
 LLNL-JRNL-652576

Fixed-Rate Compressed
Floating-Point Arrays

P. Lindstrom

April 2, 2014

IEEE Transactions on Visualization and Computer Graphics

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Fixed-Rate Compressed Floating-Point Arrays

Peter Lindstrom, Senior Member, IEEE

(a) 1 bit/double (b) 4 bits/double (c) 64 bits/double (no compression)

Fig. 1: Interval volume renderings of compressed double-precision floating-point data on a 384 × 384 × 256 grid. At 4 bits/double
(16x compression) the image is visually indistinguishable from full 64-bit precision.

Abstract—Current compression schemes for floating-point data commonly take fixed-precision values and compress them to a
variable-length bit stream, complicating memory management and random access. We present a fixed-rate, near-lossless compres-
sion scheme that maps small blocks of 4d values in d dimensions to a fixed, user-specified number of bits per block, thereby allowing
read and write random access to compressed floating-point data at block granularity. Our approach is inspired by fixed-rate texture
compression methods widely adopted in graphics hardware, but has been tailored to the high dynamic range and precision demands
of scientific applications. Our compressor is based on a new, lifted, orthogonal block transform and embedded coding, allowing each
per-block bit stream to be truncated at any point if desired, thus facilitating bit rate selection using a single compression scheme. To
avoid compression or decompression upon every data access, we employ a software write-back cache of uncompressed blocks. Our
compressor has been designed with computational simplicity and speed in mind to allow for the possibility of a hardware implemen-
tation, and uses only a small number of fixed-point arithmetic operations per compressed value. We demonstrate the viability and
benefits of lossy compression in several applications, including visualization, quantitative data analysis, and numerical simulation.

Index Terms—Data compression, floating-point arrays, orthogonal block transform, embedded coding.

1 INTRODUCTION

Current trends in high-performance computing point to an exponential
increase in core count and commensurate decrease in memory band-
width per core. Similar bandwidth shortages are already observed for
I/O, inter-node communication, and between CPU and GPU memory.
This trend suggests that the performance of future computations will
be dictated in large part by the amount of data movement. Moreover,
with large data sets often being generated remotely, e.g. on shared
compute clusters or in the cloud, the cost of transferring the results
of the computation for visual exploration, quantitative analysis, and
archival storage can be substantial.

This increase in compute power has also led to a new challenge in
visualization: with insufficient I/O bandwidth to store the simulation
results at high enough temporal or spatial fidelity for off-line analysis,
in situ visualization is needed that runs in tandem with the simulation.
Here the visualization has to compete with the simulation for the same
memory and bandwidth resources, putting further strain on the system.

One approach to alleviating this data movement bottleneck is to re-
move any redundancy in the data, e.g. using data compression. With
abundant compute power at our disposal, using otherwise wasted com-
pute cycles to compress the data makes sense if it can be done quickly
enough to feed the compute-starved cores. However, for scientific ap-
plications that predominantly work with large arrays of floating-point
numbers, lossless compression affords only modest data reductions.

• Peter Lindstrom is with the Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory. E-mail: pl@llnl.gov.

Prepared by LLNL under Contract DE-AC52-07NA27344.

Manuscript received 31 Mar. 2014; accepted 1 Aug. 2014; date of
publication xx xxx 2014; date of current version xx xxx 2014.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

Lossy compression has long been accepted in computer graphics,
for instance for reduced storage of textures, and dedicated hardware
for texture de-compression is now common in GPUs and mobile de-
vices [1]. Such compressed formats and related efforts in visualiza-
tion on rendering from compressed storage [12, 15, 41] have primar-
ily been motivated from the standpoint of preserving visual fidelity,
whereas quantitative analysis and numerical simulation place stricter
requirements on tolerable errors. Moreover, these techniques tend to
be highly asymmetric, with compression speed sacrificed in favor of
as-fast-as-possible decompression. However, many tasks in visual-
ization require online computation of derived fields, while simulation
evolves fields over time. Both are uses cases where compressed reads
cannot happen without prior compressed writes.

The goal of this work is to develop a compressed floating-point
array primitive, analogous to compressed textures, that supports fast
compression and decompression, but tailored to the high-precision,
numerical data common in science and engineering applications. To
be effective, we require lossy compression. We note that while this
may seem a controversial proposition, there is nothing “magic” about
the 64-bit precision currently used. As we will show, many visualiza-
tion and simulation tasks can cope with far less precision—and even
fewer bits per value, by using compression.

A major obstacle to be cleared first is the support for random access.
Current lossy compression methods have primarily been designed to
produce the shortest bit stream possible using variable-length coding,
and as a result do not easily handle random access, especially when
the compressed stream has to be updated whenever the data is modi-
fied. Even methods like Samplify’s APAX compressor [48] that have
some support for fixed rate achieve this only via a feedback loop that
periodically adapts the level of compression, and likewise don’t sup-
port random access.

To respond to these needs, we present a fixed-rate compression
scheme that supports random read and write access to d-dimensional
floating-point arrays at the granularity of small blocks of 4d values
(e.g. 4 × 4 × 4 values in 3D). Our compressed array primitive is
wrapped by a C++ interface that to the user appears like a regular lin-
ear or multidimensional array, and which uses a software cache, whose
size can be specified by the user, under the hood to limit the frequency
of compression and decompression. The resulting C++ class can be
substituted into applications very easily with minimal code changes,
thus reducing the memory footprint and bandwidth consumption, or
increasing the size of arrays that can fit in memory. We show that
while currently executed in software, our compressed array incurs only
a minor performance penalty in visualization applications.

Although the main ingredients of our compressor—orthogonal
block transform and embedded coding—are not new ideas, each stage
of the compressor has been carefully designed to achive high speed,
implementation simplicity, symmetric performance, SNR scalability,
fine bit rate granularity, and the level of quality demanded by applica-
tions that process single- or double-precision data, such as quantitative
data analysis, visualization, and numerical simulation. Moreover, our
design is simple in order to accommodate a hardware implementation.
At up to 400 MB/s throughput, our software codec is an order of mag-
nitude slower than per-core memory bandwidth, but virtually instant in
relation to current I/O rates. Part of its speed is due to a new, simplified
block transform that has an elegant lifted implementation, and which
we believe will have applications beyond floating-point compression.

To our knowledge, this is the first solution that serves as a general-
purpose compressed representation of floating-point arrays, that sup-
ports both efficient, fine-grained read and write access enabled by
fixed-rate compression, and that allows the user to specify the exact
number of bits to allocate to each array.

2 PREVIOUS WORK

We here review current state of the art in compression of floating-point
data, as well as related work on fixed-rate compression of images.

2.1 Lossless floating-point compression
The majority of work on compression of double-precision data has fo-
cused on lossless compression, justifiably so as such precision is most
often used in situations that demand accuracy. With few exceptions,
these methods use linear prediction and encode the smaller residuals
using some variant of non-statistical [5, 9, 39] or statistical [14, 21, 30]
variable-length codes (e.g. entropy codes). The methods by Burtscher
and co-workers [5, 39] are notable in that they rely on hash functions
to extract non-linear relationships. The issue of what makes a good
predictor has been further explored by Fout and Ma [13]. Although
important in many applications, lossless methods rarely achieve more
than 1.5x compression on double-precision data, and therefore have
only limited impact on bandwidth reduction.

2.2 Lossy floating-point compression
The idea of using compression to effectively increase bandwidth [49]
and the amount of data that can be stored in memory for visualiza-
tion is at least two decades old [14, 35, 45]. Like the pioneering
work of Ning and Hesselink [35], Schneider and Westermann [41]
proposed a lossy compression method based on vector quantization
(VQ) to render volume data directly from compressed storage. While
supporting random access reads, generating good VQ codebooks on
the fly can be expensive, and VQ is not easily amenable to rate con-
trol. Several related efforts have focused on volume rendering from
compressed storage [11, 15, 31], primarily with the goal of minimiz-
ing the perceptual error in rendered images, and with the assump-
tion of compress-once, read-only access. These approaches are pre-
dominantly asymmetric, with fast decompression but slow compres-
sion [12]. Our scheme bears some resemblance to the DCT-based
coders of Yeo and Liu [50] and Laurance and Monro [28], but uses
smaller blocks for more fine-grained access and a more efficient trans-
form and coding scheme, while also supporting fixed-rate coding to
enable random-access writes.

