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Model-based processing is a theoretically sound methodology to address
difficult objectives in complex physical problems involving multichannel sen-
sor measurement systems. It involves the incorporation of analytical models
of both physical phenomenology (complex vibrating structures, noisy operat-
ing environment, etc.) and the measurement processes (sensor networks and
including noise) into the processor to extract the desired information. In this
paper, a model-based methodology is developed to accomplish the combined
task of on-line failure monitoring and classification for vibrating cylindrical
shell externally excited by controlled vibrational excitations. A model-based
processor is formulated to: (1) monitor system performance; (2) detect po-
tential failure conditions; (3) isolate the failure mechanism using classifiers;
and (4) determine the overall condition of the underlying system. The objec-
tive of this paper is to develop a real-time, model-based monitoring scheme
for on-line diagnostics in a representative structural vibrational system.

PACS numbers: 43.60Gk, 43.30Zk

I. INTRODUCTION

Structural vibration systems1 operating over long periods of time can be
subjected to component and overall system failures due to fatigue caused by
external excitations or by cracking and resonances during the aging process1−6.

In some cases the system can fail catastrophically, causing complete deterio-
ration of the overall structure and the consequences that follow. It is essential
to provide timely information about component failure and the conditions
leading up to it, as well as prognosticating about the integrity of the total

system in the future.
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A model-based approach7−11 to develop diagnostic techniques for struc-
tural failure prediction is based on a well-established theoretical formalism

that ensures a careful and systematic analysis of the vibrational system or
classes of systems under investigation and their associated failure mecha-
nisms. Models can be developed from a first-principles mathematical repre-
sentation, or by utilizing sensor measurements to “fit” the model parameters

to the data—the approach we pursue in this paper. In cases where the fail-
ure mechanism is not well understood, the model fitting approach offers an
effective solution. In fact, in contrast to many approaches of solving this
problem, this model-based approach does not require an explicit representa-

tion of the failure mechanism at all to design an on-line monitor for initial
failure detection. It is based on obtaining a representation of the vibrating
structure during normal certification operations, or even more desirable, dur-
ing quality assurance or acceptance testing. Once these normal operational

characteristics of the system are known, the processor is developed based
on the properties of the so-called residuals or innovations sequence. This
sequence is the difference between the measured and predicted sensor out-

puts obtained from the underlying normal structural system model. Once
this condition or “difference” monitor detects a failure, it is then classified
according to a set of well-established failure mechanisms.

Failure detection for mechanical systems has long been the subject of

much research with most of the work being concentrated on single-channel,
spectral or cepstral analysis techniques for diagnostic purposes.2 There have
been several successful applications of the model-based approach8−17 to these
type problems, but none devoted to solving the complete failure condition

detection, failure isolation, and time-to-failure prediction problem for a real-
time maintenance problem. The inclusion of a process model in any signal
processing scheme provides a means of introducing information in a self-
consistent manner.18−21 This is shown in Fig. 1 where we observe how vibra-

tional measurements are input to a model-based processor (MBP) utilized to
provide information to the failure monitor.

As mentioned, structural vibration systems operating over long periods

of time can be subjected to failures due to fatigue caused by various ex-
ternal forces or simply the aging process. When this happens it is possible
for the structure to deteriorate causing a complete malfunction and possi-
bly catastrophic failure. Thus, to attain reliable system performance it is
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Figure 1: Conceptual model-based failure monitor.

necessary to monitor critical structural components, to provide timely infor-
mation about current and/or imminent failures, and to predict its integrity.
Standard approaches to detect failure mechanisms at the onset range from a

simple accelerometer strategically placed, to observing the Fourier spectrum
of known response, to using cepstral analysis to identify periodic responses,
to sophisticated Bayesian processing schemes.22−27 Measures of failure can
deteriorate significantly if noise is present - a common situation in an opera-

tional environment. A model-based signal processing approach8 to solve the
structural system failure detection and classification problem is depicted in
Fig. 2. Here we see that the first step is monitoring the current condition of

the underlying structure. Should a failure be detected, a classifier processes
the data to report the final condition and type of failure incurred.

Most of the current monitoring approaches for failure detection and iso-
lation lead to single-channel processing of measured sensor data.1 For in-

stance, the so-called waterfall vibrational spectral plot, or the equivalent
Campbell diagram3, is limited to a stacking display of single-channel spec-
tral information to identify failures. Multiple sensors (such as accelerometers
for vibrations, microphones for acoustics, and thermocouples for tempera-

ture) in a structure provide enhanced information about the system. This
implies a multi-channel (multi-input, multi-output) system representation,
which is most easily handled in state-space form1, without restrictions to

1The state-space representation of a system is the transformation of an nth-order set of
differential equations describing the system to a set of n first-order differential equations.
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single-channel spectral representations. Once this is accomplished, then the
process model of the structural system can be incorporated into an effective

signal processing scheme. This representation leads to the model-based ap-
proach, which can be stated as “incorporating mathematical models of both
physical phenomenology and the measurement processes including noise into
the processor to extract the desired information.” The incorporation of a

mathematical model that represents the phenomenology under investigation
can vastly improve the performance of any processor, provided such model is
accurate.8,17 We summarize the development and application of such on-line
“model-based processors” (MBP) in the context of failure detection/isolation

and failure prediction. The major advantages of model-based processors
include are: recursive; statistical (incorporating both noise and parameter
uncertainties); not constrained to stationary statistics; capable of being ex-
tended to incorporate both linear and nonlinear time-varying models; ca-

pable of on-line processing of the measured data at each iteration; capable
of filtering the noisy measurements as well as simultaneously estimating the
underlying states (vibrational responses, modes, etc.); capable of monitor-

ing their own performance by testing the residual (or innovations) between
the measurement and its prediction and easily extended to perform adap-
tively. However, a potential drawback is the increased computational load
required that can be mitigated somewhat by the high speed/high through-

put microprocessors currently available along with the possibility of parallel
implementation.

