
measuring uncertainties associated with the subjective combining of data; confidence limits could only 
be a measure of sampling variability, and it was considered desirable to avoid implying that 
uncertainties in judgments had also been measured.” Since then, SNL only reports weapon system 
reliability.  

The SNL reliability evaluation is based on reliability logic block diagrams with reliabilities for subsystems 
and components [6, 20]. The LLNL Engineering Design Safety Standards, Section 11.7 [21] provides 
component ratings with a list of internet references. The nuclear DAs supply reliability without 
confidence level assessments to SNL for some select components, such as detonators. SNL incorporates 
the limited nuclear DA reliability data into the warhead reliability. The use of confidence level statistics is 
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used in design processes for components that have reliability allocation requirements. When these 
components are designed with sufficiently large design margins, and with planned sample size testing, 
there is a measure of assurance (confidence) that the design will meet reliability requirements. Typically, 
a majority of the component reliability testing is done during development and the full sample size of 
testing is completed during surveillance of the active stockpile.  

While LLNL provides the system level QMU confidence factors for the NEP, the QMU methodology is 
being expanded and applied to NEP subsystems and components using the functional requirements of a 
Systems Engineering approach. 

QMU Basics  
The formulas and illustration of QMU are shown in Equations 1 - 4 and Figure 1. The ratio of Margin to 
Uncertainty defines the Confidence Factor (CF). The blue curve is a normal Gaussian probability density 
distribution curve to represent a limiting threshold function response. The red curve is a normal 
Gaussian probability distribution curve to represent a nominal function response. Each distribution has a 
mean μ, and a standard deviation σ. The QMU formula (4) is based on two independent distributions. It 
is customary to define uncertainties U as equal to one standard deviation σ of the distribution. The 
yellow shaded area below the intersecting distribution tails equals the probability of failure. The use of 
Gaussian distribution curves is for convenience. While the distributions can be arbitrary, it is most 
important to define a large performance margin so that that there is a minimal region of probable 
failure. 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐶𝐹) = 𝑀𝑎𝑟𝑔𝑖𝑛
𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦

    (1) 

𝑀𝑎𝑟𝑔𝑖𝑛 = 𝑀 = 𝜇𝑁 − 𝜇𝑇       (2) 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 𝑈 = �𝜎𝑁2 + 𝜎𝑇2      (3) 

𝐶𝐹 = (𝜇𝑁−𝜇𝑇)

�𝜎𝑁
2+𝜎𝑇

2
        (4) 
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Figure 1: QMU performance and failure distribution Curve 

The CF for the example shown above is 3.54 (5/1.41). The performance margin is 5 (8-3) and the 
uncertainty is 1.41 (square root of 1+1). Confidence factors greater than 3 are in the regime of high 
confidence and less than 2 are lower confidence. Since QMU is established on the basis of a single one-
dimensional failure mode, its simplicity presents some key limitations. Specifically, multiple failure 
modes, interactions between failure modes, numerous uncertainty sources, constraints and other 
distribution nonlinearities all require modifications to QMU or alternative methods. However, the 
simplicity of QMU is its advantage. The first priority should be given to quantifying the margin. Second 
should be to estimate or bound the uncertainty. It is more difficult to characterize uncertainty than it is 
to characterize margin, so conservative uncertainty estimates are prudent. The third step depends on 
the CF magnitude. For CF less than 2, additional detailed M and U assessments should be pursued since 
there is greater potential for CF changes that could drop below 1. 

Margin 
The performance margin is the difference between the mean of the nominal response and the mean 
threshold response. As the word threshold implies, if the nominal response does not satisfy the 
threshold response then the performance margin is negative and the function fails. Sometimes, the 
performance margin is also (pessimistically) called the failure margin. Depending on the QMU 
application to a particular failure mode, the nominal and threshold distributions may be larger or 
smaller than the other. Material failure margins occur when a nominal operating condition exceeds a 
threshold value. In this case the threshold distribution is to the right (greater than) of the nominal 
distribution. Amplification failure margins occur if the nominal input (energy, temperature, voltage, etc.) 
triggers do not exceed threshold ignition levels. Activation energies and small sparks can trigger the 
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release of enormous energy outputs. The margin shown in Figure 1 is for the case where the nominal 
distribution is greater than the threshold. Whichever the case, the performance margin is meant to 
probabilistically capture a failure mode. 

QMU has two key rules to govern the Margin quantification. First, a Margin is measured between the 
means of the threshold and nominal distributions. Second, the two distributions should be taken at the 
“worst” Stockpile-to-Target-Sequence (STS) conditions, i.e., the conditions associated with the smallest 
CF. For example, some failure modes may vary with temperature, with cold being the worst condition. In 
this situation, the CF is assessed at the coldest temperature. Likely environmental probabilities are not 
factored into nominal performance distributions. Also, to assess the smallest CF means that all 
environmental combinations are considered.  

QMU Variable 
The domain of QMU analysis is the QMU variable. After identifying a failure mode, selecting a QMU 
variable to characterize the failure mode is the next most important decision. The chief selection 
criterion for a QMU variable is that it should directly affect both the performance and the intrinsic cause 
of failure. Consider the example of a part that breaks under mechanical loading and causes a functional 
failure. The QMU variable might be the loading force or the part stress. A study of mechanical failure 
problems show that applied part loads cause parts to stress and that leads to part deformations or 
fracture failures. Other factors affecting failure includes part defects, variable part geometries and 
material properties that affect both the material stress levels and the material failure strength levels. 
More importantly, failure strength properties are the most probable failure factor and they are intrinsic 
material properties that can be measured. Strength is measured in the units of stress not load. Thus in 
this instance, since strength1 is an intrinsic material property and a cause of failure, it is the better 
choice for a QMU variable. 

In the previous example, the selection of stress as the QMU variable represents the better choice over 
applied load. There is no single correct choice. Selecting applied load as the QMU variable is also 
possible and that can sometimes lead to different QMU results. Differences in results are traceable to 
nonlinearities in transfer-functions that relate material strengths to applied load forces (the selected 
QMU variable). Other nonlinearities in the uncertainty quantification also change the QMU result. QMU 
variables fall in three general categories. There are inputs (applied loads and displacements), there are 
intrinsic state variables (stresses) that cause parts and materials to behave in certain ways, and there are 
outputs (transferred loads, geometric motions, gaps or deflections). The QMU variable can be any one 
of these choices, but the best choice has the closest alignment between the intrinsic failure cause and 
the functional requirement. 

Another key consideration when selecting the QMU variable is if it is measurable. With QMU variable 
measurements, it may be possible to validate the nominal or threshold behaviors and maybe even the 
CF itself. With the single QMU variable choice, two distribution functions need to be defined. The ability 
and convenience to make physical measurements of either nominal or threshold behaviors is the best 
and most direct path to doing QMU. The next best consideration is if the QMU variable is predictable, 
either analytically or computationally. Taking a predictive approach introduces additional uncertainties. 
Finally, the next consideration is that independent uncertainty sources should be affecting the variance 
of nominal or threshold performances. Stated differently, if there is a significant uncertainty source that 
affects the performance margin, then that uncertainty should be quantifiable using the QMU variable. 
                                                           
1 Stress works well for quasi-static ductile failure, but brittle material failures or long term creep damage may have 
other better choices for the QMU variable  
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Uncertainty 
Performance uncertainty is assessed as the Root-Sum-Squared (RSS) of independent nominal and 
threshold uncertainties. The nominal UN and threshold UT uncertainties are each composed of 
independent parameters that are also calculated using a RSS (Equations 5 and 6). NN and NT are the 
number of independent uncertainty contributions from nominal and threshold distributions.  

𝜎𝑁 = 𝑈𝑁 = �∑ 𝑈𝑁𝑖
2𝑁𝑁

𝑖=1        (5) 

𝜎𝑇 = 𝑈𝑇 = �∑ 𝑈𝑇𝑖
2𝑁𝑇

𝑖=1        (6) 

In a QMU assessment, the uncertainty sources are identified and then quantified. The following list 
provides a general guide to aid identification: 

1. Material properties 
2. Fabrication, manufacturing, assembly and life-cycle use 
3. Experiments and testing: repeatability and reproducibility 
4. Stochastic physical phenomena 
5. Analytical and computational 
6. Unknown-Unknowns 

Before going into more detailed descriptions regarding the variety of uncertainty sources mentioned 
above, it is important to note that in the many applications of QMU to date, the nominal and threshold 
distributions are constructed using normal Gaussian (µ, σ ) probabilities. From experiments and 
simulations, the nominal and threshold σ s are measured or predicted. For the extraneous sources of 
uncertainty (#5, 6), their contributions are added to conservatively bound the total uncertainty.  