The majority of these prior methods have proven effective in vol-
ume rendering applications by exploiting the data access pattern (e.g.
as slices), limited data precision (e.g. 8 bits), an anticipated transfer
function, or the need for perceptually but not necessarily numerically
accurate results [8]. It is, however, unknown how these methods would
fare on nonvisual, quantitative tasks other than volume rendering. In-
deed, one contribution of our paper is such an evaluation of lossy com-
pression on analysis and simulation tasks.

Compression has also been recognized within the high-performance
computing community as a potential way of reducing data movement,
e.g. for accelerating I/O and communication, but even for reducing
memory bus traffic within simulations [2,3,19,22,25,27]. This trend is
notable, as computational scientists are warming up to the prospect of
using lossy compression, not only for visualization and data analysis,
but also on the simulation state itself.

In the recent study by Laney et al. [27], the simulation state is stored
compressed and is then decompressed in its entirety at the beginning
of each time step to simulate the effects of inline compression. Such
an approach does not reduce memory bandwidth, however, unless the
entire uncompressed state fits in cache. In this paper we consider a
tighter integration of compression, where the state is decompressed
piecemeal on demand to a small cache, and is possibly written back to
persistent compressed storage once or multiple times per time step.

2.3 Image, Texture, and Buffer Compression

A substantial body of work exists on compression of images, textures,
and GPU buffers. Many of today’s image formats represent a spectrum
of compression techniques that we could draw upon for encoding 2D
and 3D arrays. For instance, the GIF format uses vector quantiza-
tion on RGB color vectors; PNG and JPEG-LS use linear prediction;
JPEG, like our solution, uses block transform coding; JPEG XR relies
on lapped transforms; while JPEG2000 uses higher-order wavelets.
These formats also represent a progression of increasing complexity
and quality. We find lapped transforms [32], in which the basis func-
tions extend across block boundaries, unsuitable since they preclude
blocks from being compressed and decompressed independently. For
the same reasons, wavelets other than the Haar basis have wide sten-
cils and cascading data dependencies at coarser resolution that span
block boundaries.

In part to address these issues, many texture compression formats
have been proposed [10, 20, 36, 43]. Like our representation, these
partition the texture up into small blocks and allocate a fixed number
of bits of compressed storage per block. Unfortunately, these formats
are unsuitable for our purposes, as they exploit the low dynamic range
and precision (typically 8-bit) of natural images and the limitations of
human vision in order to preserve visual similarity. Moreover, few of
them support bit rate selection beyond one or two fixed settings.

Today’s GPUs store data other than textures, such as depth and color
buffers. These buffers, with few exceptions [38], demand lossless per-
sistent storage [1, 37, 44], but it is often feasible to read from them
using a lossy transmission mode or to benefit from lossless transmis-
sion of portions that compress well. The goal in buffer compression is
to reduce bandwidth rather than storage. In this paper we achieve both
via lossy compression.

3 COMPRESSION SCHEME

Our compression scheme for 3D double-precision data is inspired by
ideas developed for texture compression of 2D image data. As in most
texture compression formats, we divide the 3D array into small, fixed-
size blocks of dimensions 4 × 4 × 4 that are each stored using the
same, user-specified number of bits, and which can be accessed en-
tirely independently. At a high level, our method compresses a block
by performing the following sequence of steps: (1) align the values in
a block to a common exponent; (2) convert the floating-point values
to a fixed-point representation; (3) apply an orthogonal block trans-
form to decorrelate the values; (4) order the transform coefficients by
expected magnitude; and (5) encode the resulting coefficients one “bit
plane” at a time. We will detail each of these steps below.

3.1 Conversion to Fixed-Point

With a hardware implementation in mind, we begin by converting the
double-precision values in a 4 × 4 × 4 block to a common fixed-
point format, as in [46, 48]. This alignment of values, aka. block-
floating-point storage, is done by expressing each value with respect
to the largest floating-point exponent in a block, which is stored un-
compressed at the head of the block, resulting in normalized values in
the range (−1, +1). We use a Q3.60 fixed-point two’s complement
format that allows numbers in the range [−8, +8) to be represented,
i.e. a 64-bit signed integer i represents the value 2−60i. Although
the floating-point values after exponent normalization lie in a smaller
range (−1, +1), the subsequent block transform stage requires addi-
tional precision to represent intermediate values and final transform
coefficients. Note that the implicit leading one bit of non-zero floating-
point numbers is represented explicitly in this fixed-point format.

3.2 Block Transform

We transform the fixed-point values to a basis that allows the spatially
correlated values to be mostly decorrelated, as this results in many
near-zero coefficients that can be compressed efficiently. As is com-
mon for regularly gridded data, we employ a separable transform in
d dimensions that can be expressed as d 1D transforms along each
dimension, resulting in a basis that is the tensor product of 1D basis
functions. Our goal is thus to find a suitable 1D basis.

Many discrete orthogonal block transforms have been proposed,
each with their pros and cons. Examples include the discrete Haar
wavelet transform (HWT), the slant transform (ST), the family of dis-
crete cosine transforms (DCT), among which DCT-II from JPEG is the
most common, the high-correlation transform (HCT) used in H.264,
the Walsh-Hadamard transform (WHT), and the discrete Hartley trans-
form (DHT); see, e.g., [47]. Another orthogonal basis is the Gram
polynomial (aka. discrete Chebyshev polynomial) basis (GP).

We make the observation that in the case of transformations of 4-
vectors, all of the above transforms can be expressed as orthogonal
matrices of the form

A =
1

2

0
B@

1 1 1 1
c s −s −c
1 −1 −1 1
s −c c −s

1
CA (1)

s =
√

2 sin π
2
t c =

√
2 cos π

2
t (2)

where t ∈ [0, 1] is a parameter. Based on these definitions, t =
{0, 2

π
tan−1 1

3
, 1

4
, 2
π

tan−1 1
2
, 1

2
} corresponds to HWT (90 degrees

phase shifted), ST, DCT-II, HCT, and WHT, respectively, with DHT
coinciding with WHT and GP with ST (modulo sign differences and/or
permutation of the basis vectors). To our knowledge, this is the first
such parametric description that unifies several well-known orthogo-
nal transforms.

We now form a separable basis for 3D blocks by taking tensor prod-
ucts of the basis vectors (rows) of A:

Bijk(x, y, z) = bi(x)⊗ bj(y)⊗ bk(z) (3)

with 0 ≤ i, j, k ≤ 3, ||B|| = 1, and where bi is the ith basis vector
of A (and similarly for bj and bk). Transforming a block to this basis
is equivalent to performing a sequence of independent 1D transforms
along x, y, and z.

We will later order the basis functions by sequency [47], i.e. by
i + j + k, which can be thought of as a generalization of the zig-
zag ordering used in JPEG to 3D arrays. We may think of the in-
dices i, j, k as encoding the polynomial degree of the corresponding
1D basis functions (this is certainly true for the Gram basis), with
0 ≤ i + j + k ≤ 9 representing the total degree. This divides the
basis functions into ten equivalence classes.

Haar

Slant

Ours

DCT-II

HCT

Walsh-Hadamard

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

0.00 0.25 0.50 0.75 1.00

co
d

in
g

ga
in

 r
e

la
ti

ve
 t

o
 K

LT

d
e

co
rr

e
la

ti
o

n
 e

ff
ic

ie
n

cy

transform family parameter t

Fig. 2: Decorrelation efficiency (blue; note the vertical scale) and coding
gain (red) for 21 scalar fields achieved by several transforms parame-
terized by t ∈ [0, 1]. Evidently our efficient transform is near optimal.

w -= x; w /= 2; x += w;
y -= z; y /= 2; z += y;
z -= x; x *= 2; x += z;

y *= s; y -= c*w; w *= 2; w += c*y; w /= s;

Listing 1: C implementation of the lifted transform A′
�
x y z w

�T

for general values of s and c. In our transform s = 1
2

, and therefore
y *= s and w /= s are replaced with y /= 2 and w *= 2.

3.2.1 Lifted Implementation
A naı̈ve implementation of the transform would either unfold the block
into a 64-vector and apply multiplication by the 64× 64 basis matrix,
or perform a sequence of forty-eight 4 × 4 matrix multiplications by
taking advantage of separability. Fortunately any orthogonal matrix
can be decomposed into a sequence of plane rotations, each of which
can be expressed efficiently using the lifting scheme [7] via in-place
additions, subtractions, and multiplications. The unique structure of
our basis A leads to a very efficient lifted implementation.

In order to eliminate unnecessary sign changes, we slightly rewrite
the basis by negating the last two rows of A and let A′ denote this
modified basis. This change affects only the signs of the transform
coefficients and has no impact on orthogonality or error. The resulting
forward transform A′ can then be implemented as shown in Listing 1.
The inverse transform simply reverses the sequence of steps, with ad-
dition and multiplication interchanged with subtraction and division.