As illustrated in Fig. 3 model-based signal processing involves incorpora-
tion of the process model (large-scale structure), measurement model (sen-

sor network), and noise models (instrumentation, environmental, parameter
uncertainty, etc.) along with measured data into a sophisticated processing
algorithm capable of detecting, filtering (estimating), and isolating a mechan-
ical failure in a hostile operational environment. This technique offers a well-

founded statistical approach for comparing process/measurement/failure mod-
els to measured data and is not constrained to a stationary process, which
is essential in the expected environment. A model-based processor provides

estimates of various quantities of high interest (modes, vibrational response,
resonances, etc.), and also provides on-line statistical performance measures
which are especially useful for failure propagation experiments.

The model-based approach for failure detection, classification and predic-
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Figure 2: Model-based failure monitor and classifier structure.

tion (shown in Fig. 2) is based on the concept that the process or vibrational
system under consideration is modeled either from first principles or using
system identification techniques15,16,19 to “fit” models to the data. Once the

system models are developed, then the sensor suite (or measurement system)
models are developed. Usually the bandwidth of each sensor is much wider
than the dominant dynamics or resonances of the system, and therefore each
sensor is represented by a gain. However, if sensor dynamics must be in-

cluded in the system model, the model-based approach easily accommodates
them. Sensor dynamics models can be obtained from manufacturer specifi-
cations, independent experiments, or transfer function estimation to name
a few (see section II some details). After these models are completed, then

it remains to model the noise. If noise data are unavailable, then a reason-
able approach is to model the noise as additive and random, leading to a
Gauss-Markov model.19 Once a representation of the overall system (struc-
ture, sensors, and noise) is developed, then a failure monitor/detector can be

developed to monitor the status of the vibrational system. Should a failure
(that is, a deviation from the normal operation) be detected, then this failure
must be classified using information from known or measured failures. Then
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Figure 3: Model-based processor implementation incorporating process
(cylinder), measurement (optical strain sensors) and noise (background, ex-
citation) processes into a failure monitor/detector.

it is possible to predict the time-to-failure for the overall system, and decide

on the appropriate action, including simply reporting the results.
In section II, we discuss the basic models of the cylinder system under

investigation along with both distributed and lumped governing dynamic
systems as well as the embedded novel optical strain measurement sensor

employed. Next we present the fundamental model-based approach in section
III including the underlying failure detection and classification problems. The
model-based processor is developed in section IV and applied to simulated

and experimental data in V. We summarize our results and discuss future
work in the final section.
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II. DYNAMIC MODELING OF A VIBRATING CYLINDER
AND STRAIN SENSOR NETWORK

In this section we discuss the basic dynamic models used to represent
the vibrating cylinder under study for failure detection along with the novel
optical strain sensor network. We start with the fundamental wave dynamics
and corresponding numerical model using a finite element approach. Next

we discuss a coupled lumped multivariable dynamic model and corresponding
transfer function matrices that provide the structure and justification of the
MBP employed in the failure detector.

The fundamental governing equation for the vibrating elastic cylinder is5

ρ
∂2u

∂t2
− µ∇2u − (λ + µ)∇(∇ · u) = ρf , (1)

where u(x, t) is the vector displacement field, f(x, t) is the forcing function,
ρ is the material density, and λ and µ are the material elastic moduli.

This equation, along with the boundary conditions, describes the dynamic
response of the cylinder to a given set of applied forces. We can convert this

to a lumped model using a set of orthonormal vector basis functions un(x)
such that ∫

um(x) · un(x) , dx = δmn

The displacement field and forcing excitation can be expanded in terms
of these basis functions as:

u(x, t) =
Nd∑

n=1

dn(t)un(x), f(x, t) =
Nd∑

n=1

pn(t)un(x)

which leads to the following matrix equation for the coefficients dn(t):6

Md̈(t) + Cḋ(t) + Kd(t) = p(t) (2)

where d is the Nd × 1 displacement vector, p is the Np × 1 excitation force,
and M , C, K, are the Nd × Nd lumped mass, damping function, and spring
constant matrices characterizing the structural process model, respectively.
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M =




M1 0 0 0 0
0 M2 0 0 0
...

...
. . .

...
...

0 0 0 MNd−1 0
0 0 0 0 MNd




, C = [cij] , and

K=




(K1 + K2) −K2 0 0 0

−K2 (K2 + K3)
. . . 0 0

0
. . .