Uncertainties in material properties are typically in the range of 5-10%. Simple statistical formulas for 
mean and standard deviation are used for characterizations. Assume there is a set of material property 
measurements xi which define a normal distribution X. The mean 𝑋� is given by Equation 7 and the 
standard deviation s of the data is Equation 8. The testing sample size is n. The coefficient of variation η 
is defined by Equation 9 and equals the standard deviation (uncertainty) divided by the mean. The η for 
the strengths of common structural steels ranges between 0.05 and 0.07 [7]. 

𝑋� =  1
𝑛
∑ 𝑥𝑖𝑛
𝑖=1         (7) 

𝑠 =  � 1
𝑛−1

∑ (𝑋� − 𝑥𝑖)2𝑛
𝑖=1 �

1
2

      (8) 

𝜂 = 𝑠
𝑋�

          (9) 

If the QMU variable is stress and the failure mode is stress exceeding strength, then the uncertainty in 
the yield strength mentioned above would be the standard deviation calculated in Equation 8. Engineers 
are accustomed to taking material property values from a variety of sources and then using them 
conservatively in their work. In some industries, material measurements are taken from material build 
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lots used in manufacturing so the data for actual material uncertainties is available. When actual 
property data is unavailable, the variation in coefficients of similar materials can be used to estimate the 
material property uncertainties. 

In the category of fabrication uncertainties, manufacturing variations influence both the threshold and 
nominal distributions. Examples of the numerous factors that affect fabrication uncertainties are the 
selection of materials, suppliers, their manufacturing process history, humidity, baking and degassing, 
cleaning solutions and even to how parts are stored during different fabrication stages and then on to 
in-use storage conditions.  Parts stored on a shelf frequently differ in their behaviors from parts that 
endure a service lifetime with customers. The variety of starting materials, properties and environments 
can physically alter the material behavior (stress-displacement) of explosives, ceramics, polymers, etc. It 
is through inspection that fabrication uncertainties are reduced.  Whether by measuring part 
dimensions or by destructive sample testing, it is highly desirable to only use parts that possess 
acceptable (superior) characteristics. Eliminating (by truncating) the undesirable tails in a performance 
or threshold distribution through acceptance inspection favorably affects the resulting failure probability 
distribution.  By truncation or elimination of first-order characteristics that contribute to failure, the CF 
is increased along with part reliability.  Second-order contributions to uncertainty remain (inspection 
errors, gaging errors, part distortions, material variations within a lot, etc.) 

Fabrication is typically the largest uncertainty source, and it can be broken down into two types: 
aleatory and epistemic. Aleatory uncertainty, meaning stochastic randomness, happens in most 
manufacturing processes. It is generally believed that establishing tight process controls will minimize 
manufacturing variations, and component quality screening can limit as-built variations further. 
Physically random processes will introduce some unavoidable aleatory uncertainty.  

Epistemic uncertainty, meaning imperfect knowledge, happens because parts and processes are 
imperfectly characterized. A significant source of epistemic uncertainty (undetected) occurs in 
assemblies where there is mechanical interference (or gaps) between parts, such as slide fittings where 
shafts fit into part holes. The dimensions of the holes and shafts can each have dimensional tolerances 
that are characterized by Gaussian distributions with means and standard deviations. There will be some 
combinations of holes and shafts where the part dimensions interfere with the similar overlap region as 
is studied in QMU. If these slide fittings are contributing to part failures, then they are potential sources 
of uncertainty. Note that variations in gaps structures are just as important as potential uncertainty 
sources especially when there is lubrication involved and when the lubrication changes over time.  

There is a rich scientific body of work describing experimental and test measurement uncertainties [8, 
22]. The simplest rule of thumb is to ensure a high ratio between the measurement and the 
measurement uncertainty [23]. When making test measurements, there are uncertainties with the 
measurement itself, the test setup, the repeatability and reproducibility of test measurements and 
many other factors which should be assessed (human operators, environmental factors, data 
processing, quality, etc.). There are numerous analysis of variance method models that determine and 
ascribe uncertainty to the experiment factors. A two factor study with replications called Gauge 
Repeatability and Reproducibility (Gauge R&R) looks at measurements made by different operators on 
multiple parts. It is important to understand the uncertainty associated with the parts as opposed to 
uncertainty in the operators. 

Stochastic physical phenomena are those processes whose outcomes are seemingly random events. 
Very often these processes are modeled using Monte Carlo simulations: radiation transport is one such 
phenomenon. Sometimes when a subsystem is treated as a black box with no attempt to scientifically 
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characterize the physical phenomena and hence deduce the behavior into a deterministic outcome, 
then that subsystem has measurable random outputs that can be statistically characterized. 

The uncertainties attributed to analytical and computational sources [24, 25] encapsulate a multitude of 
uncertainty sources. Since modeling parameters include material properties, fabrication, testing 
configurations, and include stochastic phenomena, the four previously discussed uncertainties are all 
potential factors that can be included in modeling. The particular uncertainty that is unique to analysis 
and computations is the accuracy of that modeling. Perhaps the two largest uncertainty pieces are the 
modeling idealization (the discretization and modeling simplifications: a spherical chicken with uniform 
heat flux) and the simulation physics (are the right equations being solved correctly?).  

There is a testing uncertainty analog to this analytic and computational uncertainty. Test unit 
configurations may not exactly match weapon configurations so there is an error in that representation 
that introduces uncertainty to the test results. Environmental ground test conditions of temperature, 
vibration and shock may not excite or induce the same physical response of a flight test unit experience 
so there is uncertainty in the accuracy of the physical response. 

With capable analysis and computational tools, there is an opportunity for uncertainty quantification. 
Sensitivity analysis can guide the uncertainty quantification efforts to focus on the most important 
modeling assumptions and inputs. Modeling can examine how variation in a particular uncertainty 
source affects the output of a QMU variable. Through brute force, deterministic simulation capabilities 
can be adapted to take probabilistic inputs and predict probabilistic outputs. Thus with probabilistic 
analyses, it is possible to estimate nominal and threshold (µ, σ ) response surfaces. As a general caution, 
probabilistic analyses are ill suited to predicting distribution shapes and the low probability magnitudes 
of distribution tail behaviors. 

When quantifying experimental and computational uncertainties, additional uncertainty contributions 
are added to the QMU calculation. The consequence of additional uncertainty contributions to QMU is 
shown in Figure 2. Additional uncertainty contributions increase the failure probability by increasing the 
overlap in the failure zone (from yellow to red). In QMU, there is no presumption that the shape of the 
distribution curves must be known. Instead, a Gaussian is assumed for convenience and the goal is to 
identify and then to conservatively estimate an uncertainty bound. 

The inclusion of numerous uncertainty sources in U for CF is what differentiates QMU from the analytic, 
reliability index methods. In those well-defined problems, the uncertainty contributions are limited to 
known problem variables being quantified. With these restrictions, the distribution shapes can be 
mathematically transformed and combined to determine a well characterized probability of failure 
distribution. QMU prioritizes a conservative CF estimate that includes all potential uncertainty sources 
over distribution shape predictions. 
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Figure 2: With a 10% increase in Threshold uncertainty and a 20% increase in Nominal uncertainty, the 
failure probability increases (from yellow to red area) and the QMU CF decreases by 13%. 

The acknowledgement of “unknown-unknowns” is an important topic in QMU because when over-
looked, it can lead to over confidence in a design. Studying the application of QMU reveals three 
unknown-unknown situations: estimation errors in uncertainty or margin, not recognizing a source of 
uncertainty, and not recognizing a potential failure mode. Analytic, experimental and computational 
improvements in uncertainty quantification can minimize error uncertainties. Ever improved scientific 
and engineering studies can help to minimize a failure to recognize uncertainties and potential failure 
modes. While it is possible to bound uncertainty estimates, the failure to recognize potential failure 
modes is the most serious of the unknown-unknowns. Since a QMU analysis is predicated on the study 
of a failure mode, an unknown failure mode implies an incomplete or worse incorrect QMU problem is 
being studied.  

It was stated previously that the shape of the threshold and nominal distribution curves is chosen to be 
a normal Gaussian for convenience. It is also customary to use one standard deviation when reporting a 
QMU CF. Thinking rhetorically, does the QMU practitioner know the distributions well enough to 
accurately represent the shape of the output distributions down into the regime where the tails of 
threshold and performance distributions overlap? Secondly, at what standard deviation factor does the 
QMU practitioner have the better uncertainty estimate, one, two or three standard deviations? Because 
tail characteristic behavior is in the statistical regime of low probability events, and because most often 
there is not enough data or analysis certainty to definitively quantify tail probabilities with high 
confidence, there can be misplaced emphasis and energy put into obtaining accurate tail behavior 
predictions. 
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The nuclear weapon QMU experience suggests that uncertainties can dominate the CF ratio and which 
can lead to a significantly lower CF calculation. Over time, uncertainties tend to be reduced and the CF 
increases. The experience with legacy weapons is that improvements in CF are mostly the result of 
better uncertainty characterization. While, for refurbishment Life Extension Programs (LEPs) and 
Alterations (Alts), improved CFs are the result of purposeful, higher design margin improvements. The 
conditions of lowest CFs typically occur where the margin also happens to be the smallest. The variation 
of uncertainty magnitudes over the range of possible STS conditions is a second-order factor when 
compared to the change in margin over these environments. Instead of uncertainty variations as the 
second largest source of low CFs, the age of a weapon or its subsystems can be more important. So “Old 
and cold” is a common phrase that captures the two common worst case conditions under which QMU 
is assessed. 