Although the polyphase decomposition of the transform is not
unique [7], we have chosen this particular sequence of lifting steps
in order to minimize range expansion of the intermediate quantities.
This is an important consideration since the transform is implemented
in fixed point and could otherwise overflow. For inputs in (−1, +1),
each output (and intermediate) quantity lies in (−2, +2), and after
three separable passes in (−8, +8). The tradeoff is some slight loss in
precision due to the irreversible divisions by two. Note that multiplica-
tions and divisions by two can be implemented as bit shifts and, while
not exploited here, the sixteen 4-vectors can be transformed in parallel,
with the independent lifting steps enabling additional concurrency.

3.2.2 A New, Computationally Efficient Transform
The above lifted transform, while efficient, requires both multiplica-
tion and division by s. Although the division can be implemented as
a multiplication by the reciprocal of the constant s, these integer mul-
tiplications are nevertheless the most expensive operations involved in
the transform. Using the judicious choice s = 1

2
, we turn these multi-

plications into bit shifts. Remarkably, this choice is not only attractive
from a performance standpoint, but is also near optimal in terms of
decorrelation efficiency and coding gain, two measures that are com-
monly used to assess the effectiveness of orthogonal transforms [6].

16

24

32

40

48

56

64
n

u
m

b
e

r
o

f
si

gn
if

ic
an

t
b

it
s

basis function by increasing sequency

Fig. 3: Box plot showing the distributions of the number of significant bits
for the coefficients associated with the 64 basis functions (grouped and
color coded by sequency) based on data from 30 different fields. This
plot confirms that the energy is concentrated in the low frequencies.

The decorrelation efficiency η and coding gain γ are both computed
from the 64 × 64 covariance matrix Σ = [σ2

ij] of the transformed
signal, where each of the 64 entries in a block is considered to be a
random variable that we seek to decorrelate to improve compression.
These quantities are given by

η =

P
i σ

2
iiP

i

P
j |σ2

ij |
γ =

P
i σ

2
ii

64
�Q

i σ
2
ii

�1/64 (4)

Using 21 scalar fields from different simulations, comprising nearly
0.8 billion floating-point values in total, we computed η(t) and γ(t)
as functions of the transform parameter t (cf. Eq. (2)). To obtain
comparable units for the different quantities represented by the fields,
we first normalized the variance of each field to unity and then com-
puted the aggregate covariance matrix across all fields, from which η
and γ were obtained. For ease of interpretation, we normalized γ by
the maximum coding gain possible, as given by the (data-dependent)
Karhunen-Loève Transform (KLT), which produces a diagonal covari-
ance matrix. As Fig. 2 shows, our choice t = 2

π
cot−1

√
7 ≈ 0.230

is close to optimal, both with respect to η and γ, for these fields. Fur-
thermore, this choice allows us to replace generic multiplications and
divisions with bit shifts (Listing 1).

The resulting transform involves 8 additions, 6 bit shifts (by one),
and 2 integer multiplications per transformed 4-vector. Amortized
over each numerical value, the complete 3D transform uses 6 addi-
tions, 4.5 shifts, and 1.5 multiplications per compressed scalar. This
compares quite favorably with the 64 multiplications and 63 additions
per scalar required by a naı̈ve matrix-vector product implementation
of the transform. It is also reasonably competitive with the Lorenzo
predictor employed in FPZIP [30], which requires 7 floating-point ad-
ditions per compressed value.

The 64-bit fixed-point multiplications could be implemented as four
32-bit multiplications (with 64-bit products) and some bit shifting. We
note that in our transform, c =

√
7

2
≈ 1.323 ≈ 10837

213 . This rational
approximation is accurate to 7 digits and results in the bottom 32 bits
of c being zero, allowing the fixed-point multiplication to be executed
as only two instead of four 32-bit integer multiplications. We use this
value of c for our results.

A hardware implementation might prefer an even simpler approxi-
mation c ≈ 5

4
. Multiplication by this constant can be efficiently per-

formed using one addition and a shift by two, allowing the entire trans-
form to be implemented using only integer addition and bit shifting.
Note that the orthogonality of the basis and invertibility of the trans-
form are independent of the choice of c, and as long as c ≤

√
7

2
no

exponent
01
63

0102060e1e3e7e 7f
62

7f 02060e1e3e7e
61

7f 02060e1e3e7e
60

7f 02060e1e3e7e
59

7f 02060e1e3e7e
58

7f 02060e1e3e7e
57

7f 02060e1e3e7e
56

7f 02
55

exponent
01
63

01027e 7f
62

7f 027e
61

7f 027e
60

7f 027e
59

7f 027e
58

7f 027e
57

7f 027e
56

7f 027e
55

7f 027e
54

7f 027e
53

7f 027e
52

7f 027e
51

7f 027e
50

7f 027e
49

7f 027e7e
48

7e 7f 020405
47

Fig. 4: Single-block bit streams for balanced (top) and unbalanced (bot-
tom) trees partitioned by bit plane number. The boxes show tree node
indices in hexadecimal and bit type: group test (red), sign (green), and
value (blue). Notice the increase in value and sign bits on the bottom.

further range expansion occurs. c does, however, affect the norm of
the basis vectors and thus the relative magnitudes of the transform co-
efficients. We also observed that this crude approximation of c tends
to result in some degradation in quality.

3.3 Embedded Coding
Given a collection of transform coefficients, most of which are ex-
pected to be small in magnitude, how should they be encoded to yield
the best quality for a given bit budget? Ideally, the codec should allow
for many different bit rates (as prescribed by the user). Toward this
end, we turn to embedded encoding, which produces a stream of bits
that are ordered roughly by their impact on error. We note that due to
the orthogonality of our transform, the root mean square (RMS) error
in the signal domain equals the RMS error in the transform domain,
and in this sense all coefficients are equally important. More precisely,
all coefficient bits within the same “bit plane” have the same impact
on error, and hence our strategy is to encode one bit plane at a time.

In embedded coding, each bit encodes some partial information
about the signal, and any prefix of this stream can be decoded inde-
pendently to yield a valid solution (with any unencoded bit set to zero
by the decoder). In this manner, we may use a single codec to produce
a full (near) lossless encoding of each block, and this stream can then
be truncated to satisfy the user-specified bit rate. Moreover, any al-
ready compressed block can be degraded in fidelity by simply further
truncating the bit stream, i.e. with no need for recompression.

Several embedded coding strategies exist, among which embedded
zerotrees [42] and set partitioning [40] are among the better known,
both having been designed for coding wavelet coefficients. Hong and
Ladner [17] showed that both of these schemes can be thought of as
variants of group testing—a procedure originally invented to test con-
solidated blood samples for infectious disease among larger popula-
tions. We employ a custom group testing procedure to encode our
transform coefficients.

The main idea is to perform a set of significance tests, with each test
returning which (signed) coefficients are larger in magnitude than a
given threshold. Using progressively smaller thresholds that are pow-
ers of two, this amounts to determining which coefficients have a one
bit in the current bit plane, not counting those coefficients that were
found to be significant in a previous pass. The idea behind group test-
ing is to test not individual coefficients but groups of them as a whole,
with the assumption that most of them are insignificant. Thus, a single
bit can be used to encode that a whole collection of coefficients are
insignificant with respect to the current threshold.

If at least one coefficient in a group is significant, the group is re-
fined by splitting it into two smaller groups, and the procedure is ap-
plied recursively until each significant group consists of a single coef-
ficient. For each such significant coefficient, we first encode its sign
and then place it onto the list of significant coefficients, whose remain-
ing, less significant bits will be encoded verbatim for subsequent bit
planes. The remaining, insignificant groups are then further refined in
subsequent passes, until each coefficient is significant or zero, or until
we have exhausted the bit budget.

How should we group coefficients for group testing? Unlike in [18],
we cannot group corresponding coefficients across blocks, since we
must allow each block to be decompressed independently. Instead, we

make the observation that the signal energy tends to decrease with fre-
quency, and consequently we expect the magnitudes of coefficients to
be ordered by sequency. This is indeed the case, as evidenced by the
box plot shown in Fig. 3. Thus, placing the coefficients in sequency
order results in a nearly sorted list. For any significant group, we ex-
pect the significant coefficients to come from the lower-sequency half,
and that in each refined group the coefficients will have roughly the
same magnitude. Once a group is found to be significant, we next test
the subgroup expected to be insignificant, since when this is the case
we may infer that the other subgroup must be significant, eliminating
the need to test that group and encode the redundant result.