. . . −KNd−1 0
0 0 −KNd−1 (KNd−1 + KNd

) −KNd

0 0 0 −KNd
KNd




Though the damping function is not explicitly part of the original gov-
erning equation, it is standard practice to include damping in the lumped
model. This model is in the form of a linear dynamical system, which can
be converted to a state-space representation for signal processing purposes.

That is, if we define the 2Nd-state vector as x(t) :=
[

d(t) | ḋ(t)
]
, then

the state-space representation of this process can be expressed as

ẋ(t) = Ax(t) + Bu(t)

ẋ(t) =




0 | I
−−− | − −−
M−1K | M−1C


x(t) +




0
−−−
M−1


 p(t)

and

y(t) =
[

M−1 | 0
]
x(t)

(3)

where we have assumed that a sensor directly proportional to displacement
is used, y ∈ RNd×1.

For our measurement system we actually use a Bragg fiber optic strain
sensor that is small (< 1mm diameter), can use multi-wavelengths for mul-
tiple sensing points (multichannel receiving string or array) and is driven by
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a tunable external laser source. Fiber Bragg grating (FBG) sensors measure
changes in the light reflected and transmitted through a grating imprinted

in the fiber as shown in Fig. 4a. Here light from the external laser source
incident on the fiber Bragg grating is reflected and transmitted through the
grating providing a measurement that is directly proportional to the strain
induced by an impact device exciting the cylindrical shell and measured by

a sensor network (as seen in Fig. 4b,c) and digitized for model-based pro-
cessing.

The experimental system is comprised of a horizontally orientated alu-
minum cylinder (297mm long, and 196mm in diameter with a wall thickness

of 2mm), supported above the optical bench by thin nylon lines. Actuation
of the cylinder (input signal) was accomplished by a thin 080in diameter
threaded rod, bolted to the cylinder surface and driven by an electro-dynamic
shaker. The actuator is connected to an arbitrary waveform generator, allow-

ing for precise control and tailoring of the input signal during the experiment.
The inertial effects on the cylinder from the shaker, are minimized by mount-
ing the shaker independently, on a separate external support. These efforts

were motivated by a desire to generate a point source normal to the surface
of the cylinder, and minimize complicated edge effects. Essentially, the cylin-
der is freely supported in space and driven by a point source normal to the
surface. The cylinder has several locations where a concentrated mass can

be attached to the surface. This facilitates a simple method to introduce a
known change the system response with minimal error.

The response of the system from the point force is monitored using fiber
Bragg sensors bonded to the outer surface of the cylinder. The physical

principle behind the FBG sensor is that a change in strain, stress, or tem-
perature will alter the center of the wavelength of the light reflected from
an FBG. The power (reflected or transmitted) is directly proportional to the
strain (displacements) in the fiber and the structure. Thus, FBGs offer a

passive, minimally-invasive technique to monitor the structural response of
the experimental cylinder assembly.

The size and mass of the sensors (dia < 0.5mm and mass/unit length <<

0.1gm/cm) mitigates any loading effects that the sensors could introduce on
the dynamic response of the cylinder. The spatial extent of the sensing region
of the fiber Bragg sensor (including glue patch) on the surface of the cylinder
is approximately 0.5cm2. Two sensors were attached to the surface of the
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Figure 4: Fiber-Bragg optical strain sensor and hardware: (a) Optical sen-
sor. (b) Experimental hardware set-up for vibrational excited cylinder strain
measurements. (c) Sensor locations on cylinder.

cylinder, one at the horizontal center and the other, at the far end of the
cylinder off axis.

The corresponding vector measurement is given by

y(t) = Cx(t) (4)

A. Fiber Bragg Sensors28−31

The physical principle (Fig. 5) behind the FBG sensor is that a change
in strain, stress, or temperature will alter the center of the wavelength of the
light reflected from an FBG. The FBG wavelength filter consists of a series of

perturbations in the index of refraction along the length of the doped optical
fiber. This index grating reflects a narrow spectrum of light that is directly
proportional to the period of the index modulation (grating) in the fiber
core. As the fiber is strained the period of the grating is altered, resulting

in a modulation of the optical power that is reflected and transmitted. The
modulation of the optical power is measured as AC voltage on a photodiode.
Since a FBG sensor is typically bonded to an elastic structure, any change in
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Figure 5: Multiple FBG sensors can be imprinted into the inner core of
a fiber through the use of interfering ultraviolet beams. The interference
patterns are essentially “burned” into the fiber core. The reflectivity of these
grating regions is sensitive to a specific wavelength λn. Thus each sensor can
be interrogated using a different wavelength from a tunable laser and using
wavelength division multiplexing technology.

strain in the underlying structure is directly transmitted into the fiber. FBG
sensors are routinely used to monitor dynamic vibrations in a wide variety
of elastic structures.