Systems Engineering Approach to Nuclear Weapon Stewardship 
LLNL tailors a Systems Engineering approach to nuclear weapon stewardship that is drawn from DoD 
[26] and NASA [27] experience. The method is based on a thorough definition of functional 
requirements that starts with Customer requirements, translates them into System level functional 
requirements and then breaks these down into derived functional requirements that support higher 
level functions. The benefits of this approach are its comprehensiveness across all weapon functions and 
its consistent application to all weapon functions. The flow of requirements from the Customer to the 
weapon system to the derived requirements is called traceability. The reason this paper describes 
nuclear weapons, systems engineering and requirements is because the application of QMU to weapon 
assessments is made on this basis. The systems engineering approach defines functional requirement 
details and relationships. 

Figure 3 is a graphical representation of a nuclear weapon functional requirement breakdown. For 
obvious classification reasons, key functional details and the functional relationships are omitted. An 
essential characteristic of the functional requirements is their hierarchical flow. The DoD defines the 
Customer requirements (top oval of Figure 3). The three main sources of customer requirements are 
Military Characteristics (MC) documents, Interface Control Documents (ICD) and environmental 
conditions documented in a Stockpile to Target Sequence (STS) report. The MC defines the major 
warhead requirements and the ICD defines geometric constraints, power, electrical signals, handling 
equipment and transport gear. Customer Requirements are negotiated between the DoD, NNSA and the 
weapon design laboratories.  

The nuclear Design Agency (DA) LLNL and the non-nuclear DA SNL define System requirements from 
Customer Requirements. Below the System requirements are the derived requirements. These flow 
down from System requirements. Each of the weapon functional requirements is captured in a 
rectangular box. The base expectation of a functional hierarchy is that when lower level functions are 
satisfied, then the higher level function is also satisfied. In the example below, when the mechanical 
interfaces, and weapon electrical system functions are satisfied, then the warhead is integrated within 
the DoD system.  
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Figure 3: Hierarchical Functional Requirements 

Each of the boxes shown in Figure 3 shows a functional requirement label. Each function box has an 
associated requirement statement that is carefully worded to define “how well something performs” 
(see Figure 4). The “something” in a functional requirement represents the design solution. Just as there 
is a functional requirement hierarchy, there is also a physical design hierarchy. The physical system 
hierarchy starts with the full system at the top drawing or “design definition”, and then defines every 
subsystem and component below. The design solution is intended to meet the requirements specified in 
the functional requirements hierarchy. 

Well-defined requirements [27, 28] are very important to Systems Engineering: both during the design 
development period and in the sustained stockpile stewardship period. Requirements need to be 
unambiguous and measurable. The following is an example of an unambiguous and measurable 
requirement: the nuclear weapon shall produce X Kilotons of nuclear energy output. The “something” is 
the nuclear weapon. The “what” is nuclear energy output and the performance requirement is 
measured in X Kilotons.  

A typical nuclear warhead has about 100 derived functional requirements. For the design solution to 
each requirement function, there is a list of Performance Parameters (PP) that can affect how well the 
function is performed. PPs include any characteristics (material properties, physical dimensions, and 
state characteristics) that affect the functional performance. Across all functions, the total quantity of 
PPs can be upwards of 500. For each function, a subset of the total number of PPs is judged critical to 
performance. Critical Performance Parameters (CPPs) are associated with potential failure modes. By 
careful examination of CPPs, the number of potential failure modes per function is reduced. The cause 
and effect expectation between CPPs and failure modes is that if CPP specifications are not met, then 
the functional performance is critically jeopardized. Since the PPs affect functional performance, they 
are key sources of uncertainty. PP and CPP variations affect the immediate function, as well as all the 
functions above them. 
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Most CPPs vary within a specified range because they were (or should have been) specified at the time 
of original production. Even when specified, fielded weapon designs have “as-built” characteristics that 
can be studied to provide better variance information. The variances of CPPs are typically the major 
uncertainty sources necessary for QMU analysis. 

Figure 4 is an example of the information associated with a derived function. Figure 3 shows a function 
requirement labeled Primary Performance and it has additional unspecified derived functions below it. 
Figure 4 expands the Figure 3 Primary Performance function to show additional derived requirements 
flow-down. It contains the functional requirement, lists PPs and CPPs and then it makes a triage 
statement that dispositions the QMU analysis method and identifies the QMU variable. The QMU 
assessment process triages functional requirements into one of three assessment modes. In the three 
derived sub-function requirement examples of Figure 4, the QMU triage results are QMU assessment, 
QMU roll-up and null. The next few paragraphs will describe these further. 

For a few functional requirements, there is no significant impact to failure, or there is no conceivable 
failure mode, or the failure likelihood is extremely improbable. For these situations, the QMU triage 
result is deemed a null consequence outcome, and it is decided to not perform QMU. This does not 
happen often, but when it does, performing QMU serves no meaningful purpose. The derived functional 
requirement Primary Centering Configuration is an example of a null result from QMU triage. The 
weapon design requires that cushions will support and center the Primary. This is considered “good 
engineering practice.”  A QMU assessment of this function examines how the design solution (rubber 
cushion) might fail, what is the likelihood of failure and what would be the consequences. First it is 
assumed that there is no primary assembly birth defect where cushion is deformed, missing or severely 
damaged. Testing showed that damaging the material is extremely unlikely, either mechanically or 
chemically. When extreme variations in cushion properties are assumed, engineering and physics 
assessments show that the failure consequences at the next higher function level are acceptable. In 
short, unless the cushions melt or sublimate out of existence, likelihood is extremely small and the 
consequences are minimal. Hence the QMU triage result is null. In these situations, the prudent course 
is to monitor the function for unknown and unexpected failure modes. 

The Defects function example involves a chemical mitigation problem. A magic material controls 
chemical reaction degradation rates in the Primary and slows the rate of defect growth. An acceptable 
defect mass is established and assessed as an uncertainty in the higher Primary Performance function. 
At the derived Defect function level, a QMU assessment is performed to assure that defect growth is 
acceptably small over a weapon lifetime. Since a maximum defect mass requirement is established, it is 
decided to re-pose the problem in the terms of the defect growth rate over a lifecycle period of time. 
The selected QMU variable is years. The threshold distribution is based on how many years it takes for a 
defect to grow to the maximum allowable mass. The nominal distribution is weapon age, from the dates 
of manufacture to weapon removal from the stockpile. 
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Figure 4: Example of derived functional requirements and QMU variables with associated 
performance parameters 

The Primary Implosion Configuration derived function example involves two common issues for 
engineering QMU: physical configurations and structural integrity. Structural integrity is the assurance 
that nothing breaks, deforms or moves in an unintended way. Physical configurations are an external 
measure of structural integrity. For both structural integrity and physical configurations, the failure risk 
is in regards to likelihood and consequence. For some components, fracture and cracking would be a 
cause for system level failure. For other parts (rubbery cushions for instance), cracks do not lead to a 
system failure. There is a similar situation of ambiguity for plastic deformation, adhesive de-bonding, 

Primary Performance  
   Requirement R1.2: The Primary shall produce Xp Kt  
 QMU variable: Nuclear yield (kT) 
  PP1.2a: Physical Dimensions 
  PP1.2b: Material isotopics 
  CPP1.2c: Defects 
  Triage: QMU assessment with variable Kilotons 

Primary Implosion Configuration  
Requirement R1.2.2: The primary implosion shall create a supercrical mass kcrit > 1 

  PP1.2.2a: Material Properties 
  CPP1.2.2b: Design tolerances 
  CPP1.2.2c: As-Built Pre-load forces 
     Triage: QMU roll-up assessment with dimensional variations assessed in (Kilotons) 

Defects 
Requirement R1.2.1: The magic material shall prevent lifetime corrosion > m grams  

  P1.2.1a: Chemical Species 
  P1.2.1b: Material Properties 
  CP1.2.1c: Mass of magic material 
          Triage: QMU with variable time duration (years) 

Primary Centering Configuration 
Requirement R1.2.3: The cushions shall support and center the primary 

  PP1.2.3a: Material Properties 
  PP1.2.3b: Design tolerances 
  PP1.2.3c: As-Built Pre-load forces 
  CPP1.2.3d: Cushion set polymer damage 
                Triage: Null 
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migration of chemical species, gap formation, distortions, etc. Physical configurations and structural 
integrity are clearly important PPs, but it is not always the case that they are CPPs. 