Assuming groups are always split in equal halves, this recursive
structure gives rise to a complete binary tree, where each internal node
corresponds to a group of leaves (its descendants). The partitioning
into groups corresponds to a cut through this tree, and each group test
amounts to encoding, using one bit, a node on the cut. If the bit is zero
(insignificant), the node is left on the cut until the next bit plane is
coded. Otherwise, it is refined by replacing it with its children. Thus,
for each bit plane we make a breadth-first traversal of the tree and
refine the cut as needed. Once a leaf node is found to be significant,
we mark it as such and remove it from the cut. Each bit plane pass
then sends one value bit for each significant node followed by group
test bits that refine the cut.

We note that a balanced tree structure is not necessarily optimal.
For instance, as seen in Fig. 3, the DC component (far left in the plot)
usually has a greater magnitude than the other coefficients. In a bal-
anced tree, the group refinement that first exposes the DC component
as the only significant coefficient splits the coefficients into log2N+1
progressively smaller groups, (where N = 64 is the block size), and
each of the log2N = 6 insignificant groups are then tested in subse-
quent passes, even though they are often all insignificant (see Fig. 4).

To address this issue, we use an unbalanced tree that locates the
low-sequency components near the root, and where groups of higher-
sequency coefficients are stored progressively deeper in the tree. This
results in fewer groups initially, allowing more value bits to be coded
(Fig. 4, bottom). We found that this unbalancing of the tree gave a
2–6 dB increase in PSNR at low bit rates. For efficiency, we repre-
sent the cut in the tree as a single 127-bit mask, the set of significant
coefficients as a 64-bit mask, and the (fixed) tree structure as an ar-
ray of per-node “pointers” to the left child (siblings have consecutive
coefficient indices).

4 CACHING

As presented, the proposed scheme would for each floating-point value
accessed require decompressing its corresponding block and then
compressing and storing the block upon each write (or update) access.
This would be prohibitively expensive if implemented in software, but
also if compression were done in hardware. Not only would this ap-
proach incur frequent computation associated with (de)compression,
but precious memory bandwidth would also be spent on transferring
compressed data over the memory bus.

To alleviate this bandwidth pressure, we use a small, direct-mapped
software cache of decompressed blocks. We use a write-back policy
with a “dirty bit” stored with each cached block, such that compression
is only invoked for blocks evicted from the cache that have been mod-
ified. That is, for tasks that do not modify the floating-point array (e.g.
many analysis tasks), only decompression is needed, ensuring that the
fidelity of the data is not impacted after the initial one-time compres-
sion stage. This user-configurable cache represents the only memory
overhead in our scheme beyond the compressed blocks.

Many analysis tasks and simulation kernels “stream through” the
3D array sequentially in an outer loop and access only immediate
neighbors in an inner loop. A similar access pattern is used when
gathering or scattering values between data with different centerings,
such as between nodes (vertices) and cells (elements). To best support
such access patterns, our default cache size accommodates two layers
of blocks. Assuming no cache conflicts, this ensures that only com-
pulsory cache misses are incurred when making a sequential pass over
the array elements and accessing only immediate neighbors.

field DR
lossless FPZIP 32-bit precision FPZIP 16-bit precision

ratio ratio PSNR accuracy ratio PSNR accuracy
GZIP FPC FPZIP ZFP FPZIP ZFP FPZIP ZFP FPZIP ZFP FPZIP ZFP

ρ 0.00 2.11 1.92 2.74 2.61 14.67 120 77 31.2 53.0 37.3 22.7 53.2 15.0 42.0
p 1.62 1.06 1.13 1.38 1.37 4.47 156 141 32.0 32.5 27.2 59.5 67.9 16.0 19.6
u 0.77 1.05 1.16 1.46 1.43 5.36 148 130 32.0 32.8 30.6 52.2 66.0 16.0 21.0
v 0.76 1.05 1.17 1.46 1.43 5.36 148 130 32.0 32.8 31.0 51.5 65.8 16.0 21.0
w 0.65 1.05 1.17 1.46 1.44 5.45 147 131 32.0 32.8 31.3 51.0 67.7 16.0 21.1
µ 7.30 1.04 1.05 1.11 1.21 2.52 156 205 32.0 35.2 6.7 60.0 110.4 16.0 19.4
D 7.32 1.04 1.05 1.12 1.21 2.53 156 204 32.0 35.1 6.7 60.0 109.9 16.0 19.4
T 0.00 1.15 1.34 1.65 1.63 8.72 126 95 32.0 34.6 101.5 30.4 36.7 15.8 19.8
u 0.25 1.05 1.19 1.45 1.44 5.25 135 129 32.0 32.7 36.9 39.0 62.1 16.0 21.0
v 0.27 1.06 1.17 1.45 1.43 5.28 137 131 32.0 32.6 37.3 40.8 64.9 16.0 20.8
w 0.32 1.06 1.18 1.45 1.43 5.21 135 132 32.0 32.5 36.9 39.2 65.3 16.0 20.7
H2 0.18 1.12 1.27 1.59 1.58 6.84 126 111 32.0 31.7 50.8 28.0 51.1 15.5 20.8
O2 0.06 1.16 1.29 1.60 1.61 6.53 127 105 32.1 32.2 52.2 31.8 45.9 16.1 21.5
O 6.08 1.03 1.07 1.25 1.31 3.27 141 174 32.0 33.0 12.0 44.7 90.5 15.9 19.2

OH 6.17 1.03 1.08 1.26 1.33 3.31 141 170 32.0 32.6 11.7 44.7 89.3 16.2 19.2
H2O 6.02 1.06 1.12 1.30 1.38 3.51 124 161 31.9 31.9 11.9 34.1 86.6 16.4 19.5

H 5.89 1.03 1.08 1.24 1.31 3.28 140 171 32.0 33.1 11.7 44.1 88.8 16.1 19.4
HO2 5.59 1.03 1.08 1.24 1.31 3.25 138 151 32.0 33.3 11.7 42.1 67.5 16.1 19.5
H2O2 5.91 1.03 1.08 1.24 1.31 3.24 140 156 32.0 33.3 11.5 44.2 72.6 16.1 19.5

N2 0.00 1.24 1.43 1.82 1.81 10.98 113 83 32.0 34.2 226.3 16.8 -1.3 16.6 15.8
aggregate 1.09 1.18 1.41 1.44 4.41 138 139 32.0 34.1 18.1 41.8 68.1 16.0 21.0

Table 1: Compression ratios, peak signal to noise ratio, and accurary in
bits for ZFP and other compressors (the best results appear in bold). DR
denotes the median base-2 dynamic range across 4× 4× 4 blocks.

5 RESULTS

We evaluated the quality and speed of our compressor, code named
ZFP, on various double-precision fields obtained from four physics
simulations: Miranda (an LLNL hydrodynamics code), S3D (a San-
dia combustion code), pF3D (an LLNL laser-plasma interaction code),
and LULESH (an LLNL shock hydrodynamics proxy application). We
ran our experiments on a single core of an iMac with 3.4 GHz Intel
Core i7 processors and 32 GB of 1600 MHz DDR3 RAM. We use bpd
(bits per double) to refer to the amortized storage cost of each value.

5.1 Quality
In order to assess the quality provided by our lossy compression
scheme, we report on two quality measures: the peak signal to noise
ratio (PSNR) and accuracy. We define PSNR Q for a discrete signal x
of length N and approximate signal x̃ as

Q(x, x̃) = 10 log10

�
1
2
(maxi xi −mini xi)

�2
1
N

P
i(xi − x̃i)2

(5)

Note that Q accounts for the absolute error. For applications that are
more concerned with element-wise relative error, we measure the ac-
curacy as the number of bits of agreement between two floating-point
numbers. Because this measure is not straightforward to define when
one number is zero, when the two numbers are of opposite sign, or
when they narrowly straddle a power of two, we adopt the following
definition. Let I(x) denote the binary integer representation of x ob-
tained by converting the sign-magnitude floating-point representation
to a two’s complement integer, such that I(x) < I(y) ⇐⇒ x < y.
The accuracy α of x̃ with respect to x is then given by

α(x, x̃) = 64− log2(|I(x)− I(x̃)|+ 1) (6)

where |I(x)− I(x̃)| measures the number of floating-point values be-
tween x and x̃. α does indeed relate to the number of bits of agreement
when the signs and exponents of x and x̃ agree, but also handles num-
bers with different exponents or signs in an intuitive manner.