The system scan frequency is a combination of the speed of the optical
source, the bandwidth of the detectors, the data acquisition rate, and the
rate at which the analysis of the wavelength shift can be performed. Ex-

ternal cavity diode lasers (ECDLs) provide even higher output power than
fiber lasers, which increases the number of sensors and the dynamic range.
The narrow line-widths, fast sweep speeds, higher output power, and high
side-mode suppression ratios of ECDLs improve the accuracy and dynamic

range of FBG sensor systems. Moreover, incorporating a swept-wavelength
meter improves system accuracy. Although the laser-based FBG systems
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Figure 6: Two laser/detection systems that measure the wavelength shifts in
fiber Bragg gratings resulting from strain, temperature, or acoustic changes.

have lower scan frequencies than those using fiber lasers, developments in
ECDL technology will soon provide ultra fast tuning rates of up to 10,000
nm/s, enabling both high-speed and highly accurate sensing systems (Fig.6).

The sensitivity of a typical FBG sensor can be estimated by using the
following relation between induced strain and voltage measured at the pho-
todetector

dV

dε
=

dR

dε
(ZPD × Po)

where, V is voltage, Po is the optical source power, ε is strain, R is the
reflectivity of the grating at a specific wavelength and Θ is the photodiode
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sensitivity (A/W) and ZPD is the resistance of in the photodiode circuit. For
typical values: Po = 1.5 mW (50% of a 3mW laser is coupled into the fiber),

FBG sensitivity ratio dR/dε = 2.310−3 (1/µε), ZPD = 10MΩ, and a photo-
detector sensitivity of Θ =0.97 A/W resulting in a FBG sensor sensitivity
of

dV

dε
= 30 V/MΩ

with a minimum detectable strain (dark current limited) of approximately,

0.001 µε. For comparison, a high quality piezoelectric transducer has a sen-
sitivity of approximately

dV

dε
= 2600 V/MΩ

with a minimum detectable strain of approximately 3 µε. The immediate
result is that while the optical system has a significantly smaller voltage
sensitivity per unit micro-strain, the noise floor has improved by several
order of magnitude over the piezo-ceramic element. This estimate is based

on a quasi steady state assumptions for a strain measurement. Extending
this estimate to the MHz range for dynamic measurements is acceptable and
has been verified by experimental measurements reported literature.29,30 The
application for the proposed system measurements would be a dynamic in

nature on the order of 500 Hz to 75 kHz.
There is a wealth of existing technologies that the photonic industries

have developed for the telecommunications applications. Wave Division Mul-
tiplexing (WDM) components revolutionized the information superhighway

by dramatically increasing bandwidth capacity, which led to next-generation
networks and the maturation of the photonic industry (see Fig. 7. Be-
cause companies needed these network components in large volumes and at

narrower channel spacing, testing and measuring these devices required ever-
faster, lower-noise tunable lasers. ECDLs were developed that could tune
continuously at speeds of up to 100 nm/s over a wavelength range of 1520
to 1620 nm and with side-mode suppression ratios as high as 70 dB, which

resulted in extremely low-noise performance. Because the lasers operated
24 hours a day, 7 days a week on the manufacturing flooroften overseasthey
had to be rugged, reliable, and stable and meet strict shock and humidity
standards. The resulting technology can be leveraged into numerous multi
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Figure 7: Multi-sensing FBG array.

sensor applications all along the length of a single fiber or group of fibers.
The large selection of component manufactures provides a robust source of

reliable components with long operational life times in excess of 100,000 hrs
continuous use.31

This completes the description of the cylindrical shell process and mea-
surement models used in these experiments, next we consider the develop-

ment of a model-based detection scheme.

III. MODEL-BASED DETECTION

In this section we discuss the design of a detector to monitor the perfor-

mance of the model-based processor and indicate when the model is no longer
adequate or does not track the measured data. First, we briefly develop the
required theory. Once this is accomplished, we then discuss the development
of a practical processor and apply it to our simulated data sets.

Developing the model-based processor for the vibrational detection prob-
lem is based on a stochastic representation of the underlying dynamical state-
space system of the previous section (see Eq. 3). We use a continuous-discrete
Gauss-Markov representation, that is, excite the system with white Gaussian

noise and take into account the measurement uncertainty
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ẋ(t) = Ax(t) + Bu(t) + w(t) for w ∼ N (0, Rww)

y(tk) = Cx(tk) + v(tk) for v ∼ N (0, Rvv) (5)

where tk is the sample time at the output of the digitizer (analog-to-digital
converter) and the initial state is assumed Gaussian, x(0) ∼ N (x(0), P (0)).
Thus, this represents a stochastic extension of the deterministic system. The

vibrational response as well as states are contaminated with noise and un-
certainties (unknown parameters); therefore, we formulate the enhancement
problem as a state/response estimation problem using an embedded model

developed from first principles or “fit” to the data using parameter estima-
tion techniques. In any case the vibrational system enhancement problem
can be formulated succinctly as:

GIVEN a set of noisy response sampled-measurements, {y(tk)} and known

excitations, {u(t)} along with the corresponding Gauss-Markov model of Eq.
5, FIND the best estimate of the response (and state), ŷ(tk) (x̂(tk|tk)).