Physical deformations, part movements, gap formations and shifting components are assessed by 
engineering for structural integrity, but they are also routinely assessed by physics to determine impacts 
to higher nuclear requirement functions. Sometimes, physics sets physical configuration limits that can 
be used by engineers as threshold design requirements; but more frequently, physical configuration 
limits are intended to serve a notification purpose. When weapons deviate from design definitions, 
engineering and physics assess the structural integrity and nuclear performance respectively. In the 
circumstance where a lower, derived functional requirement has low failure risk, but the higher 
functional requirement is affected then a QMU roll-up assessment occurs. In the Primary Implosion 
Configuration requirement example, the risk of failing the criticality requirement is judged 
inconsequential, but the dimensional configurations are judged important to the higher Primary 
performance function. Hence the triage result is QMU roll-up assessment with a QMU variable of 
Kilotons.  

The novice to QMU might have expected the QMU roll-up variable would be a length measure such as 
mm. Instead the variable is Kilotons because that is the chosen QMU variable at the higher functional 
requirement level. So the QMU analysis must characterize dimensional variations and assess them as 
Kiloton variation uncertainties.  

As a last observation, there can be multiple failure modes per functional requirement. Using the Primary 
Configuration requirement example of Figure 4, as-built pre-loads are identified as a performance 
parameter. This is referring to assembly loads that can stress parts, cause gaps between parts and 
otherwise affect Primary Performance. If there is an intermediate to high risk failure mode associated 
with loading, then QMU analysis would be warranted. Alternatively, the variation in as-built loads could 
be rolled up and analyzed as an uncertainty to Primary Performance. With multiple QMU analyses and 
multiple roll-up of performance parameter variances, there are many permutations of possible 
approaches. One recommendation about multiple QMU outcomes is to re-examine the quality of the 
functional requirement definition and ensure that the requirement is unique and measurable. 

QMU Assessment Process 
The QMU Assessment process itself is broken into two parts, one for QMU failure mode assessments 
and the second for QMU analysis. Before defining, these two processes, it is important to understand 
how QMU fits in the nuclear weapon stewardship context at LLNL. Figure 5 shows that QMU failure 
mode assessments are one portion of the Performance Risk Management process and which is itself one 
of the six Annual Assessment Review processes: surveillance analyses, design departure analyses, 
performance risk management and QMU, aging basis management, reliability analysis and knowledge 
gap management. These processes are executed continuously and the results reviewed yearly. QMU 
failure mode assessments are also triggered when there is a Significant Finding Investigation (SFI). Most 
SFIs occur from surveillance Disassembly and Inspections (D&I), component testing and Joint Test 
Assembly (JTA) flight testing. There have also been SFIs initiated from computational assessments. 

As part of Annual Assessment Review (AAR) processes, performance risks from numerous sources are 
evaluated. The inputs to this review process are many, surveillance observations, component 
evaluations, subsystem testing, chemical and radiological experiments and analyses from many 
disciplines. A QMU analysis is decided based on the high to intermediate priority performance risks.  
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Figure 5: QMU Assessment Processes that occur within Nuclear Weapon Stockpile stewardship 

A prerequisite of QMU assessments is the preparation of the nuclear weapon functional requirements 
hierarchy. These functions identify the potential “so what” consequence when failures occur. As risk 
captures the consequence and likelihood of functional failures, it is the best process by which to trigger 
QMU analyses. Performance risk assessments examine the collected set of possible failure modes, 
decide on the most likely failure modes based on available information, and then consider the 
consequence of function output variation and how the functional output impacts higher level functions.  

For SFIs, the focus is on studying anomalous conditions, observed or simulated. Sometimes, the anomaly 
is completely unexpected, or it is related to a PP or CPP that is out of specification. Sometimes the 
anomaly is a failure (possibly realized risk) in a functional requirement output. The QMU methodology is 
a rigorous approach for studying how anomalies affect functional requirements. QMU analysis is 
expected as part of the SFI closeout report. 

The two parts of QMU assessments are described in the following process steps. 

QMU Failure Mode Assessments  
1. Review the functional requirement, identify performance parameters and determine the CPP 

subset for further study. 
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2. Study all potential failure modes to the function. Consult SMEs, review history, compare to similar 
systems, brainstorm and prioritize failure modes based on risk with likelihood and consequence. 

3. Reexamine all PPs and CPPs known to affect the function and its associated failure modes and 
update the body of system engineering information for the function. 

4. Triage the failure modes of the functional requirement. Using expert judgment, considering failure 
risks, design, test and experimental margins, judge the validity of the failure mode and the benefit 
of further QMU assessment. Consider how performance parameters affect the failure mode. 
Decide if the failure mode is suitable for QMU analysis, should be rolled up as uncertainties to 
QMU in a higher level functional requirement, or decide if the QMU outcome is null. 

QMU Analysis 
1. Start QMU analysis with examination of possible QMU variables for the failure mode. At the 

beginning, it is helpful to make multiple choices and down-select after further assessment 
information is available. 

2. For each of the QMU variable choices, quantify their margins with available data and use of expert 
judgment as necessary. Identify all possible sources of uncertainty. 

3. Identify gaps in knowledge and lay out a functional assessment plan that will quantify the 
performance and failure data necessary to compute QMU. This plan should strategize the 
methodology for determining threshold and performance distributions along with the statistical 
quantification techniques. 

4. Perform the QMU calculations to determine CF. Most QMU assessments are not performed in a 
linear step-to-step process, but instead require looping back to reassess failure mode risks, 
reconsideration of QMU analysis versus roll-ups of parameter variances to higher level functional 
requirement QMUs. There are multiple options for QMU variable choices and the methods for CF 
quantification may have to be altered based on assessment simulation and test results.  

A performance risk assessment process examines the collected set of possible failure modes, decides on 
the most likely failure modes based on available information, and considers the consequence of function 
output variation and how the functional output impacts higher level functions.  

Conclusions 
This paper has reviewed the basics of QMU analysis, the margin, QMU variable and uncertainty. QMU is 
rooted in the simple design principle that performance margins should exceed design uncertainties. The 
quantification of uncertainty should consider all potential sources both known and unknown. The 
application of QMU is based on a system engineering approach applied to functional requirements and 
their numerous potential failure modes.  

Based on QMU experiences, the following are basic QMU practice rules: 
 

1. Performance margin is defined between the means of the threshold and nominal distributions 
2. Unless documented otherwise, uncertainty is based on the RSS of one standard deviations 
3. The QMU variable should be selected from performance parameters associated with the threshold 

failure mode and be measurable, intrinsic properties. 
4. The CF is calculated at the worst possible “normal” conditions as specified in the STS. The CF does 

not take credit for the likelihood of environmental or logistical conditions. 
5. Apply conservatism to the quantification of uncertainties 
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The QMU CF metric measures the ratio of a design performance margin between nominal and threshold 
distributions over uncertainties. While there are similarities between the probabilistic reliability index 
and the QMU confidence factor, they are not the same. QMU applies a more conservative assessment 
because it considers a larger and wider range of potential uncertainty sources. Additionally, QMU does 
not assume that the distributions shapes of nominal and threshold are known. QMU assumes Gaussian 
normal distributions for convenience, one sigma uncertainty estimates, adds additional uncertainty 
terms, and considers worst possible conditions for the assessment so that meaningful and conservative 
design confidence statements can be reported. 

  



21 
 

Appendix A  

Statistics and Reliability Design Methods 
Throughout this paper, there has been a purposeful avoidance of statistics and other reliability design 
methods. While these methods can be technically challenging and powerful assessment tools, they 
distract the novice QMU practitioner from gaining the basic understanding of how QMU is applied in 
nuclear weapon stockpile stewardship. The more analytic and technical approaches to assessing 
reliability and confidence have been deferred to this Appendix. The statistical treatments presented 
here are rudimentary and without derivation. Tables and graphs are presented of simple statistical 
concepts with a purpose to show the mathematical relationship between reliability and confidence. The 
purpose here is to provide a basic information review of statistical reliability, confidence levels and 
reliability based design methods and to encourage further training and application of statistical methods 
in stockpile stewardship. These statistical basics better inform QMU statements. 