Rather than reporting the accuracy directly, which tends to vary
linearly with the rate, we plot its difference with the rate, which we
call the accuracy gain. This gain is the additional number of bits in-
ferred, e.g. via prediction or orthogonal transform, and in a sense is the
amount of redundant information exposed and discarded by the com-
pressor. Note that it is possible for the accuracy gain to be negative.

We compare ZFP with several alternatives. One straightforward way
to reduce precision is to store values in single (float) precision. This
is common in visualization and analysis, which usually demand less

float truncate quantize ISABELA FPZIP FPZIP 4X4X4 ZFP

0

50

100

150

200

250

300

350

400

0 8 16 24 32 40 48 56 64

p
sn

r
(d

B
)

rate (bpd)

0

50

100

150

200

250

300

350

400

0 8 16 24 32 40 48 56 64

p
sn

r
(d

B
)

rate (bpd)

0

50

100

150

200

250

300

350

400

0 8 16 24 32 40 48 56 64

p
sn

r
(d

B
)

rate (bpd)

-8

-4

0

4

8

12

16

20

24

28

0 8 16 24 32 40 48 56 64

ac
cu

ra
cy

 g
ai

n
 (

b
it

s)

rate (bpd)

-8

-4

0

4

8

12

16

0 8 16 24 32 40 48 56 64

ac
cu

ra
cy

 g
ai

n
 (

b
it

s)

rate (bpd)

-8

-6

-4

-2

0

2

4

6

8

10

12

0 8 16 24 32 40 48 56 64

ac
cu

ra
cy

 g
ai

n
 (

b
it

s)

rate (bpd)

1/(220+1)

1/(215+1)

1/1025

1/33

1/2

32/33

1024/1025

215/(215+1)

220/(220+1)

-20

-15

-10

-5

0

5

10

15

20

1E-24 1E-21 1E-18 1E-15 1E-12 1E-09 1E-06 1E-03

lg
(C

D
F)

 -
 lg

(1
 -

 C
D

F)

absolute error

(a) S3D temperature (T)

1/(220+1)

1/(215+1)

1/1025

1/33

1/2

32/33

1024/1025

215/(215+1)

220/(220+1)

-20

-15

-10

-5

0

5

10

15

20

1E-24 1E-21 1E-18 1E-15 1E-12 1E-09 1E-06 1E-03

lg
(C

D
F)

 -
 lg

(1
 -

 C
D

F)

absolute error

(b) S3D oxygen mass fraction (O)

1/(220+1)

1/(215+1)

1/1025

1/33

1/2

32/33

1024/1025

215/(215+1)

220/(220+1)

-20

-15

-10

-5

0

5

10

15

20

1E-24 1E-21 1E-18 1E-15 1E-12 1E-09 1E-06 1E-03

lg
(C

D
F)

 -
 lg

(1
 -

 C
D

F)

absolute error

(c) Miranda viscocity (µ)

Fig. 5: Peak signal to noise ratio (top) and median accuracy gain (middle) vs. rate (bpd = bits per double) and cumulative normalized-error
distribution at 32 bpd (bottom) for our ZFP method, ISABELA, original FPZIP, FPZIP applied to 4× 4× 4 blocks, and naı̈ve approaches like mantissa
truncation, uniform quantization, and conversion to single-precision floats. The CDFs have been transformed nonlinearly to emphasize the tails.

precision. Such conversion usually results in a positive accuracy gain
of four bits; three of these are due to the difference in number of ex-
ponent bits between single and double precision, and the fourth results
from rounding rather than truncating the mantissa when converting
to float. Two other common approaches are to truncate the mantissa
(and even exponent) by discarding (zeroing) least significant bits (with
bounded relative error), and to uniformly quantize numbers between
the extremal values (with bounded absolute error).

We also compare with two other lossy floating-point compressors:
FPZIP [29, 30] and ISABELA [24, 25] (using B-splines with W0 =
1024,C = 30, and varying error tolerance ε), as well as with loss-
less compressors GZIP and FPC [4, 5] (with a 16 MB hash). FPZIP
is primarily a lossless predictive coder, but supports a lossy mode by
losslessly compressing truncated mantissas. Hence FPZIP bounds the
relative error, as does ISABELA via a tolerance parameter. We found
FPZIP to always outperform ISABELA, and we will focus our compar-
ison primarily on FPZIP. Because FPZIP is a streaming variable-rate
coder, it does not support localized random access. We attempted a
more apples-to-apples comparison by applying FPZIP to the same 43-
sized blocks used by ZFP (while excluding header information). We
will refer to this method as FPZIP 4× 4× 4.

Table 1 lists compression ratios (uncompressed size divided by
compressed size), PSNR, and median accuracy for several fields for
ZFP and the other compressors. This table also lists for each field
its average local dynamic range represented as the median of values

log2(max |xi|/min |xi|), where the local extrema are computed over
4×4×4 blocks. In “lossless” mode we encoded 58 bit planes for ZFP,
which always provided a median accuracy of 64 bits and PSNR of at
least 313 dB (i.e. better than floating-point epsilon), and we relaxed the
fixed-rate requirement. Even though ZFP was not designed for lossless
compression, it performed slightly better than FPZIP and significantly
better than FPC in aggregate (harmonic mean compression ratio). We
then ran FPZIP in 16- and 32-bit precision mode (truncating mantis-
sas), and assigned a fixed rate to ZFP so that it compressed to the same
size as FPZIP. In 32-bit mode, we found FPZIP to give higher PSNR on
the easier to compress fields (as hinted by the lossless compression ra-
tios and low dynamic range), while ZFP did better on less compressible
data. In virtually all cases, ZFP gave a higher accuracy, however. At
higher compression ratios, ZFP also gave significantly higher PSNR.
The one anomaly is the single-exponent N2 field, for which ZFP was
only allowed 7 bits per block in addition to the common exponent.

Fig. 5 plots the PSNR and median accuracy gain for three of these
scalar fields: the S3D temperature and oxygen mass fraction fields, and
the Miranda viscocity field. These three data sets represent different
exponent distributions in the double-precision numbers, from the very
low entropy temperature field (only three exponents), to a data set with
hundreds of exponents (for predominantly positive numbers), to one
with a roughly equal number of negative and positive values. Although
the mass fractions should all be non-negative, numerical error caused
some of them to be slightly negative.

1

10

100

1,000

1 2 4 8 16 32 64

th
ro

u
gh

p
u

t
(M

B
/s

)

rate (bpd)

ISABELA compr. fpzip compr. ZFP compr. ZFP STREAM

ISABELA decom. fpzip decom. ZFP decom.

Fig. 6: Raw compression and decompression throughput in number of
uncompressed bytes input or output per second. Higher rates require
more bit plane passes in ZFP and thus more time.

This figure shows that PSNR increases linearly with rate (as ex-
pected) for most methods, until reaching infinity when there is no loss.
We observe a plateau in PSNR for ZFP reached around 56 bpd. This
occurs because the uncompressed data has only 52 bits of mantissa,
while we reserve four non-mantissa bits in our fixed-point represen-
tation for the sign and extra precision needed by the block transform.
Using more than 56 bpd is beneficial only for blocks with non-uniform
exponents, where the mantissa is shifted into the least 8 significant
bits. For values closer to zero, exponent differences within a block
may exceed eight, in which case ZFP loses some low-order mantissa
bits, preventing fully lossless compression. However, such low-order
bits would also be lost in arithmetic operations like addition whenever
the exponents of two operands differ; a loss that is generally accepted.

We note that other than for the easily compressible temperature
field, ZFP outperforms FPZIP by 30–50 dB (i.e. 1.5–2.5 decimal dig-
its), and the blocked version of FPZIP and ISABELA by even more—in
spite of ZFP being a fixed-rate compressor. ZFP is disadvantaged by
easy-to-compress data, in that blocks that compress very well must
still be padded to the fixed bit budget. We notice that the PSNR for
ZFP exhibits a surprising consistency (e.g. Q ≈ 240 dB at 32 bpd)
across the data sets, and is largely unaffected by the compressibility
of the data. In contrast, PSNR for FPZIP varies by as much as 80 dB
across these three data sets for a fixed bit rate. We see this predictable
behavior as a strength of ZFP that is likely to facilitate rate selection.

Because FPZIP bounds the relative error, it is perhaps not surprising
that it does not always perform well in terms of absolute error. The
middle row of Fig. 5, which plots the relative error in terms of accuracy
gain, reveals a surprise, however. Here FPZIP is again outperformed
by ZFP. Moreover, we see that ZFP excels at very low bit rates. This
ability to keep both absolute and relative errors low is another strength
of ZFP. Because the accuracy gain plus the bit rate equal the accuracy
α ≤ 64, the plot is bounded by the diagonal line y = 64 − x, which
explains the convergence of the curves to this line.