The optimal solution to this problem is well-known8 and is given (suc-
cinctly) by:

ˆ̇x(tk|tk) = Ax̂(tk|tk) + K(tk)ε(tk)

ε(tk) = y(tk) − ŷ(tk)

ŷ(tk) = Cx̂(tk|tk) (6)

Thus, based on the assumed Gauss-Markov model, the optimum proces-
sor or Kalman filter has the known excitation (u(t)) and noisy measurement

data (y(tk)) as input and produces an estimate of the states (x̂(tk|tk)), fil-
tered response measurement (ŷ(tk)) and the residual or innovations sequence,
(ε(tk)), as output. The statistical properties of the innovations are used to
assess the performance of the processor, since a necessary and sufficient con-

dition for the MBP to be optimal is that the innovations sequence must be
zero-mean and white.8 The innovations sequence is zero-mean and white only
when the process and measurement models reflect the true vibrational re-

sponse (and states) for a properly tuned MBP. Statistical changes in ε(tk),
reflect changes from the normal or expected operation; therefore, we can uti-
lize these changes to monitor the performance of the model embedded in the
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processor. First, we develop the theoretical monitor. From the insight we
gain in its development, we then investigate a more pragmatic approach and

apply it to our vibrational problem.
Theoretically, it can be shown that when “model mismatch” occurs, the

innovations become non-zero mean and are no longer white; therefore, we
must develop a monitor to decide whether or not the innovations satisfy the

required properties for optimality.8−11 Assuming a normal (no failures) struc-
ture initially, the MBP is tuned to produce a zero-mean, white innovations
establishing the normality operating condition. When something changes in
the structure due to excessive vibrations or aging failure, the underlying nor-

mal vibrational model will no longer “match” the measured response data
indicating a change from normal condition to what we define as abnormal
alerting us to a potential failure as described previously in Fig. 2; there-
fore, we declare a failure and attempt to classify its type. This is the basic

principle8−11 of the vibrational failure monitor/detector or more properly
“change detector.”

To formally pose this problem, we appeal to classical (sequential) de-

tection theory.20 We are to test the binary hypothesis that the innovations
sequence is zero-mean and white

H0 : ε(tk) ∼ N (0, Rεε(tk)) [WHITE]

H1 : ε(tk) ∼ N
(
µε, Rεε(tk)

)
[NON-WHITE] (7)

which is a statistical test for the zero-mean and whiteness of the innovations
sequence. Note that we assume that we know the model error and how to
calculate µε(tk) and Rεε(tk) a-priori.

The optimal solution to this binary detection problem is based on ap-

plying the Neyman-Pearson theorem leading to the likelihood ratio23 and
is given by the ratio of probabilities for the sequential innovations detector
(SID), that is,

L[EtN ] :=
Pr(EtN |H1)

Pr(EtN |H0)

H1

>
<
H0

τ (8)
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where EtN := {ε(t0), ε(t1), · · · , ε(tN)} or expanding

L[EtN ] =
Pr(ε(t0), ε(t1), · · · , ε(tN)|H1)

Pr(ε(t0), ε(t1), · · · , ε(tN)|H0)
(9)

but from the chain rule of probability8, we have that

Pr(Etk |Hi) = Pr(ε(tk)|Etk−1
;Hi)×· · ·×Pr(ε(t1)|ε(t0);Hi)×Pr(ε(t0)|Hi) (10)

which can be expressed succinctly using Bayes’ rule as

Pr(Etk |Hi) = Pr(ε(tk), Etk−1
|Hi) = Pr(ε(tk)|Etk−1

;Hi) × Pr(Etk−1
|Hi) (11)

Substituting these expressions (replacing tN by tk) into Eq. 8 and grouping

we obtain

L[Etk ] =

[
Pr(Etk−1

|H1)

Pr(Etk−1
|H0)

]
×

Pr(ε(tk)|Etk−1
;H1)

Pr(ε(tk)|Etk−1
;H0)

(12)

and therefore, we have the recursion or equivalently sequential likelihood as

L[Etk ] := L[Etk−1
]

Pr(ε(tk)|Etk−1
;H1)

Pr(ε(tk)|Etk−1
;H0)

(13)

Taking logarithms we obtain the relation for the sequential log-likelihood

λε(tk) := lnL[Etk ] = λε(tk−1) + lnPr(ε(tk)|Etk−1
,H1) − lnPr(ε(tk)|Etk−1

H0)

(14)
The corresponding Wald or sequential probability ratio test8 is then given

by:

λε(tk) ≥ τ1 Accept H1

τ0 ≤ λε(tk) ≤ τ1 Continue

λε(tk) ≤ τ0 Accept H0

(15)

and the underlying conditional Gaussian distributions are given by

Pr(ε(tk)|Etk−1
,H0) = (2π)−N/2|Rεε(tk)|−1/2 exp

(
−1

2
ε′(tk)R

−1
εε (tk)ε(tk)

)

(16)
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and

Pr(ε(tk)|Etk−1
,H1) = (2π)−N/2|R̄εε(tk)|−1/2 exp

(
−1

2
(ε(tk) − µ̄ε(tk))

′R̄−1
εε (tk)(ε(tk) − µ̄ε(tk))

)

(17)
If we include the determinants in the thresholds, we have the modified

decision function

Λε(tk) = Λε(tk−1)+
1

2
ε′(tk)R

−1
εε (tk)ε(tk)−

1

2
(ε(tk)−µ̄ε(tk))

′R̄−1
εε (tk)(ε(tk)−µ̄ε(tk))