With Yogi Berra like wisdom, the French and German Science academies noted that “Probability-based 
statements are per se fraught with uncertainty” [30]. Their major point is the communication difficulties 
between science and the public. The subtle “per se” mathematical point is that reliability statements 
should be made with an associated confidence level statement and that is not always possible or 
advisable given an audience that does not have statistics training. There have been several proposals to 
create scales and standards for communicating scientific probabilities and uncertainties [31] for the 
purposes of communication consistency and clarity plus legal indemnification. A range of descriptive 
words are assigned to levels of probability with associated expectations for action. Nuclear weapon 
hazard analysis uses probability scales in screening tables [32]. Without common standards, 
communicating probabilities and statistics to an uninformed audience is counter-productive. Generally, 
statistical statements do not clarify risks and uncertainty for the public or most scientists. 

The first of six topics in this Appendix reviews how to algebraically manipulate Gaussian distributions. 
With this knowledge, the topic of First Order Reliability Methods (FORM) is introduced and it shows that 
QMU solutions are not unique, but dependent on multivariate (QMU variables) solutions. Then in the 
third topic, the CF is related to reliability, confidence level intervals and sample sizes. The fourth and 
fifth topics cover Safety factors and the Sandia National Laboratories (SNL) K Factors. The K Factor 
method is a practical methodology that can be framed in a QMU context and used in product 
development and qualification processes. It includes specifications for design reliability at a specified 
confidence level with sample size guidance for testing. Lastly, measured reliability is presented to show 
the quantity of testing necessary to demonstrate high reliability in components. This last topic segues to 
Appendix B where nuclear weapon surveillance is discussed in the context of 90% reliabilities at 90% 
confidence levels. 

Algebra of Normal Functions 
The Haugen [5] reference contains a chapter entitled “Supporting Mathematics” to provide an analytic 
approach to calculate formulas composed of statistical functions. As in the rest of this document, only 
normal distributions are considered. For a formula F=A(B+C)/D, each of the four functions A - D can be 
described with means (µa, µb, µc, µd) and standard deviations (σa, σb, σc, σd). The problem is to derive 
the mean and standard deviation of F in terms of A - D means and standard deviations. 

For the sum of two normal distributions, the addition results in a new distribution with a mean µsum and 
a standard deviation σsum (Equations A.1 and A.2). For the difference between two distributions, the 
individual means are subtracted from each other and the standard deviation is the same as A.2.  
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𝜇𝑠𝑢𝑚 = µ𝑏 + µ𝑐       (A.1) 

𝜎𝑠𝑢𝑚 = �𝜎𝑏2 + 𝜎𝑐2       (A.2) 

When two distributions are multiplied together, the new distribution mean µprod and standard deviation 
σprod are given by Equations A.3 and A.4. In similar fashion the quotient of two distributions are defined 
in A.5 and A.6. The combination of a sum, product and division provides the final result for the formula 
mean µf and standard deviation σf (Equations A.7 and A.8). 

𝜇𝑝𝑟𝑜𝑑 = µ𝑎 ∙ µ𝑠𝑢𝑚       (A.3) 

𝜎𝑝𝑟𝑜𝑑 = �𝜇𝑎2𝜎𝑠𝑢𝑚2 + 𝜇𝑠𝑢𝑚2 𝜎𝑎2 + 𝜎𝑠𝑢𝑚2 𝜎𝑎2   (A.4) 

𝜇𝑞𝑢𝑜𝑡 = µ𝑝𝑟𝑜𝑑/µ𝑑        (A.5) 

𝜎𝑞𝑢𝑜𝑡 = �𝜇𝑝𝑟𝑜𝑑
2 𝜎𝑑

2+𝜇𝑑
2𝜎𝑝𝑟𝑜𝑑

2

𝜎𝑑
4      (A.6) 

𝜇𝑓 = µ𝑎(𝜇𝑏 + 𝜇𝑐)/µ𝑑      (A.7) 

𝜎𝑓 = ��µ𝑎∙(µ𝑏+µ𝑐)�2𝜎𝑑
2+𝜇𝑑

2(𝜇𝑎2�𝜇𝑏
2+𝜇𝑐2�+(µ𝑏+µ𝑐)𝜎𝑎2+�𝜇𝑏

2+𝜇𝑐2�𝜎𝑎2)
𝜎𝑑
4   (A.8) 

 

First Order Reliability Methods 
The First and Second Order Reliability Methods, FORM and SORM respectively are analytic methods to 
solve complex multivariate design problems. The methodology is powerful because it is a means to 
perform design trade optimizations. The CF formula (Equation 1) defines a limit state function g for the 
margin between two normally distributed probability density functions Threshold T and Nominal N 
(Equation A.9). The failure probability Pf is defined (Equation A.10) when the limit state function is less 
than zero. The notation g(∙) ≥ 0 denotes the failure surface to a safe region of probability.  

𝑔(𝑋,𝑌) = 𝑇(𝑋) −𝑁(𝑌)       (A.9) 

𝑃𝑓 = 𝑃[𝑔(∙) < 0]        (A.10) 

Per the QMU method, the CF is defined by Equation 4 given knowledge of the mean and standard 
deviations. As the complexity (nonlinearity) of limit state functions increase, they do not necessarily 
possess unique Most Probable failure Points (MPP). In the following example taken from Choi [10], it is 
possible to show in a relatively simple beam problem that different CFs are obtained when two 
equivalent limit state functions are solved. Said differently, the QMU variable selection can alter the 
MPP CF. 
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A simply supported beam, length L is loaded at its midpoint with a load Q. The beam plastic section 
modulus is W and the beam yield strength is T. All four variables have independent and normal 
distributions with known means and standard deviations (Table A.1). Two different, but equivalent, limit 
state (QMU variable) functions define the distribution for nominal loading and threshold failure. The 
first limit state function is based on the beam moment (Equation A.11) and the second is based on the 
yield strength (Equation A.12). 

𝑔1(𝑄, 𝐿,𝑊,𝑇) = 𝑊𝑇 − 𝑄𝐿
4

      (A.11) 

𝑔2(𝑄, 𝐿,𝑊,𝑇) = 𝑇 − 𝑄𝐿
4𝑊

      (A.12) 

 µ σ 
Q 10 kN 2 kN 
L 8 m 0.1 m 

W 100 × 10-6 m3 2 × 10-5 m3 
T 600 × 103 kN/m2 1 × 105 kN/m2 

Table A. 1 Beam property distribution data 

 
Using the algebra of normal functions, the following solutions are obtained for g1 and g2 CFs. The two 
results are considerably different which raises doubts regarding the certainty of knowing if the minimum 
CF represents an MPP solution.  
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    (A.13) 

𝐶𝐹𝑔2 =  𝜇𝑔2
𝜎𝑔2

=  
𝜇𝑇−

𝜇𝑄𝜇𝐿
4𝜇𝑊

1
4�16𝜎𝑇
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4       (A.15) 

𝐶𝐹𝑔1 =  40.00
16.25

=  2.46         (A.16) 

𝐶𝐹𝑔2 =  400×103

115×103
=  3.48         (A.17) 

Invariant solution methods to these problem types are found in the work of Hasofer and Parkinson [33, 
34] outlined below. They require the probability distributions be transformed into standard normalized 
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random variables (Equations A.19) and then the limit state function is mapped into a normalized 
coordinate system (Equation A.22). 

𝑔(𝑋) =  𝑔({𝑥1, 𝑥2, … 𝑥𝑛}𝑇) = 0      (A.18) 

𝑢𝑖 =  
𝑥𝑖−𝜇𝑥𝑖
𝜎𝑥𝑖

           (A.19) 

𝑈 =  {𝑢1,𝑢2, …𝑢𝑛}𝑇          (A.20) 

In this way, the CF becomes the solution to a constrained optimization in a standardized normal space. 
The solution of U represents the MPP. 

Minimize: 𝐶𝐹(𝑈) = (𝑈𝑇𝑈)1 2�        (A.21) 

Subject to: 𝑔(𝑈) = 0        (A.22) 

Iterative solution methods are then employed using first or second order Taylor series expansions. 

𝑔�(𝑈) = 𝑔(𝑈∗) + ∇𝑔(𝑈∗)𝑇(𝑈 − 𝑈∗) + 1
2

(𝑈 − 𝑈∗)𝑇∇2𝑔(𝑈∗)(𝑈 − 𝑈∗) (A.23) 

This approach to QMU CF problem solving is different from methods in current practice. The method 
outlined requires an analytic expression for the limit state function and the variables therein represent 
distributions. Given the extra complications that arise from distributions that are not Gaussian it is 
difficult to imagine this method applied to the solution of limit state functions modeled with complex 
numerical simulations. The more important point is that with current QMU methods, the calculated CF is 
likely not the MPP solution.  

Reliability and Confidence Levels  

Predicted Reliability 
The probability of failure can be related to the CF using Equation A.24. The reliability is R, and Φ is the 
cumulative density function.  