The bottom row of Fig. 5 shows at 32 bpd the cumulative distri-
bution of absolute errors normalized by field range (CDF values are
shown on the right vertical axis). We see that the maximum error
(the rightmost point on each curve) correlates quite well with PSNR.
Evidently ZFP achieves low maximum errors even for difficult-to-
compress blocks, in spite of the fixed-rate constraint.

We also evaluated our efficient transform with respect to the discrete
cosine transform within the framework of our compressor. On average,
we found our transform to give a 1.5–4.0 dB improvement in PSNR at
low to mid bit rates, and even more in the near-lossless regime.

5.2 Speed and Cache Utilization
We here evaluate the raw speed of our compressor when applied to
the 384× 384× 256 Miranda pressure field (other fields gave similar

5
1

2
 B

8
 K

B

1
2

8
 K

B

2
 M

B

3
2

 M
B

0

100

200

300

400

500

600

0%

6%

12%

18%

24%

30%

36%

 1 16 256 4,096 65,536

re
n

d
e

r
ti

m
e

 (
s)

ca
ch

e
 m

is
s

ra
te

cache capacity (blocks)

Fig. 7: Cache utilization and total rendering time (dashed) as a function
of cache size for 4 bpd ray tracing. The full, uncompressed scalar field
is 288 MB, and took 28 seconds to render without compression.

results) while performing strided data accesses to the uncompressed
array. Fig. 6 shows the throughput in number of uncompressed bytes
input from or output to main memory per second, which at 1 bpd tops
out around 400 MB/s for our decompressor and 280 MB/s for the com-
pressor. This is roughly comparable to the speed of FPZIP. As the rate
increases, progressively more bit planes are processed and output, re-
sulting in a gradual reduction in throughput.

We also evaluated the speed of ZFP array accesses using the well-
known STREAM benchmark [33] on arrays initialized with the pres-
sure field to avoid trivial compression of constant values. The over-
head of translating linear array indices and caching data reduces
throughput by a nearly constant 1.7x over raw (de)compression.

To test the effectiveness of caching decompressed blocks, we used
our compressed array in a ray tracer. We measured both cache misses
and total rendering time vs. cache size (Fig. 7) while rendering the data
set in Fig. 1(b). Other than good correlation between cache misses
and rendering time, this figure shows three distinct plateaus. For small
caches, many misses occur during initialization when the array is tra-
versed in raster order to precompute which cells intersect the interval
volume, as determined by 8 adjacent cell corner values. When smaller
than the 96-block wide domain, the cache must be reloaded each time
the innermost loop restarts. A similar issue occurs when a whole slice
does not fit in cache. We find that in spite of 18 million rays cast,
more than half of the cache misses occur during initialization, as con-
secutive primary rays tend to traverse similar regions of the domain.
Once the third, lowest plateau is reached, very few cache misses occur.
Using a cache of 16 K blocks and 4 bpd compression, the rendering
time of 33 seconds is only slightly longer than the 28 seconds taken
without compression, though using 11 times less memory: 18 MB of
compressed data and 8 MB of cache, vs. 288 MB uncompressed. Re-
markably only 24 MB of compressed data had to be decompressed to
satisfy the 3.6 GB worth of floating-point read accesses made.

6 APPLICATIONS

We now evaluate our compressor in a number of applications. We note
that the total programming effort to modify all of these applications to
use our compressor was less than 90 minutes.

6.1 Quantitative and Visual Analysis
We begin by assessing the viability of lossy compression for quanti-
tative analysis, which normally is done at reduced (single) precision,
and hence we expect some loss in precision to be acceptable. We first
consider computing the Fourier spectrum of the density field at the mid
plane of a Rayleigh-Taylor instability simulation [26]. This is a com-
mon analysis method used in hydrodynamics for detecting turbulence,
which should manifest itself as an exponentially decaying spectrum
with a slope of −5/3 at middle frequencies.

 k-5/3

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1 4 16 64 256

d
e

n
si

ty
 s

p
e

ct
ru

m

wavenumber

1 bpd 2 bpd 4 bpd 8 bpd uncompressed

Fig. 8: Density spectrum computed over the 2D mid plane. The spec-
trum follows a k−5/3 power law in the middle region that typifies turbu-
lent behavior. The spectrum is well represented at 4 bpd and above.

Fig. 8 shows the spectrum for a late time step in the simulation,
where turbulence has set in, and confirms the expected power law.
We applied our lossy compressor to this 5123 double-precision field
and reran the spectral analysis The figure shows that low-frequency
modes are well represented, but the loss in precision and blocking in-
troduce high-frequency noise, where the spectra disagree. At 4 bpd
(16x compression), however, the spectrum is well represented at all
but the very highest frequencies, and at 8 bpd the difference is virtually
undetectable. Using 4-bit uniform quantization, we obtained compa-
rable results to using 1 bpd compression. We note that the sharp drop
in power at the highest frequencies is common in simulation codes, as
numerical accuracy demands that the field is well resolved and varies
reasonably smoothly at the finest grid scale.

A common objection to block transform coding is the potential for
artifacts, which usually manifest themselves as visible discontinuities
between blocks (cf. JPEG artifacts). Such discontinuities are also quite
evident in the 1 bpd field shown in Fig. 1(a), though perhaps not sur-
prisingly so given the high compression rate.

We note that even minor discontinuities in a scalar field are usually
exposed when computing its derivatives. To test the presence for such
artifacts, we computed unstable manifolds of scalar fields using a vari-
ation of the technique presented in [16]. Each such manifold consists
of the set of points in the domain whose downward gradient integral
lines converge on the same minimum, and collectively these manifolds
segment the domain into spatially coherent pieces.

Fig. 10 shows these unstable manifolds for the 2D mid plane of
the vertical velocity field (w) from the Miranda run. Similar segmen-
tations were done by Laney et al. [26] to extract “bubble and spike”
features that characterize the turbulent behavior of the Rayleigh-Taylor
instability. Each segment corresponds to a region of downward motion
due to gravity associated with a spike during fluid mixing. We notice
the spurious extrema and segments in Fig. 10(a), where 64x compres-
sion was used. These could possibly be removed using persistence-
based simplification. (Differences in segment color are primarily due
to minor shifts in the locations of minima.) Nevertheless, most seg-
ments are still recognizable, whereas results based on 1-bit truncation
or quantization would clearly be nonsensical. At 4 bpd, the segmenta-
tion is essentially indistinguishable from ground truth.

Fig. 10(d) quantifies the error in segmentation using an information
theoretic measure. Here the error is the normalized variation of infor-
mation 0 ≤ V (X,Y)

H(X,Y)
≤ 1, where V (X,Y) = H(X,Y)− I(X;Y) is

the variation of information [34] (a metric) between segmentations X
and Y , H(X,Y) is the joint entropy of corresponding segmentation
labels, and I(X;Y) is their mutual information. This error converges
quickly to zero as the bit rate is increased. We conclude that our block
transform does not appear to introduce any discontinuities in the field
or its first derivatives at 4 bpd and above.

(a) 0.5 bpd (b) 4 bpd

Fig. 9: Streamlines extracted from compressed Rayleigh-Taylor velocity
fields. The green lines from each compressed field overlay the black
lines from the uncompressed field.

6.2 Visualization
We take the discrete approximation to gradients performed above for
Morse segmentations one step further and compute streamlines in bi-
linearly interpolated vector fields using 4th order Runge-Kutta inte-
gration. Any errors in the vector field should be exposed by diverg-
ing streamlines with respect to the uncompressed field, as small errors
have the potential to grow over the course of integration.

Fig. 9 shows streamlines for the uncompressed field in black, over-
laid by green streamlines computed for the compressed vector fields.
Again we use the mid plane of the RTI simulation, where the vector
field is given by the horizontal velocity (u, v), although we extracted
this 2D field from the compressed 3D field. At half a bit per double,
many per-streamline errors are evident, yet the field is qualitatively a
fair approximation of the full 64-bit field. Very few errors (black lines)
are evident in the 4 bpd vector field plot. Again, block artifacts do not
seem to be significant enough to cause concern.

As discussed above, we also integrated our compressor with a vol-
umetric ray tracer, which computes interval volumes (the region be-
tween two isosurfaces) and spawns secondary rays for shadow casting
and ambient occlusion to simulate global illumination (see Fig. 1, for
instance). Although the artifacts in Fig. 1(a) are readily visible, the
4 bpd rendering, which also uses gradients for lighting, is virtually
indistinguishable from the 64 bpd uncompressed field.