(18)
which yields the new test

Λε(tk) ≥ Υ1 Accept H1

Υ0 ≤ Λε(tk) ≤ Υ1 Continue

Λε(tk) ≤ Υ0 Accept H0

(19)

where

Υ1 = τ1 +
1

2
ln |Rεε(tk)|−1/2 − 1

2
|R̄εε(tk)|−1/2

Υ0 = τ0 +
1

2
ln |Rεε(tk)|−1/2 − 1

2
|R̄εε(tk)|−1/2 (20)

The implementation of this monitor presents some basic problems, such
as how to obtain estimates of the innovations (abnormal) mean and covari-
ance required, but does illustrate a potential optimal solution to the model
monitoring problem. As mentioned, the SID requires a-priori knowledge

of the actual model “mismatch” and structurally how it enters the process
model to obtain [µ̄ε(tk), R̄εε(tk)] for the monitor.16−18 In some cases, if the
innovations are assumed ergodic, then a composite hypothesis test can be
constructed using sample statistical estimators for the required statistics.8

When the processor is “tuned”, it provides an optimal or minimum (error)
variance estimate of the state. The innovations sequence, which was instru-
mental in deriving the processor, also provides the starting point to check the

MBP operation. Recall that a necessary and sufficient condition for a MBP
to be optimal is that the innovation sequence is zero-mean and white. These
are the first properties that must be evaluated to insure that the processor is
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operating properly. If we assume that the innovation sequence is ergodic and
Gaussian, then we can use the sample mean as the test statistic to estimate

µε, the population mean.8 The sample mean for the ith component of εi is
given by

µ̂ε(i) =
1

N

N∑

t=1

εi(tk) for i = 1, · · · , Ny (21)

where µ̂ε(i) ∼ N (µε, Rεε(i)/N) and N is the number of data samples. We
perform a statistical hypothesis test to “decide” if the innovation mean is
null.8 We test that the mean of the ith component of the innovation vector

εi(tk) is

H0 : µε(i) = 0

H1 : µε(i) 6= 0

As our test statistic we use the sample mean. At the α-significance level, the

probability of rejecting the null hypothesis H0 is given by

Pr



∣∣∣∣∣∣
µ̂ε(i)− µε(i)√

Rεε(i)/N
>

τi − µε(i)√
Rεε(i)/N

∣∣∣∣∣∣


 = α (22)

Therefore, the zero-mean test,8 on each component innovation εi is given by

µ̂ε(tk)
>

Reject H0

<
Accept H0

τi (23)

Under the null hypothesis H0, each µε(i) is assumed zero. Therefore, at the
5 % significance level (α = 0.05), we have that the threshold is

τi = 1.96

√
R̂εε(i)

N
(24)

where R̂εε(i) is the sample variance (assuming ergodicity) estimated by
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R̂εε(i) =
1

N

N∑

t=1

εi
2(tk) (25)

Under the same assumptions, we can perform a whiteness test,8 that is,
check statistically that the innovations covariance corresponds to that of
an uncorrelated (white) sequence. Assuming ergodicity of the innovations

sequence, we use the sample covariance function as our test statistic with the
ith component covariance and lag k given by

R̂εε(i, k) =
1

N

N∑

t=k+1

(εi(tk) − µ̂ε(i)) (εi(tk + k) − µ̂ε(i)) (26)

We actually use the normalized covariance test statistic

ρ̂εε(i, k) =
R̂εε(i, k)

R̂εε(i)
(27)

Asymptotically for large N , it can be shown that (see Refr. 11) that

ρ̂εε(i, k) ∼ N (0, 1/N)

Therefore, the 95% confidence interval estimate is

Iρεε = ρ̂εε(i, k) ± 1.96√
N

for N > 30 (28)

Hence, under the null hypothesis, 95% of the ρ̂εε(i, k) values must lie within
this confidence interval to accept H0. That is, for each component innovation

sequence to be considered statistically white. The whiteness test of Eq. 28 is
very useful to detect modeling inaccuracies from individual component inno-
vations. However, for complex systems with a large number of measurement

channels, it becomes computationally burdensome to investigate each inno-
vation component-wise especially under the limiting ergodicity assumptions.

A statistic containing all of the innovation information is the weighted
sum-squared residual (WSSR). It aggregates all of the innovation vector in-

formation over some finite window of length M . It can be shown that the
WSSR is related to a maximum-likelihood estimate of the normalized inno-
vations variance.10,11 The WSSR test statistic is given by
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ρε(`) :=
∑̀

k=`−M+1

ε′(k)R−1
εε (k)ε(k) for ` ≥ M ε ∈ RNε×1 (29)

The WSSR hypothesis test is based on

H0 : ρε(`) [WHITE]

H1 : ρε(`) [NON-WHITE]

and is given by

ρε(`)
>

H1

< H0

τ (30)

Under the null hypothesis, the WSSR is chi-squared distributed, ρε(`) ∼
χ2(NεM). However, for NεM > 30, ρ(`) is approximately Gaussian N (NεM, 2NεM)

(see 8−11 for more details). At the α-significance level, the probability of re-
jecting the null hypothesis is given by