𝑅 = Φ(𝐶𝐹)        (A.24) 

The two graphs in Figure A.1 show reliability versus CF for a Gaussian normal distribution. In the left 
graphic, a 50/50 reliability corresponds to a zero CF and zero M. As CF gets above 3, the reliability is 
expressed in terms of how many 9’s follow the decimal place. The right figure plots with a logarithmic 
reliability axis showing the quantity of 9’s. For example, at CF=6, the reliability is 0.99 or 0.999999999. 
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Figure A.1: Predicted reliability versus CF 

The figure caption above labels the curve predicted reliability because for most QMU assessments, the 
M and U is estimated and is not based on actual statistical test data. When performing reliability testing, 
the sample number size is the key parameter to defining the confidence level of the statistical 
probability.  

Mean Confidence Interval 
When estimating the mean of a sample population with an assumed Gaussian normal distribution and 
unknown standard deviation, it is possible to define a bounding range for the mean using the t statistic. 
In the lookup of t values, the confidence level is�𝛼

2
, 1- 𝛼

2
�,  and 𝜈 is the degrees of freedom, n-1. The true 

mean is µ.  𝑋� is the measured mean and S is the measured standard deviation (Equation 7). 
Equation A.25 defines the mean confidence bounding interval. 

𝑋� − 𝑡�𝛼2,𝜈� �
𝑆
√𝑛
� ≤ 𝜇 ≤ 𝑋� + 𝑡�1−𝛼2,𝜈� �

𝑆
√𝑛
�   (A.25) 

For the threshold distribution in Figure A.1, assuming a sample size of 20, the 95% (α = 0.05) mean 
confidence level interval is (2.53, 3.47). Table A.2 below is a small excerpt of t data at 95 and 99% 
confidence levels. It is worthwhile to note that past 30 sample points, the t data does not vary 
significantly, so that the bounds are narrowing mostly as the result of the 1

√𝑛
 term. Figure A.2 shows the 

trending of the mean with sample size for two confidence levels.  

�3 − 2.09 ∙ � 1
√20

� , 3 + 2.09 ∙ � 1
√20

� � = (2.53, 3.47)   (A.26) 
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Table A.2: t Statistic Data 

𝜈 
n-1 

n1+n2-2 

�1 − 𝛼
2
� = 

0.995 
𝛼
2

= 0.005 

�1 − 𝛼
2
� = 

0.975 
𝛼
2

= 0.025 
4 4.604 2.776 
9 3.250 2.262 

19 2.861 2.093 
30 2.750 2.042 
60 2.660 2.000 

100 2.626 1.984 

Figure A.2: Mean Interval curves versus Confidence Levels (CL) and sample size 

Variance Confidence Interval 
Bounding variances, based on a confidence level interval �𝛼

2
, 1- 𝛼

2
�, for a sample size n are calculated 

using Equation A.26. 𝒳2 is a statistical function. When the standard deviation σ is estimated from a 
sample, it is denoted with an s. Table A.3 below is a small excerpt of 𝒳2 data for 95 and 99% confidence 
levels.  

(𝑛−1)𝑠2

𝒳𝛼
2

2(𝑛−1)
≤ 𝜎2 ≤ (𝑛−1)𝑠2

𝒳
1−𝛼2

2 (𝑛−1)
     (A.26) 
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The confidence interval for the standard deviation is the square root of the variance. For the nominal 
distribution shown in Figure 1 with a standard deviation of 1, the 95% confidence interval for the 
standard deviation with a sample size of 20 is between 0.76 and 1.46. Figure A.3 shows the variance 
trending of the example confidence interval with sample size for two levels of confidence α. Note the 
asymmetric differences in the upper and lower bounds and that sample size has a more pronounced 
effect on the upper confidence level bounds. 

��19 ∙1
32.85

,�19 ∙1
8.91

� = (0.76, 1.46)     (A.27) 

Table A.3: Chi Squared statistical data 

𝜈 
n-1 �1 − 𝛼

2
� = 0.995 �1 − 𝛼

2
� = 0.975 

𝛼
2

= 0.025 𝛼
2

= 0.005 

4 0.207 0.484 11.143 14.860 
9 1.735 2.700 19.023 23.589 

19 6.844 8.907 32.852 38.582 
30 13.787 16.791 46.979 53.672 
50 27.962 32.348 71.424 79.512 

100 67.312 74.216 129.565 140.179 

 

Figure A.3: Standard deviation interval curves versus Confidence Levels (CL) and sample size 
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Margin Confidence Interval 
The statistical method used to test if two independent, normally distributed samples are the same is to 
compute a confidence interval on the difference between their means. This method is testing if two 
independent distributions have a statistical difference. For example, are the heights of men and women 
statistically different? Stated differently, is there a positive margin between the heights of men and 
women. If the lower and upper bounds straddle zero, then the hypothesis is false at a specified 
confidence level. 

There are methods for large and small sample sizes and the solution shown in Equation A.28 is for small 
sample sizes of n1 and n2. The measured margin 𝑀�  equals the difference in measured means 𝑋�1 and 𝑋�2. 
A key assumption is that the measured standard deviations, s1 and s2, for the two distributions are 
similar in magnitude. A single variance is used to calculate the mean difference confidence interval so 
the variance is called a pooled variance sp (Equations A.28 and A.29). Likewise, degrees of freedom 
(Equation A.30) used in the t statics data is also pooled.  

𝑀� − 𝑡�𝛼2,𝜈�𝑠𝑝�
1
𝑛1

+ 1
𝑛2
≤ (𝜇𝑇 − 𝜇𝑁) ≤ 𝑀� + 𝑡�1−𝛼2,,𝜈�𝑠𝑝�

1
𝑛1

+ 1
𝑛2

  (A.28) 

𝑠𝑝 = �(𝑛1−1)𝑠12+(𝑛2−1)𝑠22

𝜈
        (A.29) 

𝜈 = 𝑛1 + 𝑛2 − 2        (A.30) 

Using the nominal distributions shown in Figure 1 with margin M equal to 5, and standard deviations of 
1, the 95% confidence interval for the margin with sample sizes of 20 and 12 is between 4.00 and 6.00. 
Like the t distributions for the mean confidence interval plot of Figure 7, similar t distribution bounding 
trends occur for the margin confidence interval. 

�5 − 2.75 ∙ 1 ∙ � 1
20

+ 1
12

, 5 + 2.75 ∙ 1 ∙ � 1
20

+ 1
12
� = (4.00, 6.00) (A.31) 

 

Safety Factors and Reliability Design 
Designing by Safety Factors (SF) is the most common mode by which engineers employ metrics to 
ensure that designs do not fail [35]. Designing for reliability requires extra steps that involve greater 
knowledge of the loading and failure distribution. This is especially true for small population designs 
where reliability cannot be tested or inspected [36]. 

Consider the case of a stressed part where the material failure strength exceeds the nominal stress by 
some ratio greater than one. Let the SF equal the ratio of the means of threshold strength to nominal 
stress 

𝑆𝐹 = 𝜇𝑇
𝜇𝑁

.          (A.32) 
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Next, the Confidence Factor equation (4) is rearranged in terms of the safety factor above and 
coefficients of variation, equation (9) [4]. 

𝐶𝐹 = 𝑆𝐹−1

�𝜂𝑁
2 +𝑆𝐹2𝜂𝑇

2
         (A.33) 

From inspection of Equation A.33, the sensitivity of the CF equally depends on the SF and the 
coefficients of variation 𝜂𝑁 and 𝜂𝑇. In Figures A.4 and A.5 below, the CF is converted to design reliability 
(A.24), and 𝜂𝑇 is assumed to be 0.05 and 0.15 so that two plots are created showing variations in 
reliability, SF and 𝜂𝑁. The previous notation of the quantity of nines is used to denote reliability. For 
instance, R = 0.95 is the same as 0.99999. As a means to explain and compare these plots, consider that 
when both 𝜂𝑁 and 𝜂𝑇 equal 0.05, there is 0.97 reliability for a SF of just 1.5 (Figure A.4). When 𝜂𝑁 and 𝜂𝑇 
variations increase to 0.15 each, reliability drops to 0.95 and the SF must increase to 3.0 (Figure A.5). The 
singular increase of 𝜂𝑇 from 0.05 to 0.15 greatly spreads the reliability curves apart. 

 

 

Figure A.4: Reliability, Safety Factors and the coefficient of Nominal variation for a 0.05 coefficient of 
Threshold variation 

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

 r = 0.9
r = 0.999
r = 0.9 5
r = 0.9   7

R = 0.9 
R = 0.93 
R = 0.95 
R = 0.97 

Safety Factor 

𝜼𝑻  = 0.05 

𝜼 N
 

Increasing r 



30 
 

 

Figure A.5: Reliability, Safety Factors and the coefficient of Nominal variation for a 0.15 coefficient of 
Threshold variation 

This examination of SF and CF shows what is intuitively obvious to scientists and engineers: variations in 
parameters that affect SF and CF are significant and they will have large impacts to design reliability. 
Designing for reliability requires consideration of coefficients of variability. When 𝜂𝑁 and 𝜂𝑇 are small 
(close to 0.05), then very high reliability is achieved and reliability is relatively insensitive to SF. It is when 
variations are larger that significantly large SFs are needed to achieve equivalent reliability.  