6.3 Blast Wave Simulation
We conclude with a more challenging problem that involves both fre-
quent reads from and writes to the compressed array—a fluid dynam-
ics simulation. We used LULESH [23], a shock hydrodynamics code
that simulates a point explosion known as a Sedov blast. LULESH is a
Lagrangian (moving mesh) C++ code that uses a logically regular 3D
grid. The initial point explosion generates a shock wave that propa-
gates radially and distorts the mesh as it travels through the domain.
The Sedov problem can be solved in closed form, giving r(t) ∝ t2/5,
where r is the radial position of the shock wave and t is time.

Using our compressor within LULESH presents a new challenge—
the fields are not only read at reduced accuracy, but are also updated
several times each time step. This periodic decompression and lossy
compression introduces errors that may propagate and grow over time,
potentially causing the simulation to diverge. Our goal was, thus, to
assess whether such divergence was observed in practice, and what
levels of compression (if any) were deemed acceptable. We note that
this experiment is similar to the one carried out by Laney et al. [27],
but differs in that in our case compression and decompression occur
over the course of each time step, as dictated by our caching scheme,
whereas Laney et al. applied full decompression and compression of
the entire state at the beginning and end of each time step. Thus, our
experiment is a more challenging stress case, as compression may oc-
cur more than once per time step. Furthermore, this example involves
fields with a sharp discontinuity near the shock wave that could be
difficult to preserve.

(a) 1 bpd: 6.5% error (b) 4 bpd: 0.09% error (c) no compression

0%

5%

10%

15%

20%

25%

30%

35%

40%

0.25 0.5 1 2 4 8 16 32 64

se
gm

e
n

ta
ti

o
n

 e
rr

o
r

rate (bpd)

(d) error vs. bit rate

Fig. 10: (a–c) Morse segmentations of the vertical velocity field from the Rayleigh-Taylor simulation. (d) Segmentation error of unstable manifolds
in terms of normalized variation of information as a function of compressed bit budget.

One important consideration is the cache size to use. Since kernels
in LULESH perform gathers and scatters between nodes and cells in
raster order, we conjectured that a cache holding two layers of blocks
would be sufficient. Using such a cache, LULESH required write-
back (lossy compression) of each block 1.18 times per time step on
average. Halving the cache size, we observed a dramatic increase in
this number to 20.9. Consequently, we used two block layers in our
evaluation, representing 1

8
of the 643 domain.

We note that although per mesh element errors may be observed
relative to a run with no compression, the important quantity of interest
is the actual shock position r(t), which we measured as the radial
position (relative to the point source) of the mesh element of maximal
density. For the 1,000 time steps executed, we computed the Pearson
correlation coefficient between t and r(t)5/2, which theory predicts
to be linearly related. For a run using 16 bpd compression, we found
the correlation with theory to be 99.994%, with a relative error in final
shock position of 0.06% compared to the uncompressed run. Reducing
the precision to 12 bpd and 8 bpd, this error increased to 0.80% and
7.38%, respectively. We conclude that in spite of over a thousand
applications of lossy compression to each mesh element, the outcome
of this simulation did not change appreciably at 4–5x compression.

7 DISCUSSION

Although some of the ideas proposed here partially overlap with prior
work on compressed representations, we would like to discuss some of
the unique aspects and strengths of our approach, potential use cases
not covered already, as well as limitations.

7.1 Limitations
Our representation is inherently limited to regularly gridded data, and
it is unclear how it could be adapted to unstructured grids. How-
ever, we believe that it could find utility in adaptive mesh refinement
codes that use nested regular grids. For effective compression, the
data should exhibit some smoothness at fine scales, which is common
in simulation data, though observational data may be more noisy. The
fact that we handle shocks adequately is a promising sign, however.

As designed, our scheme cannot easily bound the maximum error
incurred. Our approach has been to minimize the RMS error, which
we believe is a good compromise between mean and maximum error.
Moreover, by relaxing the fixed-rate constraint, we can easily support a
fixed-quality mode, where either an absolute or relative error tolerance
is met. Doing so requires essentially no changes to the compressor.

7.2 Benefits
Perhaps one of the main strengths of our approach is its ease of integra-
tion. Our compressed array primitive supports a simple C++ interface,
including (i, j, k) indexing and flat 1D array view, which allows it to
be dropped into existing codes with minimal coding effort. The ap-
plications considered here collectively exceed well over 10,000 lines
of code, yet our integration of compression required only just over an
hour of total programming work to swap out array declarations and
add controls for rate selection and cache size.

We have so far discussed using our compressor for storing static
fields in visualization and analysis, and evolving fields in simulation.
There is a third important use case: representing large, constant tables
of numerical data, such as (multidimensional) equation of state and
opacity tables queried by the simulation. These can occupy gigabytes
to terabytes and require distributed storage. Using our compressed rep-
resentation, memory is freed up and communication is reduced while
sharing these tables across nodes.

Although not stressed here, our compressor allows for a smooth
tradeoff between quality and memory usage. Thus, for very large data
sets that normally do not fit in main memory, the analysis could nearly
always proceed compressed, albeit at reduced accuracy.

Because the bit stream is embedded, it can be truncated at any point
(or lengthened via zero padding). Thus no decompression followed
by re-compression is needed to change the precision of a coded block,
which could introduce further loss. Rather, a single unified format can
be used for simulation, visualization, analysis, off-line storage, etc.,
with each user choosing only how many bits of precision to retain.

Finally, we are not aware of any other fixed-rate compression
scheme for floating-point data, let alone a compressed array primitive.
In addition to facilitating random access, the fixed storage size also
allows the ordering of compressed blocks to be optimized to improve
locality of reference, e.g. for out-of-core computations.

8 CONCLUSION

We presented a compressed representation of 3D floating-point arrays
that supports random-access reads and writes. To achieve high com-
pression ratios, our scheme is lossy, but by allowing the user to spec-
ify the exact amount of compression our method can approach lossless
mode. In spite of being constrained to meet a fixed rate, our method
compares favorably to state-of-the-art variable-length compressors—
especially at low bit rates. Our compressor achieves high quality
through a new and efficient orthogonal block transform, and can be
implemented using only integer addition and shifting. It is hence very
fast, and can through caching nearly entirely hide the overhead of de-
compression. Although we focused on compression of 3D arrays of
double-precision numbers, our approach is straightforward to general-
ize to single-precision values and arrays of other dimensions.

Using several examples we demonstrated that 16x compression or
more can often be tolerated in visualization and analysis applications,
while 4x compression is possible in simulations that demand repeated
state updates and, thus, frequent compression and decompression.

Future work is needed to make our approach more widely applica-
ble, including resolving issues like thread safety, investigating more
effective caching, finding good layouts of the compressed blocks, ex-
tending the compressor to time-varying data, and further tuning the
method for hardware implementation. Some applications may want to
adapt the rate spatially. While supported by our compressor, variable-
length blocks would require more complicated memory management.
We are particularly intrigued by the idea of applying our approach to
texture compression, noting that further simplifications can be made
to the compressor when working with two-dimensional integer arrays.

REFERENCES

[1] T. Akenine-Möller and J. Ström. Graphics processing units for handhelds.
Proceedings of the IEEE, 96(5):779–789, 2008.

[2] A. H. Baker, H. Xu, J. M. Dennis, M. N. Levy, D. Nychka, S. A. Mick-
elson, J. Edwards, M. Vertenstein, and A. Wegener. A methodology for
evaluating the impact of data compression on climate simulation data. In
ACM Symposium on High-Performance Parallel and Distributed Com-
puting, pages 203–214, 2014.

[3] T. Bicer, J. Yin, D. Chiu, G. Agrawal, and K. Schuchardt. Integrating
online compression to accelerate large-scale data analytics applications.
In IEEE International Symposium on Parallel & Distributed Processing,
pages 20–24, 2013.

[4] M. Burtscher. FPC version 1.1, 2006. http://www.csl.cornell.edu/
∼burtscher/research/FPC/.

[5] M. Burtscher and P. Ratanaworabhan. High throughput compression of
double-precision floating-point data. In Data Compression Conference,
pages 293–302, 2007.

[6] R. J. Clarke. Transform coding of images. Academic Press, Inc., 1985.
[7] I. Daubechies and W. Sweldens. Factoring wavelet transforms into lifting

steps. Journal of Fourier Analysis and Applications, 4(3):247–269, 1998.
[8] K. Engel, M. Hadwiger, J. Kniss, A. Lefohn, C. Salama, and D. Weiskopf.