Pr

(∣∣∣∣∣
ρ(`) − NεM√

2NεM
>

τ − NεM√
2NεM

∣∣∣∣∣

)
= α (31)

For a level of significance of α = 0.05, we have

τ = NεM + 1.96
√

2NεM (32)

Thus, we see that the WSSR can be considered a “whiteness test” of
the innovations vector over a finite window of length N . Note that since
[{ε(tk)}, {Rεε(tk)}] are obtained from the state-space MBP algorithm directly,

they can be used for both stationary as well as nonstationary processes. In
fact, in practice for a large number of measurement components, the WSSR is
used to “tune” the filter and then the component innovations are individually
extracted and checked for zero-mean/whiteness to detect failures. Note also

that the adjustable parameter of the WSSR statistic is the window length
M , which essentially controls the width of the window sliding through the
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innovations sequence. Therefore, even if we cannot implement the optimal
SID, we can still perform a set of pragmatic statistical hypothesis tests to

investigate the condition of the underlying structure and classify its failure.

IV. FAILURE DETECTION AND CLASSIFICATION

In this section we extend the basic principles of model-based detection
and apply them to our particular problem of cylindrical failure monitoring

and classification. First we start with the development of a “normal” model
(ΣN ) providing a standard for monitoring and comparison. Here we assume
that we have measured the vibrational response of the structural system
(cylinder in our case) and developed a model to capture its performance, that

is, the normal (state-space) system, ΣN := {AN , BN , CN} is characterized
by the structural matrices of Eq. 3. We measure an ensemble of vibrational
responses from the system using a controlled excitation over the frequency
range of interest and then use them to obtain a representative model by

averaging over the estimated parameters for each realization, y`(tk); ` =
1, · · · , L. That is, we “fit” a model to the `th realization

ΣN (Θ`) := {AN (Θ`), BN (Θ`), CN (Θ`)} (33)

and then average over the entire ensemble

ΣN (Θ`) := EΘ{ΣN (Θ`)} =
L∑

`=1

ΣN (Θ`) = {AN (Θ), BN (Θ), CN (Θ)} (34)

A model order (dimension of the AN ) is selected to guarantee a zero-
mean/white innovations sequence using the ensemble as

ε(tk; Θ`) = y`(tk) − ŷ(tk; Θ`) for ` = 1, · · · , L (35)

The model extraction (parameter estimation) and validation method is
shown in Fig. 8. Here we see that an initial normal model is estimated from
part of the ensemble data (training data) to generate a set of parameters

producing an average model (above). Next the parameterized model is ap-
plied to test data where the innovations sequence is generated and tested
for acceptability. If acceptable, the parameter (ΘN ) is adjusted (averaged)
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Figure 8: Normal vibrational model extraction and validation: Ensemble pa-
rameter estimation/prediction, prediction error whiteness, model parameter
updating.

and the model is updated yielding an acceptable system model. In this way
the normal model is trained, tested and validated over an ensemble of both
training and test data to ensure its validity.

Once we have performed the parameter estimation,8 we construct the
state-space model from its parameters. Since we use a prediction error pa-
rameter estimation technique, the resulting state-space model is the discrete
(sampled) innovations model parameterized by the following:

x̂(tk|tk) = A(ΘN )x̂(tk|tk−1) + K(tk; ΘN )ε(tk; ΘN )

ε(tk; ΘN ) = y(tk) − ŷ(tk; ΘN )

ŷ(tk) = C(ΘN )x̂(tk|tk−1) (36)

In our case, since we have two sensors available and we choose two

positions to locate them (see Fig. 7c), then our vector measurement is
given by y(tk; r) where r is the sensor position vector on the structure.
We will (tacitly) assume that the positions are weakly coupled at first and
ignore the cross-coupling terms simplifying the models and measurements.

Therefore, we separate the analysis of each subsystem defined by: A(Θ) =
diag [A1(Θ) A2(Θ)]. The subsystem model parameters will be “fit” to each
subsystem individually and the measurements and detections processed ac-
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cordingly. With this in mind we proceed to process the measured vibrational
response data from the cylinder.

A. Cylinder Vibrational Response Normal Model

The normal model is developed using the parameter estimation techniques
resulting in the innovations model of Eq. 36. A typical set of cylindric
response data is shown in Fig. 9 where we see the noisy time series mea-

surements and corresponding power spectra. The cylinder excitation was a
chirp (swept sinusoid) that was varied from 100Hz to 5kHz. This range
was selected from numerical model studies5,6 of the cylinder. Next the mod-
els were fit as discussed above with the validation over a test ensemble (30

members) of vibrational response measurements. A typical fit and validation
are shown in Fig. 10 where we observe the innovations sequence in (a) with
the associated zero-mean/whiteness and WSSR statistic in (b) and (c). This
realization passes the “whiteness” criteria tests and is acceptable for model

updating (averaging) parameters.
With the average normal (pristine) model validated in terms of the en-

semble zero-mean/whiteness testing, a set of data were generated to test the

performance of the estimated prediction model. The results for this tests are
shown in Fig. 11. In a, we see the results for both sensors. Here we observe
that from an ensemble of 30 (×2 sensors) that 100% of the innovations (corre-
lation) lie within 10% out while 75% were “statically white” lying within the