Sandia K Factors 
The development of a k-factor design approach at SNL traces to a 1963 monograph by D.B. Owen [37]. 
The monograph uses a simplified performance margin to define reliability. The margin is the distance 
between the mean of a nominal distribution to a constant failure threshold level L (Figure A.6). The 
figure shows a yellow region of failure to the left of the threshold value L. The probability is obtained 
from a one-sided t distribution Table A.1 [9]. From this direct approach to failure prediction, SNL defines 
a methodology whereby a relationship is established between k-factors (measure of reliability), testing 
sample sizes and confidence levels. The caution to note in this approach is the use of a singular 
threshold level L. This threshold value should be based on reliability and confidence levels that 
correspond to the required nominal performance reliability and confidence level. 

The k-factor (Equation A.35) is the reliability measure that the nominal performance distribution 
exceeds a failure threshold. It is similar to the CF, with the major difference that a threshold constant 
replaces a threshold distribution. There is no threshold distribution tail to intersect the nominal 
distribution tail. 

𝑘 = 𝜇𝑁−𝐿
𝜎𝑁

         (A.35) 
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Figure A.6: Design Margin in a K-Factor analysis 

From the previous confidence limit example plots, the interval limits are asymptotic at large n. Table A.4 
shows the lower 90% confidence level bound k values versus sample size and reliability [37, 38]. For 
infinite sample sizes, the table is providing a minimum lower bound on the k value for an assumed 
confidence level (bottom row).  

Table A.4: Lower Bound k factors2 corresponding to 90% confidence level at given reliabilities 

Sample 
Size n 

Reliability 
0.95 

Reliability 
0.99 

Reliability 
0.999 

5 3.5987 4.9528 6.4951 
10 2.6019 3.5818 4.6966 
15 2.3443 3.2352 4.2470 
20 2.2172 3.0661 4.0289 
30 2.0850 2.8917 3.8051 

200 1.7941 2.5152 3.3269 
∞ 1.6452 2.3268 3.0905 

 
A look down the columns of Table A.4 shows a powerful relationship, useful for design purposes. The 
lower confidence bound for k is proportional to 1/√𝑛 (Figure A.7). To make use of this relationship, the 

                                                           
2 The k factors have formula approximations [38, 39]. 
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lower bound k factor for an infinite amount of test data, k∞ is utilized to define a k Margin, Equation 
A.36. The observed k factor is calculated from test data. With sample size n, an observed nominal mean 
and standard deviation (Equations 7 and 8) are calculated and then used in Equation A.35 to calculate 
kObs. From a designers’ perspective, the as-designed k factor, kDes should be sufficiently large so that 
when tested with n samples, the observed k factor is larger than k∞. Thus, k∞ is selected based on design 
requirements. As an example using Table A.4, if there is a design requirement for 0.99 reliability at a 
90% confidence level, then k∞ is 2.3268. Theoretically, making a design with k equal to 2.3268 would be 
sufficient, but then it might be prohibitively expensive (infinite testing) to prove that the reliability 
requirement will be met. On the other hand, designing to kDes equal to 3.6 establishes a k Margin of 
1.2732 (3.6-2.3268). If the design is tested with 15 samples and the kobs is greater than 3.2352, then the 
design meets the reliability and confidence requirements stated above.  
 
Furthermore, three cells in Table A.4 are highlighted blue to show that with a design that has kDes equal 
to 3.6, three different statistical statements can be made. With 5 tests and kObs > 3.5987, the design is 
95.0% reliable at a 90% Confidence Level. With 15 tests and kObs > 3.2352 the design is 99.0% reliable at 
a 90% Confidence Level. Finally, with 200 tests and kObs > 3.3269 the design is 99.9% reliable at a 90% 
Confidence Level. There is an important risk versus cost tradeoff in this example. Testing quantities are 
usually the cost driver (building and expending hardware). The risk is making a successful design to a 
specification of kDes equal to 3.6. Designing in a k margin mitigates design uncertainty so that fewer tests 
are necessary to demonstrate reliability and confidence level requirements. 
 

 
Figure A.7: Lower bound k factors for reliability at a 90% Confidence Level versus sample size n 

 
𝑘𝐷𝑒𝑠 − 𝑘∞ ≥ 𝑘_𝑀𝑎𝑟𝑔𝑖𝑛 = 𝑘𝑂𝑏𝑠 − 𝑘∞    (A.36) 
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A bounding formula for the number of tests necessary to demonstrate reliability is derived from the the 
1/√𝑛 trend to the statistical data of Table A.4 and the k_Margin (Equation A.37). With rearrangement, 
Equation A.38 defines the number of tests necessary show that a design meets reliability and confidence 
level requirements. Because this formula, like Table A.4 represents a lower bound k factor, the number 
of tests should always be rounded up to the next highest integer. The formula is also useful because it 
shows that for small k_Margin designs, sample sizes will have to be large. Figure A.8 plots the 
relationships of Equation A.38. The proportionality constant 1.2 fits the data and is applicable for the 
problem types (similar Confidence Levels and Reliabilities). 

�1.2
𝑛

= 𝑘𝑂𝑏𝑠−𝑘∞
𝐾𝑂𝑏𝑠

= 𝑘_𝑀𝑎𝑟𝑔𝑖𝑛
𝐾𝑂𝑏𝑠

       (A.37) 

𝑛 = 1.2 � 𝑘𝑂𝑏𝑠
𝑘_𝑀𝑎𝑟𝑔𝑖𝑛

�
2

        (A.38) 

 
Figure A.8: k_margin versus sample size at the 90% Confidence Level 

As a final k factors observation, the method is powerful because it provides a rational way to predict 
reliability and establish a confidence level plus significantly reduce test quantities. This is only possible 
because it is predicated on predictable designs with measurable k factors. In essence, designing a large 
performance margin ensures a large k factor and that results in high reliability. It is possible to reduce 
testing quantities with known high margin designs.  
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Measured Reliability 
The previous section utilizes design based k factors and small sample size testing to predict and 
observe/measure reliability. In this section, a purely data driven approach is taken to measure and prove 
reliability. For component reliabilities where there is a presumption of low failure rate 𝑃�, with a discrete 
binomial distribution, and a large sample size n, a conservative Upper Confidence Limit (UCL) C, estimate 
can be made using the Maximum Likelihood Estimate (MLE) (Equation A.39) [40]. The reliability R equals 
1-𝑃�, so the Reliability can be redefined and simplified in terms of confidence C (Equation A.39). A plot of 
failure rate probability (Figure A.9) clearly shows how measuring and proving high reliability and high 
confidence demands large scale testing and even larger (5-10X) total populations. The testing requires 
random draws from the population and if the tested population is large relative to the total population 
(10-20%) then a hypergeometric distribution assumption is applicable [41].  

𝑃� = 1 − (1 − 𝐶)1 𝑛�         (A.39)  
𝑅𝑛 = 1 − 𝐶          (A.40) 

 

 

Figure A.9: Reliability testing requirements with no failures for various Confidence levels 

Reliability is calculated at the 50% Confidence Level for nuclear weapons [20]. At a reliability level of R = 
0.999, the required sample size is 693 tests without failure. If a failure occurs the reliability is calculated 
by dividing the number of failures by the number of tests. Note that calculating reliability at the 50% 
confidence level assumes ~0.7 failures have occurred. For example, if a failure occurred on the 693rd test 
for a component that required 0.999, the reliability would change from 0.999 to 0.9986, a decrease of 
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(only) 0.0004. However, in order to regain the required reliability, an additional 307 tests (1000 – 693) 
are necessary without failure.  

Reliability was previously calculated at the 90% Confidence Level for nuclear weapons.  For this same 
component, previously 2301 tests would have been required. Another view is that given 693 successful 
tests, the reliability is 0.999 at the 50% Confidence Level and 0.9967 at the 90% Confidence Level.  The 
sample size decreases substantially as the Confidence level decreases. For example, given a 1000 sample 
size, the reliability is 99.99, 99.93 and 99.77% for Confidence levels of 10, 50 and 90% respectively. 