Real-time volume graphics, 2004. ACM SIGGRAPH Course #28.
[9] V. Engelson, D. Fritzson, and P. Fritzson. Lossless compression of high-

volume numerical data from simulations. In Data Compression Confer-
ence, pages 574–586, 2000.

[10] S. Fenney. Texture compression using low-frequency signal modulation.
In Graphics Hardware, 2003.

[11] N. Fout, H. Akiba, K.-L. Ma, A. E. Lefohn, and J. Kniss. High-quality
rendering of compressed volume data formats. In Eurovis, pages 77–84,
2005.

[12] N. Fout and K.-L. Ma. Transform coding for hardware-accelerated
volume rendering. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1600–1607, 2007.

[13] N. Fout and K.-L. Ma. An adaptive prediction-based approach to loss-
less compression of floating-point volume data. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2295–2304, 2012.

[14] J. Fowler and R. Yagel. Lossless compression of volume data. In IEEE
Symposium on Volume Visualization, pages 43–50, 1994.

[15] S. Guthe and W. Strasser. Real-time decompression and visualization of
animated volume data. In IEEE Visualization, pages 349–356, 2001.

[16] A. Gyulassy, P.-T. Bremer, and V. Pascucci. Computing Morse-Smale
complexes with accurate geometry. IEEE Transactions on Visualization
and Computer Graphics, 18(12):2014–2022, 2012.

[17] E. S. Hong and R. E. Ladner. Group testing for image compression. IEEE
Transactions on Image Processing, 11(8):901–911, 2002.

[18] E. S. Hong, R. E. Ladner, and E. A. Riskin. Group testing for block
transform image compression. In Asilomar Conference on Signals, Sys-
tems and Computers, pages 769–772, 2001.

[19] N. Huebbe, A. Wegener, J. Kunkel, Y. Ling, and T. Ludwig. Evaluat-
ing lossy compression on climate data. In International Supercomputing
Conference, pages 343–356, 2013.

[20] K. Iourcha, K. Nayak, and Z. Hong. System and method for fixed-rate
block-based image compression with inferred pixel values, 1999. http:
//www.google.com/patents/US5956431.

[21] M. Isenburg, P. Lindstrom, and J. Snoeyink. Lossless compression of
predicted floating-point geometry. Computer-Aided Design, 37(8):869–
877, 2005.

[22] J. Iverson, C. Kamath, and G. Karypis. Fast and effective lossy compres-
sion algorithms for scientific datasets. In Euro-Par Parallel Processing,
pages 843–856, 2012.

[23] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito,
R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and
C. Still. Exploring traditional and emerging parallel programming models
using a proxy application. In IEEE International Parallel & Distributed
Processing Symposium, pages 919–932, 2013.

[24] S. Lakshminarasimhan. ISABELA version 0.2, June 2014. http://
freescience.org/cs/ISABELA/ISABELA.html.

[25] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham,
R. Ross, and N. F. Samatova. Compressing the incompressible with IS-
ABELA: In-situ reduction of spatio-temporal data. In Euro-Par Parallel
Processing, pages 366–379, 2011.

[26] D. Laney, P.-T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci. Un-
derstanding the structure of the turbulent mixing layer in hydrodynamic
instabilities. IEEE Transactions on Visualization and Computer Graph-
ics, 12(5):1053–1060, 2006.

[27] D. Laney, S. Langer, C. Weber, P. Lindstrom, and A. Wegener. Assessing
the effects of data compression in simulations using physically motivated
metrics. In ACM/IEEE International Conference on High Performance
Computing, Networking, Storage and Analysis, pages 76:1–12, 2013.

[28] N. K. Laurance and D. M. Monro. Embedded DCT coding with signifi-
cance masking. In IEEE International Conference on Acoustics, Speech,
and Signal Processing, pages 2717–2720, 1997.

[29] P. Lindstrom. FPZIP version 1.1.0, June 2014. https://computation.llnl.gov/
casc/fpzip/.

[30] P. Lindstrom and M. Isenburg. Fast and efficient compression of floating-
point data. IEEE Transactions on Visualization and Computer Graphics,
12(5):1245–1250, 2006.

[31] E. B. Lum, K.-L. Ma, and J. Clyne. Texture hardware rendering of time-
varying volume data. In IEEE Visualization, pages 263–270, 2001.

[32] H. S. Malvar. Extended lapped transforms: Properties, applications, and
fast algorithms. IEEE Transactions on Signal Processing, 40(11):2703–
2714, 1992.

[33] J. D. McCalpin. Memory bandwidth and machine balance in current high
performance computers. IEEE Computer Society Technical Committee
on Computer Architecture (TCCA) Newsletter, pages 19–25, 1995. http:
//www.cs.virginia.edu/stream/ref.html.

[34] M. Meila. Comparing clusterings by the variation of information. In
Learning Theory and Kernel Machines, pages 173–187, 2003.

[35] P. Ning and L. Hesselink. Vector quantization for volume rendering. In
ACM Workshop on Volume Visualization, pages 69–74, 1992.

[36] J. Nystad, A. Lassen, A. Pomianowski, S. Ellis, and T. Olson. Adaptive
scalable texture compression. In Eurographics/ACM SIGGRAPH Sympo-
sium on High Performance Graphics, pages 105–114, 2012.

[37] J. Pool, A. Lastra, and M. Singh. Lossless compression of variable-
precision floating-point buffers on GPUs. In ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games, pages 47–54, 2012.

[38] J. Rasmusson, J. Ström, and T. Akenine-Möller. Error-bounded lossy
compression of floating-point color buffers using quadtree decomposi-
tion. The Visual Computer, 26(1):17–30, 2010.

[39] P. Ratanaworabhan, J. Ke, and M. Burtscher. Fast lossless compression
of scientific floating-point data. In Data Compression Conference, pages
133–142, 2006.

[40] A. Said and W. A. Pearlman. A new, fast, and efficient image codec based
on set partitioning in hierarchical trees. IEEE Transactions on Circuits
and Systems for Video Technology, 6(3):243–250, 1996.

[41] J. Schneider and R. Westermann. Compression domain volume rendering.
In IEEE Visualization, pages 293–300, 2003.

[42] J. M. Shapiro. Embedded image coding using zerotrees of wavelet co-
efficients. IEEE Transactions on Signal Processing, 41(12):3445–3462,
1993.

[43] J. Ström and T. Akeninie-Möller. iPACKMAN: High-quality, low-
complexity texture compression for mobile phones. In Graphics Hard-
ware, pages 63–70, 2005.

[44] J. Ström, P. Wennersten, J. Rasmusson, J. Hasselgren, J. Munkberg,
P. Clarberg, and T. Akenine-Möller. Floating-point buffer compression
in a unified codec architecture. In Graphics Hardware, pages 75–84,
2008.

[45] A. Trott, R. Moorhead, and J. McGinley. Wavelets applied to lossless
compression and progressive transmission of floating point data in 3-D
curvilinear grids. In IEEE Visualization, pages 385–388, 1996.

[46] B. E. Usevitch. JPEG2000 extensions for bit plane coding of floating
point data. In Data Compression Conference, page 451, 2003.

[47] R. Wang. Orthogonal Transforms. Cambridge University Press, 2012.
[48] A. Wegener. Block floating point compression of signal data, 2012. http:

//www.google.com/patents/US8301803.
[49] J. Woodring, S. Mniszewski, C. Brislawn, D. DeMarle, and J. Ahrens.

Revisiting wavelet compression for large-scale climate data using JPEG
2000 and ensuring data precision. In IEEE Large Data Analysis and
Visualization, pages 31–38, 2011.

[50] B.-L. Yeo and B. Liu. Volume rendering of DCT-based compressed 3D
scalar data. IEEE Transactions on Visualization and Computer Graphics,
1(1):29–43, 1995.

http://www.csl.cornell.edu/~burtscher/research/FPC/
http://www.csl.cornell.edu/~burtscher/research/FPC/
http://www.google.com/patents/US5956431
http://www.google.com/patents/US5956431
http://freescience.org/cs/ISABELA/ISABELA.html
http://freescience.org/cs/ISABELA/ISABELA.html
https://computation.llnl.gov/casc/fpzip/
https://computation.llnl.gov/casc/fpzip/
http://www.cs.virginia.edu/stream/ref.html
http://www.cs.virginia.edu/stream/ref.html
http://www.google.com/patents/US8301803
http://www.google.com/patents/US8301803