5% out bounds for sensor 1. The sensor 2 results were above the 5% bound
with 93% of the ensemble below the 10% bound. These results indicate that
the estimated average prediction model (Fig. 8) is adequate for failure de-
tection processing. Next we create failure conditions by attaching masses

at the end of the cylinder: one of 300gm and one of 150gm. The resulting
spectra for both sensors are shown in Fig. 12 where we also indication the
number of resonant peaks residing in the 1000-2000 Hz band. We note that
for sensor 1 the number of resonant peaks under normal conditions are 5,

while for the 150gm and 300gm masses the number increases to (10,10) and
(12,8), respectively. Thus, we expect a more challenging detection problem
when using sensor 2 responses. In conclusion, we see that both models from
the sensor positions are obtained and indicate a robust model able to pass

the ensemble data demonstrating the robustness of the models.
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Figure 9: Cylinder vibrational response data: Time series and power spectra
for each sensor with the number of resonant peaks (5,8) for sensors 1 and 2,
respectively.
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Figure 10: Ensemble zero-mean/whiteness and validation testing for nor-
mal cylinder vibrational models. (a) Innovations sequence. (b) Zero-
Mean/Whiteness Test. (c) WSSR test.
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Figure 11: Self-validation ensemble whiteness test results for vibrational
models: (a) Normal (pristine) model self-validation. (b) Failure model for 300
gm mass self-validation. (c) Failure model for 150 gm mass self-validation.
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Figure 12: Sensor spectra for failure conditions: (a) 150 gm mass spectra
from sensor 1 (10 resonant peaks). (b) 150 gm mass spectra from sensor 2
(10 resonant peaks). (a) 300 gm mass spectra from sensor 1 (12 resonant
peaks). (a) 300 gm mass spectra from sensor 2 (8 resonant peaks).
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IV. RESULTS

Failure conditions were created by attaching the specified mass for each

experiment and generating a corresponding ensemble (30 members) of reso-
nance data for performance testing. The failure detections using the average
normal (pristine) model was applied after validation tests (above) were per-
formed indicating the robustness of the embedded processor model. The

results are shown in Fig. 13 for both sensors and both cases (150 gm/300
gm). From the figure we see that the failure detector performs quite well.
For the 300gm mass induced failure conditions all of the members of the test
ensemble were detected successfully with over > 60% bound (non-white), that

is, recall to be declared normal each test should lie within the 5% whiteness
bound—these failures exceed > 60% for sensor 1 and > 55% for sensor 2.
The results for the 150gm mass induced failure conditions are slightly better
with failures exceeding > 60% in each run for sensor 1 and > 58% for sensor

2.
Failure classification (fig. 2is performed in a similar manner. Once the

failure is detected, the corresponding abnormal (failure) model is now devel-

oped following the same techniques as for the normal model development.
The abnormal models are estimated and validated as shown in Fig. 7b,c and
then used to process the “failure” data to classify each individual mecha-
nism. The validation runs indicate the robustness of these models using a

failure classifier constructed identically to that of Fig. 8. This model-based8

approach appears to perform quite well for both detection and classification.
As a final part of the analysis we estimate the residual sequence comparing

the normal spectra to that of the failure (induced) spectra and the results

are shown in Fig. 14. Clearly there are spectral differences induced by
the attached mass as illustrated by the figure. The differences are quite
interesting for this particular location of the mass, sensor 1 shows a large
spectral difference from the normal compared to that of sensor 2 indicating

that is more sensitive to this vibrational response.
This completes the discussion of the results, next we conclude and discuss

future effort.

V. CONCLUSIONS
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Figure 13: Failure detector performance on vibrational test data: (a) 300gm
mass induced failure condition for sensors 1 and 2 (> 60% out, > 55% out).
(b) 150gm mass induced failure condition for sensors 1 and 2 (> 60% out,
> 58% out).
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Figure 14: Estimated spectral residuals with normal spectrum: (a) Mass
induced failure condition for sensor 1. (b) Mass induced failure condition for
sensor 2.
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We have demonstrated the effectiveness of a model-based approach to
failure detection and classification by performing parameter estimation and

model-based detection on sets of vibrational response experimental data.
By investigated the response of data and fitting parametric models we were
able to use whiteness testing of the innovations sequence to both validate
and detect two sets of failure conditions induced by attaching masses to a

cylindrical test object. The processor initially detects a departure from the
normal structural condition indicating a failure and then proceeds to classify
the particular failure mechanism by comparing to failure models developed
in an identical manner. The results appear to indicate that this approach is

viable.
Future efforts will be aimed at location the failure itsel by utilizing the

residuals that can be extracted from the normal spectra when compared to
the abnormal. Here the residual sequence it obtained again using the model-

based approach as shown in Fig. 15.8 The required spectral are estimated us-
ing the average normal model (ŶmathcalN (;Θ)) and the current failure model,
(ŶmathcalF (ω; Θ)) used to create the residual spectrum

R(ω) = ŶmathcalN (ω; Θ) − ŶmathcalF (ω; Θ)

This spectra is then backpropagated using a propagation model and like
time-reversal focuses back on the failure position performing the desired lo-

calization. Preliminary results appear to be quite promising.
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