LLNL3 will sometimes utilize a combination of predicted and measured reliabilities to assess component 
reliability.  It was previously mentioned that system reliability calculations use logic diagrams to 
construct formulas to calculate the overall system reliability. This same approach is taken at a 
component level using Equation A.41.  The component reliability is the product of component QMU 
confidence factor reliability RCF defined by Equation A.24 and the Dud failure rate defined in Equation 
A.39.  The first term is predicted while the second term is measured.  This is a conservative bounding 
approach that uses what we measure and know and what is grounded in our QMU prediction. 
Depending on the complexity of the component, more reliability terms can be added to represent the 
full component functionality.  For this two-term reliability estimate, there are two important 
observations.  The formula works best for high confidence designs (CF > 4) and it is conservative for 
designs with moderate to low confidence.  For high CFs, the reliability RCF has many 9s so the dud failure 
rate dominates.  In this case, the failure rate depends on the quality of component fabrication. For the 
moderate to low CF cases, the dud failure rate may not be independent of failures due to design QMU. 
Hence, failures due to design might be double counted, resulting in a lower than actual reliability.  

𝑅 = 𝑅𝐶𝐹�1− 𝑃�𝐷𝑢𝑑�        (A.41) 

  

                                                           
3 Zoher Chiba at LLNL developed the QMU confidence factor with duds approach for reliability reporting 
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Appendix B  

Surveillance Reliability and Confidence Sampling 
The purpose of this Appendix is to provide a cursory explanation (not justification) for Nuclear Weapon 
Surveillance test quantities during the different weapon lifecycle phases. The NNSA surveillance 
requirements are defined in the Development and Production Manual [42]. Overall, surveillance is 
commonly referred to as the New Material Stockpile Evaluation Program (NMSEP), and it is divided into 
two phases, New Material and Stockpile Surveillance. New Material surveillance applies to new weapon 
systems. For stockpile systems that may undergo extensive retrofits or LEP re-acceptance and reuse, the 
program of surveillance for these units is referred to as Retrofit Evaluation System Test (REST).  
 
During weapon production, the majority of the sampling activity consists of random Disassembly and 
Inspection (D&I) sampling followed by re-builds of the units. The sampling rate is defined by a 90/95 
rule. The objective is to achieve a 90% probability P of sampling an effective unit rate R of 95% (5% 
defect rate), i.e., P/R. The second phase of NMSEP is the Stockpile Surveillance program and which 
begins 2 years after the start of production. In this phase, the sampling rate is defined by a 90/90/2 rule. 
Here again, the objective is to achieve a 90% probability of sampling an effective unit rate of 90% in a 2 
year period. 
 
Table B.1 [42] shows the sample sizes n. A cumulative sample quantity of NT1/2 units is selected during T 
years of New Material production. T is in the units of years and N is the total production quantity plus 
the number of units rebuilt during the production period. What is remarkable about these sample sizes 
is that for the smaller populations, a large fraction of the population gets D&I surveillance. The first year 
of production surveillance does twice the surveillance amount as any subsequent year of new build 
surveillance. The major purpose of New Material surveillance is to detect and correct birth defects. 
 

Table B.1: 90/95 Sample Sizes (90% chance that sample will allow detection of a 5% defect) 

POPULATION SAMPLE 
SIZE (n) 

POPULATION SAMPLE 
SIZE (n) 

POPULATION SAMPLE 
SIZE (n) 

20-21 14 53-56 25 156-177 36 

22-23 15 57-62 26 178-205 37 

24-25 16 63-67 27 206-241 38 

26-28 17 68-74 28 242-288 39 

29-31 18 75-81 29 289-355 40 

32-33 19 82-89 30 356-457 41 

34-37 20 90-99 31 458-629 42 

38-40 21 100-110 32 630-982 43 

41-44 22 111-122 33 983-2130 44 

45-47 23 123-137 34 2131- 45 

48-52 24 138-155 35   
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Table B.2 [42] shows the sample sizes n over a 2 year period based on a 90/90/2 rule. The surveillance 
activities include D&Is, destructive and nondestructive laboratory evaluations, and flight testing. What is 
again remarkable about Table B.2 is that for small populations, a large fraction of the population is 
tested. For the smallest population, one quarter of the stockpile would be disassembled and assembled 
each year? In practice, the warhead populations tend to the larger population sizes  
 

Table B.2: 90/90/2 Sample Sizes (90% chance that sample will allow detection of a 10% defect in 
two years) 

POPULATION SAMPLE 
SIZE (n) 

POPULATION SAMPLE 
SIZE (n) 

POPULATION SAMPLE 
SIZE (n) 

20-23 11 41-48 15 103-145 19 

24-27 12 49-60 16 146-234 20 

28-33 13 61-77 17 235-531 21 

34-40 14 78-102 18 532- 22 
 
Equation B.1 defines the P/R formula which is the basis for NNSA sample quantities. N is the total 
population size and n is the sample size. In the use of this formula, only the total population N is 
relatively fixed. The true weapon reliability R is an unknown defect fraction that changes over the 
weapon lifecycle. An objective in the surveillance sampling strategy is to detect aging related changes 
and to predict weapon reliability as it may change. The probability of detecting the defect fraction will in 
the end depend most on the sample size n. 

1 − 𝑃 = ∏ (𝑅𝑁−𝑖)
(𝑁−𝑖+1)

𝑛
𝑖=1        (B.1) 

 

It is the authors opinion that the use of a sampling period “/2” is misleading because it is an 
accumulative probability of detecting defects. When viewed on solely on a yearly basis, the probability 
of detection drops significantly. It easy to show that if the sampling quantity is reduced, while 
overcompensating with an increased detection period that the detection probability increases. This 
counter-intuitive result is confusing and sends out the wrong signals to external customers. 

The P/R formula has 4 independent inputs (n, N, P, R) with a single constraint of n < N. Figure B.1 plots 
probability versus sample size with a fixed population of 200. Figure B.2 is the same but with a 
population increased to 2000. For reliabilities near 90%, the two sets of results are quite similar. Only 
the plot of 99% reliability significantly changes. A “standard” weapon surveillance sample quantity is 22 
units over a year period. From the figures, this corresponds to the 90/90/2 rule. At n = 22, that 
corresponds to 70% probability at R = 0.95, or 98% probability at R = 0.85. To achieve 95% probability at 
R = 0.95 requires a doubling of the sample rate. It is fairly concluded that 90/90/2 at n = 22 represents a 
balance in reliability and probability for a reasonable sample size. 
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Figure B.1: Probability versus Sample Size for a small population

 

Figure B.2: Probability versus sample size for a large population 

0
10
20
30
40
50
60
70
80
90

100

0.50 0.60 0.70 0.80 0.90 1.00

Sa
m

pl
e 

Si
ze

  

Probability 

0.85
0.90
0.95
0.99

Reliability Pop. N = 200 

0
10
20
30
40
50
60
70
80
90

100

0.50 0.60 0.70 0.80 0.90 1.00

Sa
m

pl
e 

Si
ze

  

Probability 

0.85
0.90
0.95
0.99

Reliability Pop. N = 2000 



39 
 

In the previous figures, the population size had a relatively small effect around 90/90. A different way to 
view the sample size is by the fraction of the total population sampled (Figure B.3). A key surveillance 
decision is what fraction of the total population should be tested over the total stockpile period? Per 
Figure B.3 and assuming 11 units per year lifetime, the maximum number of surveillance cycles is 18 and 
45 for the blue and red curves respectively.  

 

Figure B.3: Probability versus sample population fraction 

Finally, it is helpful to understand the relationship between probability of detection and reliability 
inherent within the P/R formula. Figure B.4 shows that detection probabilities span from 0 to 100% over 
the short range of 80 to 100% reliabilities. The plots are entirely insensitive to population sizes between 
200 and 2000.  
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Figure B.4: Surveillance probability versus reliability 

A common question asked in nuclear weapon surveillance is “What is the impact of doing less 
surveillance?” The response, especially if it is statistically based is usually less than satisfactory. Figure 
B.5 shows two prominent probability effects based on sample sizes and sampling periods. The solid 
green line represents “standard” surveillance: 22 units over a 2 year period yielding a 90% probability of 
detecting a 10% defect fraction. If the number of surveillance units decreases to 18 and 14 units, the 
corresponding probabilities (holding R fixed) decrease by 5% and 13% to 85% and 77% respectively. On 
the other hand, if the “standard” surveillance is restated as 11 units per year with a consistent 10% 
defect fraction, then the probability of detection in one year decreases to 69%. The dashed lines in the 
plot show the consequence of decreased detection periods. The purple curve shows the special case 
where the yearly surveillance rate is decreased to 9 units per year and the detection period is increased 
to 3 years. In this comparison to “standard” surveillance, the probability of defect detection increases 
from 90 to 94%, while doing less. 

A remedy to the P/R inconsistency of surveillance periods is to always report the yearly detection rate 
and then to provide a cumulative probability of detection that spans the weapon lifetime. 
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Figure B.5: Stockpile size versus probability 
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